View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@USU

Utah State University

Digital Commons@USU

Undergraduate Honors Capstone Projects Honors Program

5-2006

Task Scheduling and Simulation

Martin Lee Mayne
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

b Part of the Computer Sciences Commons

Recommended Citation

Mayne, Martin Lee, "Task Scheduling and Simulation" (2006). Undergraduate Honors Capstone Projects.
746.

https://digitalcommons.usu.edu/honors/746

This Thesis is brought to you for free and open access by

the Honors Program at DigitalCommons@USU. It has

been accepted for inclusion in Undergraduate Honors A

Capstone Projects by an authorized administrator of /\])
DigitalCommons@USU. For more information, please IQ’ m UtahStateUniversity

contact digitalcommons@usu.edu. (= MERRILL-CAZIER LIBRARY

https://core.ac.uk/display/478906186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fhonors%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/746?utm_source=digitalcommons.usu.edu%2Fhonors%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

TASK SCHEDULING AND SIMULATION

by

Martin Lee Mayne

Thesis submitted in partial fulfillment
of the requirements for the degree

of
HONORS IN UNIVERSITY STUDIES
WITH DEPARTMENT HONORS
in

Computer Science

Approved:
Thesis/Project Advisor Department Honors Advisor
Dr. Xiaojun Qi Myra Cook

Director of Honors Program

Dr. Christie Fox

UTAH STATE UNIVERSITY
Logan, UT

2006

1. Introduction

Scheduling is a problem that is not only common computer science, but which also
comes up in a variety of real world situations. Whether multi-threading computer processes,
scheduling airport traffic, optimizing assembly line production and manufacturing, or ensuring
that enough employees are on the floor at a given time, scheduling is important for increasing
efficiency, reducing costs, optimizing production, and meeting deadlines. Scheduling has been
used throughout history and has increased in efficacy through the years. Modern computerized
scheduling techniques are typically much better than human calculations and often produce
surprising insights and results which would have been otherwise passed over due to their
counter-intuitive nature [6].

The techniques for solving scheduling algorithms range from simple and intuitive to
complex and computationally intensive and they vary in efficiency. The most obvious
scheduling technique (or lack thereof, perhaps) is the first-come-first-serve (FCES) scheduling
algorithm. This algorithm simply places tasks in a queue and handles them in the order they
became known. We see the first-come-first-served approach frequently in real life: checking
materials out of a library, lunch lines, printing on a shared printer, free sample giveaways, etc.
This approach can be satisfactory for simple or independent tasks. Sometimes, in real life, it is
even expected and can be a source of aggravation when not followed (e.g. line-jumpers) [4].
However, in situations involving prioritized tasks or precedence constraints (task B cannot begin
until task A is finished), first-come-first-served quickly becomes unsatisfactory.

In such circumstances, a more sophisticated scheduling scheme is needed. In the 1950's
when the first nuclear-powered submarine was constructed, a better scheme known as “the
critical path method” was devised [7]. The critical path (CP) method is not actually a scheduling
algorithm, but rather a tool on which to base a scheduling algorithm. Many successful modern
algorithms are based on the critical path method. The critical method works by first doing a
forward pass through the task graph to establish the earliest possible start time for each task, and
then making a backward pass to establish the latest possible start time for each task. Tasks that
have equal earliest and latest start times are called “critical tasks” and are given highest priority
in the schedule. Other tasks are “floating” and can be delayed up until their latest starting times
without affecting the overall completion time of the project [8].

2. Arithmetic Implementation

For my project, I implemented both the FCFS and CP methods. There is no pseudo code
for the first-come, first-served algorithm: the first available task is simply run to completion and
then the next available one is scheduled [2]. Note that tasks are subject to precedence
constraints. This means that a task is not considered “available” until all of its predecessor tasks
have been scheduled. Thus, starting with the “root tasks,” each task is scheduled by placing it in
a queue as it becomes available (i.e. once all its predecessors are scheduled).

Critical path scheduling is done in three phases, the first of which is essentially the FCFS
method. Chris Hendrickson [3] gives the pseudo code for the critical path is as follows:

® Event numbering:
1. Give the starting event number 0.
2. Give the next number to any unnumbered event whose predecessor events are
already numbered.

3. Repeat step 2 until all events are numbered

® Earliest Event Time Algorithms:

1. Let E(0)=0.

2. Forj=1,2,3,...n (where n is the last event), let maximum EQ) =
maximum{E(i) + D;} where the maximum is computed over all activities (i) that
have j as the ending event.

® [Latest Time Algorithms:

1. Let L(n) equal the required completion time of the project. Note: L(n) must equal
or exceed E(n).

2. Fori=n-1,n-2, .0, let L(1) = minimum{L(j) — D;} where the minimum is
computed over all activities (i,j) that have i as the starting event.

Basically, the algorithm propagates from the beginning to find the earliest start times and
then propagates backwards to find the latest start times. Once the critical path has been
calculated, the schedule can be created. The most straightforward CP scheduling al gorithm is
simply to give critical tasks priority over other available tasks. If two critical tasks have equal
critical times either task can be scheduled first. Obviously, the precedence constraints of the task
graph must be satisfied before critical times are considered [1].

3. Simulation

3.1 Simulation Tool

Dr. Qi and I chose to implement the project using XJ Technologies' AnyLogic
software [9]. AnyLogic is a relatively new general purpose simulation package which
has been used to simulate and solve problems related to pedestrian dynamics, ecosystems,
effects of marketing on product adoption, and more. AnyLogic's flexibility, Java-based
platform, and visual tools make it especially nice to work with. To our knowledge, it has
never been used for scheduling and simulating task graph systems.

3.2 Graphical, Drag-and-drop Task Granhs

4rgure (v,

AnyLogic's environment is especially nice for its drag-and-drop graphical
interface. The first step of my project was to create the task graph system consisting of
tasks and a scheduler. This system allows a user to create arbitrary task graphs by
dragging tasks onto the workspace and connecting them together, as shown in Figure 1.
The task graph reads from left to right, so that tasks connected to the left side of another
task are its predecessors and tasks connected to the right side of a task are its successors.

4. Experimental Results

To demonstrate the experimental results, [simulated the example model from the earlier
figures using both the FCFS-based and CP-based scheduling schemes.

Figure 4 shows the FCFS-based scheduling
It shows an executing task graph system. The grap
itself shows that the left-most and upper left tasks
have already been completed and that the bottom
middle task is running, shown in gray and green
respectively. The Gantt chart at the bottom of the
window also shows that two tasks have run and tha
they each took one second. The FCFS algorithm is
running — notice how the earliest and latest starting
times are displayed as o and -0 because they are
ignored and never calculated,

1oemer L T,

Figure 5 shows the CP-based scheduling an
the earliest and latest start times have been
calculated. This task graph only has one non-
critical task: the green one that is running. Notice
how, using the critical path, the bottom middle task
runs before the upper left task because it is a critica
task. Critical tasks have equal earliest and latest
starting times as described earlier, and the system
emphasizes them by outlining them with a darker
line. Also, the Gantt chart shows that the second
task executed took three times longer to complete
than the first task.

EERF IR

5. Conclusion

First-come-first-served and critical methods or Just the beginning of scheduling
algorithms. The next step would be to incorporate multi-processor scheduling. Eventually, this
system could be expanded to include a wide array of scheduling algorithms over a large range of
task graph scheduling domains. With some luck, the system could eventually be used to solve
real-world problems. At any rate, the project gave me experience with scheduling algorithms,
the AnyLogic software package, and the Java programming language.

	Task Scheduling and Simulation
	Recommended Citation

	tmp.1624977636.pdf.OAdHc

