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Abstract

Microalgal biofilms are comprised of a syntrophic consortium of microalgae and other
microorganisms embedded within an extracellular matrix. Despite significant processes in
the application of microalgal biofilms in wastewater treatment, mechanistic understanding and
optimization of microalgal biomass yield and productivity under environmental constraints is
still lacking. This paper identifies theoretical insights on this challenging biological problem by
leveraging novel mathematical and computational tools. In particular, through a computational
mathematical model to advance the understanding of microalgal biofilm growth kinetics under
environmental constraints through a systematic parameter study. Moreover, design of algae
biofilm reactors for optimal biomass yield and productivity in wastewater treatment under
different environments is explored. The proposed model could be further calibrated to generate
reliable predictions that can improve the design, operation, and management of microalgal
biofilms in wastewater treatment.
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Optimal Control of Algae Biofilm Growth in Wastewater Treatment

using Computational Mathematical Models

Gerald Jones1, Dylan Ellis2, Zengyan Zhang1, Jia Zhao1 ∗, and Ronald Sims2

1 Department of Mathematics & Statistics, Utah State University, Logan, UT, 84322.
2 Department of Biological Engineering, Utah State University, Logan, UT, 84322.

1 Introduction

Microalgae have attracted considerable interest worldwide due to their renewable and sustain-
able properties; they are economical and environmental-friendly sources for biofuels and bioactive
products. The past decade has witnessed new applications of microalgae in renewable energy,
biopharmaceutical, and nutraceutical industries. Among the applications of microalgae, scientists
have been using microalgae in wastewater treatment due to the capability of consuming greenhouse
gases, such as carbon dioxide CO2, from the atmosphere and converting pollutants (such as nitrogen
and phosphorus) into biomass. The biomass can be used as feedstock for engineered processes
producing useful products such as bioplastics, biocrude, and other bioactive metabolites. Thus,
microalgae can contribute to novel solutions to some of the significant challenges for the 21st
century. A schematic illustration of the microalgae cultivation system in wastewater treatment is
shown in Figure 1. However, the productivity of suspended microalgal growth cultivation systems
is usually limited.

One solution to increase productivity is to use biofilm-based algae cultivation on attached
substrates [4, 11]. This approach has drawn attention as a way to optimize algae yield in wastewater
treatment systems [15, 10, 5, 7]. Microalgae-based biofilms are composed of eukaryotic and
prokaryotic photoautotrophic microorganisms and heterotrophic bacteria entrapped in a gel-like

∗Corresponding author; Email: jia.zhao@usu.edu.
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matrix known as extracellular polymeric substances (EPS) that are cultivated on a solid support
(substratum) in aquatic environments. Algae-biofilm cultivation systems for wastewater treatment
have several potential advantages including their variable chemical compositions dependent on
their cultivation medium, biomass biodiversity, high tolerance of extreme environmental conditions
(temperature, salinity, and water quality), ability to remove pollutants such as nitrogen and
phosphorus from liquid waste streams and CO2 from the atmosphere. Algae biofilms offer
the benefits of phytoremediation, with a harvesting mechanism that eliminates energy-intensive
solid-liquid separation processes including centrifugation, filtration, and sedimentation. Despite
the significant progress and promising applications of the algae-biofilm cultivation systems in
wastewater treatment, the algae biofilm technology platform presents several challenges that need
to be addressed adequately for both pilot-scale and full-scale implementation. In particular,
algae-biofilm productivity optimization under various environmental and operational parameters
(including the selection of proper microalgal strain(s); nutrient uptake; light quality; temperature;
pH; CO2; attaching substrate/material; flow velocity; the presence of other microorganisms)
remains a crucial challenge. The lack of insights on these parameters becomes a bottleneck to
predicting the performance of the technology and to scale-up of the technology from laboratory
scale to pilot to full-scale.

Figure 1: A schematic illustration of microalgae cultivation systems for
wastewater treatment. There are rich nutrients such as nitrogen and phosphorus
in the wastewater. The microalgae cultivation system will remove the nutrients
and convert them, along with the solar energy, into biomass such as biofuels
and bio-products.

