SSC21-P2-17

Autonomous Fault-Tolerant Avionics for Small COTS Satellites: to Reality and Prototype

Dr. Christian M. Fuchs
The Fault Tolerant Satellite Computer Organization
Weigunystrasse 4, 4040 Linz, Austria
christian.fuchs @dependable.space

Dr. Nadia M. Murillo
RIKEN Cluster for Pioneering Research
Wako, Saitama 351-0198, Japan
nmurillo@starformation.space

ABSTRACT

In this contribution we present practical experiences from realizing a prototype of the first truly fault-tolerant and
autonomously operating avionics suite for miniaturized satellite down to the size of a 2U CubeSat. Our initial
demonstrator setup consists of a mix of COTS parts and FPGA development boards, which we gradually expanded
in scope and capabilities. After four iterations of PCB development and manufacturing, we have condensed this
design to a fully integrated custom PCB-based prototype. Our fourth architecture iteration is stackable and is
designed to fit on an 80x80mm PCB footprint. It is furthermore capable of operating as generic satellite subsystem
node, functioning in a distributed, fault-tolerant, interconnected manner together with other subsystems. Each node
is fully replaceable by two or more neighboring subsystem-nodes. In consequence, we achieve a satellite bus setup
which is in spirit similar to integrated modular avionics and modern fault-tolerant avionics network architectures
used in other fields. We realize this setup through a high-speed chip-to-chip network in a compact CubeSat form

factor.

INTRODUCTION

Until today, fault-tolerant avionics for satellites are
costly, less flexible, consume considerably more power,
and have a worse performance-per-watt ratio than con-
ventional COTS components. Without exception, they
are all dependent on proprietary RHBD and RHBM
components, custom designed for space-use. These take
decades to develop and also lag generations behind their
conventional COTS counterparts.

This applies to all satellite classes. However, in con-
trast to smaller modern miniaturized satellites, multi-
ton spacecraft, as well as SmallSats above 50 kg, can
afford to fly high-power consumption avionics. For
smaller, miniaturized satellites such as microsatellite and
nanosatellites, this is not the case. Such small spacecraft
can not afford to fly traditional fault-tolerant RHBD
and RHBM components anymore due to practical and
operational constraints. For most smaller spacecraft that
enable the innovative mission concepts that have enabled
the emergence of our new-space sector, the bottom line
is simply that fault-tolerant avionics are just not yet
possible with currently available technology.

Most smaller satellite form factors are thus constrained
to space missions with a brief duration, of months to
maybe a few years. This is due to the unpredictable

survivability of commodity-electronics based hardware
in the space environment, as well as the lack of a
reliability-safety net, which larger spacecraft are specif-
ically designed to include. Instead of a system of fault
and failure mitigation techniques, a failure aboard most
small satellites can very well be fatal. This must change.

Therefore, we developed novel fault-tolerance con-
cepts. Today, these enable us to finally overcome this
limitation. It is now possible to achieve strong fault-
tolerance for missions with an extended duration, using
the very same conventional COTS technology that is
being used today aboard very small satellites. Combined,
these concepts form an avionics architecture which was
presented SmallSat 2019 and the proof-of-concept im-
plementation of which we described in-depth in [1].

By design, satellite subsystems following this archi-
tecture are capable of autonomous failure handling, dy-
namic mid-mission reconfiguration, and adaptive, grace-
ful aging under the consideration of permanent and
persistent faults. By 2019, we produced proof-of-concept
implementations for each part of this architecture. We
had conducted fault-injection and system simulation at
different levels to test the effectiveness of this archi-
tecture, and confirmed its practical feasibility under
considerations of cost, power consumption, long-term

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

survivability, and mass. We tested each part of this
concept extensively and systematically, and analyzed
the architecture’s performance overhead. Since then, we
have advanced the maturity of this technology from
proof-of-concept to the prototype stage.

In this paper, we share experiences and lessons learned
in developing prototype hardware for this new technol-
ogy, and we provide a status update on our development
efforts. We optimized and streamlined the individual
elements and fault-mitigation stages of the protective
architecture we described in [1], stripping out features
that we considered mainly academically viable, and
achieved real time capabilities. We present our prac-
tical experiences from building the first autonomously
operating avionics suite implementing this technology
in the real world in hardware. Specifically, we outline
our experience building several demonstrator setups, and
eventually developing a first fully-custom and functional
prototype system. This prototype is intended for use as
development platform, as well as target for radiation test-
ing and characterization, and can be shrunk to fit aboard
SmallSats, Microsatellites, and even 2U+ CubeSats.

BACKGROUND AND RELATED WORK

In contrast to the initial generation of educational
CubeSats, today fewer satellites fail due to practical
design problems caused by inexperience [2]. Instead,
Langer et al. in [3] showed that the a majority of
these failures can be attributed to electronics heavy
subsystems. Even traditional space industry actors with
years of experience in large satellite design, who attempt
to develop CubeSats satellites “by the traditional book”
with quasi-infinite budgets today struggle to reach just
30% mission success [4].

The main source of failure there are environmental
effects encountered in the space environment: radiation,
thermal stress, and corruption of critical software com-
ponents that can not be recovered from the ground,
and failures caused by power electronics. Considering
again Langer et al., [3], with increasing age mission
duration, a broad majority of documented failures aboard
CubeSats originate from OBCs, transceivers, and the
electrical power subsystem. While functionally disjunct,
these subsystems all have in common that they are heav-
ily computerized and architecturally rather similar, built
around one or multiple microcontrollers and memories.

A satellite must cope with challenging design con-
straints, and the effects of the space environment on
electronics. The main source for faults within electronics
in the space environment are highly charged particles
from a variety of sources [5]. Particles interact with a
spacecraft’s electronics, and can induce different effects
in a semiconductor depending on the type of particle and
its charge. Among others, charged particles can corrupt

logical operations or induce bit-flips within semiconduc-
tor logic and memory (single event effects - SEE), and
may cause displacement damage (DD) at the molecular
level, induce a latch-ups or cause functional interrupts —
SEFIs. The cumulative effect of charge trapping in the
oxide of electronic devices (total ionizing dose — TID)
further impacts the lifetime satellite electronics.

All these effects can result in spontaneous or dras-
tically accelerated aging compared to ground applica-
tions, which must be handled efficiently throughout an
entire space mission. To do so, traditional space-grade
hardware makes heavy use of over-provisioning and
tries to include idle spare resources (processor cores,
components, memory, ...) where necessary. Traditional
OBCs for large satellites realize fault tolerance using
circuit-, RTL- [7], IP-block- [8], [9], and OBC-level
TMR [10] through costly, space-proprietary IP. Circuit-
, RTL-, and core-level measures are effective for small
microcontroller-SoCs [11], [12], if they are manufactured
in large feature-size technology nodes. More and more
error correction and voting circuitry is needed to com-
pensate for the increased severity of radiation effects
with modern technology nodes [11]. This in turn in-
flates the fault-potential, requiring even more protective
circuitry, making this approach ineffective for modern
semiconductors.

Approximately 10 years ago, nanosatellites began to
heavily utilize redundancy at the component level to
achieve some form of fail-over, to provide at least some
protection from failure. Unfortunately, several CubeSat
bus manufacturers have in recent years decided to follow
this approach, and began to add redundancy to every-
thing. However, practical flight results show that such
designs are complex and fragile, as compared to entirely
unprotected ones [2], [13]. Entirely unprotected OBC
designs are of course also no solution to the reliability
of a vast majority of CubeSats, as they, in turn, may
fail at any given point in time. However, today satellite
designers are usually forced to simply accept this risk,
leaving the hope that a satellite will by chance not expe-
rience critical faults before its mission is concluded. Risk
acceptance is viable only for educational, and uncritical,
low-priority missions with a very brief duration.

FROM PROOF-OF-CONCEPT BACK TO THE
DRAWING BOARD

In this section, we will provide a brief summary of the
base concept that we have now developed into a fully
fledged hardware prototype. This section is meant only to
provide a brief introduction to the concept, considerably
more in-depth documentation, as well as testing and
validation results can be found in [1] and [14].

Our objective is to provide practically viable and
economical means of assuring fault-tolerance aboard

Fuchs

35™ Annual AIAA/USU
Conference on Small Satellites

Virtual
Machine 1

Hypervisor
& Host

Virtual
Machine 2

Virtual
Machine 3

Virtual
Machine 2

Virtual
Machine 3

Virtual
Machine 1

Core 3

For each VM and Cycle:
Vote on Results
Schedule Lockstepping

In case of disagreement:
Resynchronize VMs

Hypervisor
& Host

Figure 1: The early evolution the fault-tolerance concept
we started out with. Initially, we built worked with
a COTS quad-core MPSoC running KVM virtual ma-
chines and I/O voting. This concept later evolved into an
FPGA-based MPSoC architecture consisting of multiple
fault-tolerance measures.