Due to the complexity of the algae biofilm cultivation system and the confounded nature of
environmental factors on biomass productivity, predictive mathematical models will be desirable to
provide insights. Unfortunately, this is nontrivial, as many factors shall be considered appropriately
[6]. Light and temperature are the major factors for algae biofilm growth. The algal biofilm will not
effectively produce when light is limited and will be inhibited when the light is too strong [13, 22].
Therefore, understanding algal biofilm under various light access conditions is one major issue
in mathematical modeling. Among the many inspiring mathematical models in understanding
photosynthesis for microalgae [14, 13, 22, 23] that have been broadly used to investigate the
photosynthesis dynamics in algae biofilms, Bechet et al. provide a comprehensive review of existing
mathematical models to assess biomass productivity affected by light and temperature in [2]. In
particular, they categorize the existing mathematical models for photosynthesis in well-mixed dense
cultures into three types with a list of relevant models summarized in the tables in [2]. Also, most
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of these existing models focus on mass action principles, and the spatial resolutions are ignored for
simplicity. In reality, the sunlight fails to penetrate deep into the algae biofilm as the light energy
will be absorbed by the algal cultures. Thus, the thickness of algae biofilms needs to be considered
in the mathematical models. Some other factors that are also important include the hydrodynamic
stress [9, 8], nutrient supply and mass transport through the biofilms [20, 18], and the substrate
properties [12]. To date, there is limited theoretical work on modeling algal biofilms in wastewater
treatment. Some seminal work is described in [1, 2, 3, 17]. So far, no quantitative model exists to
predict biofilm productivity that agrees with experimental data at laboratory and pilot scales.

In this paper, we propose a computational mathematical model to discover the underlying
mechanics of algae biofilm growth in wastewater treatment. The photosynthesis process of
algae biofilm development and the impact of light inhibition have been considered in the model
formulation. In addition, to accurately model the light effect, the biofilm thickness is also embedded
in the model. With the newly proposed model, we conduct a systematic study on various
environmental factors on algae biofilm growth and identify optimal control strategies to improve
biomass productivity. This model will serve as guidance for designing an algal biofilm cultivation
system with adjustable rotation speed or exposure rates to optimize biomass productivity. The
objectives of the research reported here include (1) description of the mathematical model developed
to predict algae-based biofilm productivity; (2) demonstration of the influence of light intensity,
peripheral velocity, and light exposure time (fraction) on productivity; and (3) determination of
the effect of harvesting frequency on productivity and on efficiency.

The rest of this paper is organized as follows. In Section 2, we introduce the rotating algae
biofilm reactor and derive the computational mathematical model. Afterward, we introduce the
numerical setups, numerical schemes, and provide a thorough numerical study on algal biofilm
growth under various environmental factors with the proposed model. In the end, we draw a brief
conclusion and discuss some future work.

2 Computational Mathematical Model Formulation

2.1 Rotating algae biofilm reactor (RABR)

This paper is focused on a particular biofilm-based algae cultivation system: the rotating algae
biofilm reactor (RABR) [4, 5, 16]. The RABR removes nutrients from wastewater by producing
algae biomass that transfers nutrients from a liquid phase (wastewater) to a solid phase (biomass)
that can be used in bioproduct production. The RABR consists of rope coiled around a cylinder
rotating through a growth substrate, i.e., wastewater, to produce an attached algal biofilm on
the rope surface and remove nutrients from the wastewater. The produced algal biofilms can be
mechanically harvested and transformed into value-added bioproducts, such as biofuels, animal feed,
bioplastics, and fertilizers. There is extensive experimental research in the literature on the RABR
at laboratory and pilot scales. However, there are limited theoretical results concerning how to
integrate the environmental and management control factors into a framework for understanding
and for predicting biomass yield and productivity. In preparation for scaling up and industrial
applications of the RABR technology, a theoretical/mathematical model describing the system
must be developed. Due to high nitrogen and phosphorus concentrations in the growth substrate
from the anaerobic digestion process at the Central Valley Water Reclamation Facility (CVWRF)
in Northern Utah and high summertime light intensity, the algal biofilm system is often light
inhibited. In this paper, we propose a computational model inspired by [1] that describes light-
limited algae growth. The process discussed below also shows promise for mitigating harmful algal
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blooms through encouraging and controlling algae production in a water reclamation facility before
discharge of the wastewater to a receiving environment such as a lake or reservoir. Compared to
standard raceway ponds that cultivate algae in suspension, the RABR increases productivity up
to 300% [4]. Further, the RABR has a lower economic cost with a relatively inexpensive harvest
procedure and small electricity demand.