small satellites, especially micro and nanosatellites down
to the size of 2U CubeSats. We have developed this
architecture from the ground up. We formulated an initial
concept out of immediate need, when the first CubeSat
we co-developed had failed after two months on-orbit
[15]. The original concept is depicted in Figure 1. Since
its infancy, we have continued to mature this technology.
We began by establishing a sound scientific, theoretical
foundation for its functionality, then started designing
proof-of-concept implementations, and eventually devel-
oped these into breadboard proof-of-concept setups. We
tested and validated this technology at each stage of
technological maturity, and presented our results to the
community, e.g., in [1]. At the time of writing, we
have just finished a clean-slate iteration, and completely
re-developed this concept from the ground up. In this
process, we streamlined the resulting architecture and
fault-tolerance mechanics considerably, and developed
first a demonstrator setup, and most recently a custom-
PCB based prototype.

Instead of utilizing classical radiation hardened semi-
conductors or custom TMRed processors, we combine
software functionality with architectural and topological
design features within a system-on-chip to achieve fault-
tolerance to the effects of the space environment. This
system-on-chip design then forms the core of a satellite
computer, which can be freely adapted to a broad variety
of use cases. It can be utilized either as command & data
handling subsystem, or fulfill any other subsystem role
within a satellite.

A concept flowchart of the approach we utilize to
achieve fault detection, isolation, recovery, and report-
ing is depicted in Figure 2. Among others, our archi-
tecture combines software-enforced lockstep concepts,

MPSoC Supervisor & ConfigControler
Stage 3
Bootup Mixed Criticality
recovered
functionality failure

Stage 2

Reconfiguration

A
Replace

I : Update
A]E%grgéﬁétlité)%n j : Compartment Compartment
A © <limit T\ /T > limit
: Check

Fault Counter

| Read Majority
i Decision

Checkpoint

Figure 2: The same concept, now implemented in soft-
ware through lockstep within an MPSoC on an FPGA.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

Redundant Memory Set A

[
! !
I
Redwave | DDR4 MRAM Flash/PCM | | CcoM
I'| Main Memory (0S) (Payload Data) | |
I
:______I____________I“_T'_—I____________! ¢
» ADCS
Diagnosis > OCs
: an
Supervisor SPI Control CAN >
(MSP430FR) On-Board
JTAG %?g{ﬁ%? Ethernet > Network > Payload
GPIO (Satellite Bus)
etc... >
~ - Payload
QSPI CFG Mem 77| Transceiver
> EPS

4 I R e IR

Redundant Memory Set B

I
I
FPGA ! DDR4 MRAM Flash/PCM
Configuration | | Main Memory (0S)
Memory :
I

[
|
(Payload Data) I
|
|

Figure 3: A component-level diagram of a proof-of-concept implementation of our OBC architecture.

distributed decentralized voting, FPGA reconfiguration,
component-level self testing, as well as adaptive ap-
plication scheduling using mixed criticality aspects.
The combination of several of these mechanisms acts
mutually amplifying, thereby increasing the protective
strengths of the system far beyond of what usually
would be achievable if these measures were applied
independently. This fault tolerant system architecture can
be implemented purely using commodity hardware and
COTS components that are being flown today aboard
miniaturized satellites. It requires only standard library
IP to achieve fault-tolerance for virtually any firmware,
operating system, and software without enforcing a ven-
dor lock-in.

A subsystem utilizing this architecture can be dy-
namically reconfigured during a mission and trade com-
pute performance for reduced energy consumption or
increased robustness at run time. It enables a satellite
computer, or any other kind of subsystem utilizing
this architecture to best meet performance requirements
during different mission phases and different tasks. The
architecture allows a satellite to age gracefully under the
effects of the space environment, instead of failing spon-
taneously. Note that it provides actual fault tolerance,
it does not simply suppress faults until all redundancy
has been expended. It does not prevent damage but
allows a system to adapt to chip level degradation
and accumulating permanent faults, even during space
missions with a very long duration.

To test our implementation, we conducted fault injec-
tion at different levels, which we documented in [16]
and [14]. Next, we developed a multi-core model of our
MPSoC also in ArchC/SystemC to conduct further fault-
injection close-to-hardware, which is further described
in [17]. A more detailed description of these validation
steps is described in detail in [14]. To achieve worst-
case performance estimations, we measured the worst-
case performance cost of this approach, which are also
described further in [18]. These benchmark results were
generated based on code derived off a CCD readout
program used for astronomical instrumentation.