Figure 2: Rotating algal biofilm Reactors (RABR) developed in the
Sustainable Waste to Bioproducts Engineering Center (SWBEC) laboratory,
represents a novel microalgal biofilm cultivation system for wastewater
treatment. RABR removes nutrients from wastewater by cultivating an algal
biofilm on the rope-substratum surface that is rotated to alternately expose
the growth surface to the wastewater to acquire nutrients and then to the
air/sunlight for microalgae uptake of nutrients with biomass production. The
harvested biomass can be utilized for renewable diesel, soil fertilizer, and high-
value bioproducts. (A) Pilot-scale; (B) Lab-scale.

Over the last decade, many iterations of the RABR have been created and tested. Original
versions of the RABR consisted of growing a biofilm on rope wrapped around a cylinder-shaped
structure, including a barrel (see Figure 2). One version of the RABR was used to study biofilm
formation on a flat surface that formed the sides of slowly rotating disks [19]. Compared to its
barrel counterparts, the disk RABR may increase the ratio of the surface area of the biofilm to the
volume of the tank and use less electrical power [6]. However, unlike the disk RABR, the barrel
RABR has an automated harvesting procedure to separate biofilm algae from the wastewater that
provides an energy-efficient mechanism to lower the total system energy cost.

2.2 Computational model formulation

In this section, we propose a computational model for the RABR system. A schematic is shown
in Figure 3. In this computational model, the rope on the RABR is partially immersed in the
water and partially exposed to the natural sunlight. The algal biofilm on the rope will go through
photosynthesis and convert the solar energy and nutrients into biomass. If solar energy is too
strong, photosynthesis will be inhibited. In this simple case, the nutrient in the wastewater is
assumed sufficient, so the mass transfer and nutrient removal dynamics are not considered. Only
biomass growth is investigated.
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Figure 3: A schematic illustration of the proposed computational model for
the rotating algal biofilm Reactors (RABR). The rope on the RABR is rotating
in and out of water and the photon will be captured and converted into biomass.

2.2.1 Photosynthetic process

There are two widely used systems in the literature to model the reactive kinetics of the
photosynthetic process. A schematic illustration of these two systems is shown in Figure 4. Mainly,
it is assumed that there are three physiological states for the photosynthetic process: the open (or
reactive) state, the closed (or activated) state, and the inhibited state. Their volume fractions are
denoted by A, B, and C, respectively. Specifically, the open state is ready to observe photons, and
the closed state is processing solar energy into chemical energy. The inhibited state is dormant
due to intense solar radiation. However, there is a significant difference between the two reactive
kinetics. In Figure 4(a), it is assumed the inhibited state will recover to an open state, while the
inhibited state will recover to an activated state in Figure 4(b).

(a) (b)

Figure 4: Reactive kinetics for the photosystem during photosynthesis and
photoinhibition processes. (a) the reactive kinetics from [22]; (b) the reactive
kinetics from [13]. Here kr is the repair rate, kd is the damage rate, I is the
light intensity, τ is the turnover time of the electron transport chain, σ is the
effective absorption cross-section per unit of photosynthetic units.
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In this paper, we adapt the case in Figure 4(a) from [22]. Therefore, through the mass action
principle, the reactive kinetics for the three photosynthetic states are given as

dA

dt
= −σIA+

B

τ
+ krC,

dB

dt
= σIA− B

τ
− kdσIB,

dC

dt
= −krC + kdσIB.

(1)

Using the compatible condition A+B + C = 1, we can simplify the reactive kinetics in (1) as

dB

dt
= σI − σIC −

(
σI + kdσI +

1

τ

)
B,

dC

dt
= −krC + kdσIB.

(2)

We remark that the authors in [1] introduce a seminal work on modeling the light effects on
rotating algal biofilms, where they have embraced the reactive kinetics in Figure 4(b) and introduced
the biofilm thickness. In addition, they assumed the dynamics of A is in a faster time scale and
reaches steady state i.e. dA

dt = 0 in their case. However, in our case, as shown in (1), the equation
for A has a krC term. We cannot assume that A reaches rapidly to its steady state.