At the time of our last smallsat contribution [1], we
had constructed a proof-of-concept OBC setup based
on an FPGA development board in conjunction with an
MSP430FR development board. Following this publica-
tion, the first author earned his PhD 2 weeks before the
COVID pandemic, in late December 2019. In early 2020,
we began the next stage in developing this technology,
with a clean slate approach. At his point in time, we had
developed a specific architectural flavor for several years
in an academic environment.

Hence, we began by taking a step back from the results
we had developed and started fresh. We evaluated every
aspect of the concepts, software, hardware, and HDL
implementations we had developed over the past years.
Subsequently, we re-developed a new fault-tolerance
concept based on functionality that we liked in our
original concepts, but not in direct continuation of the

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

results obtained. We did this to avoid locking ourselves
into design decisions we ourselves had considered proper
from an academic point of view, not for an industrial
perspective. This was necessary to achieve not just a
functional prototype, but also an implementation that in
reality works efficiently aboard a CubeSat.

After several weeks of study, we ended up with a
fresh take at the concept we had originally developed
for protecting the MOVE-II CubeSat. We omitted several
aspects of the architecture we described in [1], especially
those that made sense for academic research, but not for
immediate practical use aboard a satellite. To clarify, we
had expected that this would be necessary already several
years earlier when starting the project which funded our
research between 2016 and 2019.

FIRST STEPS: A FUNCTIONAL DEMONSTRATOR

In the second half of 2020, we had constructed a
first fully functional development-board based demon-
strator following the reworked architecture we had just
developed. This breadboard-prototype for the first time
allows us to run a full Supervisor-MPSoC setup within
an Ethernet-based satellite bus testbed, instead of indi-

vidual proof-of-concept setups for different parts of the
architecture. This setup is depicted in Figure 4.

The test setup consisted of a fault-tolerant quad-
core MPSoC with an on-chip ICAP Microblaze-MCS
controller, which carried out platform management, tem-
perature sensor readout, and partial reconfiguration tasks.
This ICAP controller enabled us to perform rapid par-
tial reconfiguration while remaining within the limited
IO-capabilities of our MSP430FR development board
supervisor, and not forcing us to design custom PCBs
at this stage. We constructed a first breadboard-based
shields to interface our MSP430FR development board
with MPSoC carrier.

Each compartment was outfitted with an Ethernet-
controller, a UART interface, 12C, as well as two SPI
interfaces (one master, one slave). One of these SPI
interfaces was multiplexed and then made accessible
to the off-chip supervisor. All other interfaces were
exposed on the second FMC port available within the
system, which we simply looped back to the system
as depicted in Figure 4. Ethernet was realized through
the Xilinx AXI-Ethernet Core in RGMII mode coupled
with a tria- TEMAC core. Each compartment’s ethernet
interface was fully independent and attached to one of

Figure 4: Our first functional all-in-one breadboard setup the off-chip lockstep supervisor implemented within the
red MSP430FR board shown on the left, one Ethernet interface for each processor compartment realized through
a quad-port ethernet FMC card, and other compartment IO in loopback on the left FMC port.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

the dedicated Phys available on our COTS quad-ethernet
FMC card.

At this point in time, we had reached the limit of
functionality possible with just development boards, and
hand-soldered interface components. Hence, as next step
we began to scale up our test setup, and started gradually
introducing custom-manufactured PCBs.

EXPANSION AND DETOUR TO THE ZYNQMPSO0OC

With our first batch of custom manufactured hardware,
we broke-out of our MPSoC development card to a much
larger and more capable supervisor-scrubber-MPSoC
setup. This setup, while still based on development
boards, now allowed direct access to the MPSoC-FPGA'’s
configuration interface via FMC. The MPSoC remained
within our VCU118 development board, but supervisor,
logging, and satellite bus-emulation functionality was
now implemented through a ZyngMPSoC development
board.

With the Zynq MPSoC platform, we had hoped
to achieve an all-in-one single-chip implementation of
our MPSoC+Supervisor tandem. However, after several
months of reverse engineering firmware and platform
bring-up code, we discovered that the architectural fea-
tures facilitating platform bring-up on the Zynq platform
makes a truly fault-tolerant single-chip on-board com-
puter implementation unfeasible. The bring-up process
of the ZyngqMPSoC can in practice not be protected
in a single-chip setup, regardless of the fault-tolerance
measures used on top or surrounding the platform. This
is due to the fact that the bring-up process is dependent
upon several features which act as single points of
failures. These can neither be protected, nor can failures
affecting them be mitigated except for measures taken
in silicone. Hence, we stepped away from pursuing a
single-chip MPSoC setup with our architecture, regard-
less of its charm and energy efficiency. Instead, we
utilized the ZyngMPSoC platform to drastically expand
our breadboard demonstrator and then slowly began
introducing custom manufactured hardware.

In the process of investigating the Zynq MPSoC’s
platform, we also worked on mitigating the latch-up
issues present in the Xilinx 16nm Ultrascale+ and newer
families. It turned out that simple current and chip-
internal temperature monitoring is sufficient to solve
the destructive part of the latch-ups encountered, and to
efficiently and rapidly mitigate the non-destructive share
of latch-ups. This process is described in detail at a high
level in [19], and covered in detail in [20] where also
the voltage threshold required to resolve this latch-up
is documented. The process has been validated through
radiation testing, and is a flavor of the traditional latch-
up mitigation process employed in some CubeSat COTS-
EPS. These results have tentatively been confirmed inde-

pendently also though a latch-up mitigation experiment
in a radiation test campaign we supported in May 2021
at LBL. Note that this radiation test campaign is still
ongoing at the time of writing, no final report has been
released as to date, but we hope it will be made available
to the public.

THINGS GETTING REAL: TOWARDS A PROTOTYPE

Since mid-2020, our development approach became
increasingly iterative due to limited component avail-
ability, process optimization, logistical constraints dur-
ing a pandemic, and the step-by-step manner in which
we could merge-in new demonstrator functionality. We
began by designing and manufacturing custom breakout
PCBs in Q2/2020.

Initially, we replaced the simple hand-soldered inter-
face shields we had built earlier. In the second half of
2020, we had completed our first fully-featured platform
demonstrator setup, which is depicted in Figure 5. This
demonstrator was capable of autonomous operation and
fault-mitigation, fully automated logging and fault injec-
tion. Naturally, due to still utilizing COTS development
boards instead of custom designed-hardware, this setup
was relatively large and included an abundance of un-
necessary and unused functionality (approximately 80%
of each board’s functionality). As payload we utilized a
variety of different test applications, all running within
an RTOS. We used this demonstrator’s fault injection
capabilities to test and optimize its ability to respond to
and handle a wide array of different failure modes.

In autumn 2020, custom hardware development was
well underway, and our first fully custom-designed board
prototypes were assembled under extreme conditions
during the peak of the COVID-19 pandemic. Due to
being stuck on an island in the pacific with only parts
of the first author’s personal electronics lab in reach, we
also were in acute need of an SMD assembly, reflow,
and testing lab. None of the local facilities were avail-
able to individual customers for low-quantity prototype
development, so we developed our own SMD processing
line. We will not describe this setup in detail here, but
will only briefly mention some of the tools we built and
the tool set we have been relying upon for the past year.

We started with basic microsoldering setup, most
notably including tools such as an HDMI-inspection mi-
croscope, temperature controlled hotplate, SMD rework
tools, logic analyzer, and other test and measurement
equipment, etc. We constructed an SMD reflow oven
based on a commercial toaster oven, and controlled
it with raspberry-pi driven setup. We optimized and
reworked this setup over the course of 2020 and the first
half of 2021, and rebuilt and refined our reflow oven
design serveral times. To control this setup, we utilized a

Fuchs

35™ Annual AIAA/USU
Conference on Small Satellites

largely rewritten version of picoreflow !. Specifically, we
replaced the temperature control loop of picoreflow and
integrated support for multiple thermocouples to track
different temperature in different PCB regions.

This enabled us to assemble, reflow, and test manufac-
ture the first two generations of custom designed hard-
ware. We developed and manufactured several custom
utility cards, such as the one depicted in Figure 7. At
the time of writing, we are in the middle of the fourth
iteration of prototype hardware development. In the first
prototype development iteration, we replaced the early
hand-soldered breadboard interface we had constructed
in 2020 with custom PCBs. This allowed us to achieve
much higher clock frequencies and gave us the design
freedom necessary to make our demonstrator’s interfaces

Uhttps://github.com/apollo-ng/picoReflow

@®Fault-Tolerant COTS-based MPSoC
-Linux or FreeRTOS on VCU118

@Fault-Tolerant Supervisor
-Baremetal on ZynqgMPSoC (TMRed)

©® Satellite Bus Simulator
-1000BaseT & SPI
-Linux @MPSoC

Testbench Controller
-Linux @Zynq7

fully functional. The remainder of the demonstrator
remained largely identical, though it allowed us to fully
automatize the setup.

In the second iteration, we added support for external
FPGA scrubbing, and removed the need of the supervisor
component to interact with an FPGA’s configuration
interface through an FPGA-implemented configuration
controller. In practice, this iteration yielded a consid-
erably more powerful implementation of the safeing
subsystem we had developed for MOVE-II in [21], the
logic of which is depicted in Figure 6. Furthermore, we
used this hardware-design iteration to prototype high-
speed interface design. At this point in time, we also re-
quired more sophisticated measurement tools that exceed
what a personal electronics lab usually includes, and we
sourced more sophisticated measurement equipment to
do precise signal integrity analysis, debug DDR memory

FECEEN)

5.7 AVNET

Figure 5: Our first fully functional development-board based emulator setup including some early custom designed
breakout hardware (center). Different functional components of the setup are colorcoded.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

Figure 7: An example of a one of the pieces of hardware
we developed in the past year on our way to achieve a
full prototype implementation of our architecture.

and similar interfaces at the bandwidths at which they
operate.

Our third custom-hardware manufacturing iteration
can be considered a bugfix and lessons-learned step. In
the previous development steps we had learned important
lessons regarding high-speed transceiver design, signal
integrity, and SMD process optimization. We also lost
components that were never found. The hardware de-
veloped in this third iteration integrated all these results
and experiences, and added functionality we had chosen
to not integrate in previous prototype hardware. Also,
we omitted a considerable amount of legacy interface
support we had included in our generation 1 and 2
hardware.

In our fourth prototype development iteration, we have

produced our first fully functional on-board computer
prototype implementation on a single carrier-board. With
this iteration, for the first time we no longer require
COTS development boards or breakout cards, though
still support them to simplify development. Instead, all
functionality is now implemented within a form factor
that we designed to be shrunk to fit aboard a CubeSat.

EVOLUTION FROM OBC TO SATELLITE BUS

Our initial objective over the past years always had
been to provide a CubeSat-compatible COTS based satel-
lite on-board computer that offers strong fault-tolerance
using only commercial commodity components. In the
progress of our clean-slate concept re-evaluation, we
wanted to not just prototype a fault-tolerant satellite on-
board computer, but aimed to provide fault coverage for
an entire CubeSat bus or subsystem interconnect. Hence,
we developed different demonstrator and prototype iter-
ations throughout 2020 and 2021, increasingly evolving
beyond “just” being an on-board computer prototype.
As of the second iteration of our demonstrator that
included satellite bus simulation, it became clear that
the only real distinction between our OBC MPSoC and
its simulated subsystem counterparts was the number of
compartments implemented within the different modules,
and the software deployed.

Our fourth architecture iteration is designed to be
stackable, and the condensed footprint of each individual
board easily can be fit on an 80x80mm PCB footprint.
To illustrate the basic notion of how our fourth iteration
boards stackup, we depict such a setup in Figure 8. Each
PCB labeled as subsystem node is designed to be a

Fault Classification

Initialization
Power-On Try Alternative Permanent
Configuration Fault
Fault
Persists
Y
Debug Subsystem Transient Test Running
Initialization Fault Configuration

and Recovery

Reconfigure
FPGA

A
Y
Process -—)w Log Faults
STAPL Scripts Soft-SOC P Location/Time
Self-Reporting
7y
Y
Initialize FPGA - Read Running Compare FPGA
Configuration > ek > Configuration > Configuration

A

Fault Detection

Figure 6: High-level function overview over the saving subsystem we developed for the CubeSat MOVE-II, which
today is part of our prototype setup and which we run on the card depicted in Figure 7.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

LSH connectors
Symetric on PCB
top and bottom

12V Power In

Figure 8: A 5-board stackup of our fourth-iteration
prototype board. Note that this image merely depicts the
general idea and is not drawn to scale or proportion. Each
board represents a fully independent prototype board,
however, each board can also be interfaced freely and
supply power to siblings located above and below itself.

full satellite computer prototype instance, and we utilize
a top-bottom symmetric hermaphroditic connector to
achieve stackability. Notably, these boards are powered
independently, and each includes a full set of power
electronics which would usually exist only once in a
satellite’s EPS subsystem. We could also utilize these
connectors for power delivery, but currently do not yet
use this functionality.

For the sake of completeness, our fourth-iteration
prototype is intentionally designed for a larger PCB
footprint to enable convenient access debug headers,
and allow for easier testing and probing. Furthermore,
the larger spacing we are using in this generation is
required to be able to still hand-assemble the PCB with
tweezers. A more compact CubeSat form factor would
require assembling using a pick&place machine, access
to a commercial SMD manufacturing facility, or a way
to finance turnkey manufacturing with larger quantities
than what we currently produce.

The platform we implement our prototype for is
designed to hold 4 or more compute compartments and
operate as central on-board computer controlling all
aspects of a satellite. At this point in time, we support
the following Xilinx FPGA families:

o l6nm Ultrascale+ (except Zynq MPSoC)
e 20nm Virtex and Kintex Ultrascale
e Series 7 Artix and Kintex FPGAs

We support specifically only Xilinx devices at this point
in time, as we have continuously worked with Xilinx FP-
GAs since 2014 and possess the tooling and experience.
However, our architecture can very well be expanded to

other systems, device types, and platforms.

For subsystem-versions of our prototype, no large 4-
compartment MPSoCs are necessary and are also not
desirable aboard tightly power-budget constrained satel-
lites. This is especially true if we not only consider
the role of our prototype as central satellite on-board
computer, but as one subsystem node within a distributed
satellite architecture with a varying set of sensors,
memories, and in general, functionality attached and
services by each subsystem node. There, fault-detection
and mitigation and state-synchronization between com-
partments on different nodes still operates analogous
to the mechanics we described and implemented in
Section . However, satellite subsystem nodes operate in
a distributed, interconnected manner where each node is
fully replaceable by two or more neighboring subsystem-
nodes. If we consider a stack of 5 or more instances of
our fault-tolerant architecture, we can very well dedicate
individual nodes to primarily service communications
tasks, handle ADCS tasks, data storage and processing
tasks, to scientific data acquisition, and to power man-
agement.

Naturally, the interfaces and workload of a single
subsystem-node requires a much reduced amount of
system resources as compared to “everyone” operating as
fully independent, monolithic satellite-computers within
a cluster?. Hence, each of these nodes can also be im-
plemented on much smaller and more energy conserving
FPGAs or ASICs, which each can still handle all or parts
of the workload previously handled by a failed subsys-
tem node. We interface compartments with subsystem
peripherals (e.g., on- and off-chip driver logic, sensors,
memories, ...), in a manner so that the compartment in
each node can access peripherals of another device in
a controlled and side-effect free manner. We decouple
the interface logic from the immediate MPSoC design
to assure this is possible, even if an entire compartment
should fail. In consequence, we arrive at a satellite bus
setup which is in spirit similar to integrated modular
avionics (IMA) [22] and modern fault-tolerant avionics
buses such as AFDX [23] used in atmospheric aerospace.
However, we realize a chip-to-chip network in a compact
CubeSat form factor, without the need to consider the
impact of hundreds of kilometers of airplane cable
harness on real-time guarantees.

CONCLUSIONS & FUTURE WORK

In this contribution we presented our practical expe-
riences from realizing our prototype of the first truly
fault-tolerant and autonomously operating avionics suite

2We mention this merely to make a point. In reality outfitting every
single satellite subsystem with a full on-board computer instance would
be unrealistic and wasteful regarding especially power budget and
system complexity, and thereby also failure potential.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

for CubeSats. In the process of going from several
independent proof-of-concept implementations to proto-
type, we reworked the previously presented architecture
[1]. We re-developed our architecture in a clean-slate
approach, and optimized and streamlined the individual
elements and fault-mitigation stages of our architecture.
This enabled us to remove features that we considered
mainly academically viable, which in turn enabled our
implementation to achieve better real time capabilities.

Our initial demonstrator setup consisted of a mix of
COTS parts and custom designed hardware. At the time
of writing, we have condensed this design to a fully
integrated custom PCB-based prototype. This design can
then be directly used for characterization / radiation
testing of the avionics suite, and is intended to be minia-
turized for space use aboard SmallSats, Microsatellites,
and even 2U+ CubeSats.

We hope the insight we shared in this contribution
regarding the current state of our technology develop-
ment efforts, prove to be of value to the avid reader. We
especially hope that experiences with the Zynq MPSoC
platform and latch-up mitigation are valuable to the small
satellite community at large, and that they may aid in
avoiding pitfalls that we discovered, some of which we
expended considerable time and research on.

At this stage, the scope of our architecture and pro-
totype implementation has begun to increasingly shift
away from implementing just a fault-tolerant on-board
computer. Our architecture evolved into an entire fault-
tolerant satellite bus backbone, which increasingly cov-
ers all aspects of satellite bus design. We had originally
planned to conduct these development steps as part of
open academic research, but being stuck on an island
for the duration of a global pandemic has interfered with
this objective. Hence, we sought new ways to bring this
new technology into the real world, and have now been
making it practically and commercially usable for the
small satellite community in the near future. At this point
in time it is clear that we will in due time be able to field
a prototype that can be flown aboard a future CubeSat.
Where this is, however, we do not know yet.

ACKNOWLEDGMENTS

This research and contribution was not supported by a
funding entity or institution. The work described in this
paper has in its entirety been done by the first author.
However, we consider writing a scientific/technical paper
in first person singular inappropriate and would like
to avoid adding feline co-authors, and therefore chose
to use first person plural within this paper. The work
described has been supported by N.M.M. in her private
spare time, entirely outside of her capacity and funding
as RIKEN special postdoctoral researcher.

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]
(10]
(11]
[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

C. M. Fuchs, N. M. Murillo, P. Chou, J.-J. Liou, Y.-M. Cheng,
X. Wen, S. Holst, A. Tavoularis, G. Furano, G. Magistrati,
K. Marinis, S.-K. Lu, and A. Plaat, “Fault tolerant nanosatellite
computing on a budget,” in AIAA/USU Conference on Small
Satellites. AIAA, 2019.

J. Bouwmeester, M. Langer, and E. Gill, “Survey on the imple-
mentation and reliability of CubeSat electrical bus interfaces,”
CEAS Space Journal, Springer, 2017.

M. Langer and J. Bouwmeester, “Reliability of CubeSats —
statistical data, developers’ beliefs and the way forward,” in
AIAA/USU SmallSat, 2016.

M. Swartwout, “You say “Picosat”, i say “CubeSat”: Developing
a better taxonomy for secondary spacecraft,” in 2018 IEEE
Aerospace Conference, 2018.

J. Schwank et al., “Radiation Hardness Assurance Testing of
Microelectronic Devices and Integrated Circuits,” IEEE Trans-
actions on Nuclear Science, 2013.

M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in
FPGA devices 2014-2015,” in NASA NEPP/ETW, 2015.

C. Carmichael, “Triple module redundancy design techniques for
Virtex FPGAs,” Xilinx Application Note XAPP197, 2001.

K. Reick et al., “FT design of the IBM Power6 microprocessor,”
IEEE micro, 2008.

M. Hijorth et al., “GR740: Rad-hard quad-core LEON4FT
system-on-chip,” in Eurospace DASIA, 2015.

K. D. Safford et al., “Off-chip lockstep checking,” Jun. 26 2007,
uS Patent 7,237,144.

A. Fedi et al., “High-energy neutrons characterization of a safety
critical computing system,” in /EEE DFT. IEEE, 2017.

X. Iturbe et al., “A triple core lock-step ARM Cortex-RS pro-
cessor for safety-critical and ultra-reliable applications,” in IEEE
DSN-W, 2016.

M. Swartwout, “The first one hundred CubeSats: A statistical
look,” Journal of Small Satellites, 2014.

C. M. Fuchs, “Fault-tolerant satellite computing with modern
semiconductors,” Ph.D. dissertation, Leiden University, 2019.
M. Langer, C. Olthoff, J. Harder, Fuchs, C. M., M. Dziura,
A. Hoehn, and U. Walter, “Results and lessons learned from the
CubeSat mission First-MOVE,” in Symposium on Small Satellites
for Earth Observation. IAA, 2015.

C. M. Fuchs et al., “Towards affordable fault-tolerant nanosatel-
lite computing with commodity hardware,” in IEEE ATS, 2018.
J.-T. Xiao, T.-S. Hsu, C. M. Fuchs, Y.-T. Chang, J.-J. Liou, and
H. H. Chen, “An isa-level accurate fault simulator for system-
level fault analysis,” in IEEE ATS, 2020.

C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing
to space,” in IEEE ATS, 2017.

P. Maillard, J. Arver, M. J. Hart, and J. K. Jennings, “Using
LVAUX mode in XQ ruggedized UltraScale+ devices for airborne
systems,” Xilinx User Guide UG584, 2019.

, “Mitigation of single event latchup,” 2017, uS Patent
9,793,899.

C. M. Fuchs et al, “Enhancing nanosatellite dependability
through autonomous chip-level debug capabilities,” in Small
Satellites, System & Services Symposium 2015 (4S). ESA, 2016.
S. Cevher, A. Mumcu, A. Caglan, E. Kurt, M. K. Peker,
I. Hokelek, and S. Altun, “A fault tolerant software defined
networking architecture for integrated modular avionics,” in 2018
IEEFE/AIAA 37th Digital Avionics Systems Conference (DASC).
IEEE, 2018.

Aeronautical Radio, INC, ARINC Specification 664: Avionics
Full Duplex Switched Ethernet (AFDX), 2005.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