2.2.2 Biofilm thickness

Furthermore, if the biofilm thickness is taken into account, A(z, t), B(z, t), C(z, t) would be a
function of z and t, where z ∈ [0, h(t)] with h(t) > 0 the biofilm thickness. Let X(t) denotes the
areal biomass concentration with unit g/m2. The area biofilm growth could be proposed as

dX

dt
=
[1

h

∫ h

0
µ(z, t)dz

]
X(t), (3)

with µ(z, t) the net growth rate, proposed as

µ(z, t) = k
B(z, t)

τ
−R(t), (4)

based on the reactive kinetics in (1) with R(t) the death rate and k a constant to scale the growth
rate. Here we assume R(t) = R a constant for simplicity. We remark that the net growth rate in
(4) differs from the one in [1]. In their case, the growth rate is defined as µ = kσIA−R, where the
first term for µ is based on the fact σIA = B

τ when A reaches steady state. In our case, σIA = B
τ

is not valid any more.

In addition, if we assume the biofilm is isotropic, i.e it has a constant density ρ among all
different depths and areas, X(t) could be represented as

X(t) = ρh(t),

with h(t) the height of the biofilm. Substituting it into (3), we obtain

dh(t)

dt
=

∫ h

0
k
B(z, t)

τ
dz −Rh(t). (5)
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2.2.3 Governing equations

Overall, we extend the reduced reactive kinetics in (2) with spatial (biofilm-height) dependence
and combine them with the biofilm height evolution in (5). Then, the governing model for the algal
biofilm growth on the rotating algal biofilm reactors (RABR) reads as

∂B(z, t)

∂t
= σI(z, t)− σI(z, t)C(z, t)−

(
σI(z, t) + kdσI(z, t) +

1

τ

)
B(z, t), z ∈ [0, h],

∂C(z, t)

∂t
= −krC(z, t) + kdσI(z, t)B(z, t), z ∈ [0, h],

dh(t)

dt
=

∫ h

0
k
B(z, t)

τ
dz −Rh(t).

(6)

This is a differential-integral equation with free surface. Notice there is a big difference between
the proposed model (6) with the model in [1]. In particular, A is not assumed to reach the steady
state in (6), which might lead to different numerical results.

For a close comparison, we also derive the model when A reaches steady state in (6), which are
given as

A =
1− C

1 + τσI
+

krτC

1 + τσI
, B =

σIτ(1− C)

1 + τσI
− krτC

1 + τσI
. (7)

For such case, the net growth rate µ(z, t) can be calculated as

µ = k
B

τ
−R = (1− C)

kσI

1 + τσI
− kkr

1 + τσI
C −R. (8)

Then, the governing model with the biomass thickness reads as

dh(t)

dt
=

∫ h

0

[
(1− C(z, t))

kσI(z, t)

1 + τσI(z, t)
− kkr

1 + τσI(z, t)
C(z, t)

]
dz −Rh(t).

∂C(z, t)

∂t
= −

(
β(z, t) + η(z, t) + kr

)
C(z, t) + β(z, t),

β(z, t) = kdτ
(σI(z, t))2

τσI(z, t) + 1
, η(z, t) = kdτ

krI(z, t)

τσI(z, t) + 1
, 0 < z < h.

(9)

Here the differences between the model in (9) and the model in [1] are marked with underlines. In
particular, from equation (7), we observe the steady states for both A and B are altered with an
extra factor (as marked with underlines), and the growth rate is affected with an extra decay term
as shown in (8).

2.2.4 Light intensity

To complete the model, we need to identify the light distribution I(z, t). The light distribution
through biofilm could be modeled using the Beer-Lambert law [1]

I(z, t) = I(t)e−b(h−z), z ∈ [0, h], (10)

where I(t) is the surface light intensity at time t.

As the RABR rotates, part of the rope will be exposed to the sunlight, and the rest will be
immersed under the water. Then, we introduce the light exposure factor η = l∗

L with L the total
rope length and l∗ the exposed rope length. We denote the peripheral velocity of the RABR as v,
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and the period of the RABR as T . Then the peripheral velocity v, length L, and period T have
the relation:

T =
L

v
. (11)

In this paper, we fix the rope length L and set the peripheral velocity v and light exposure factor
η as free variables. The actual light intensity can be modeled by a square wave defined as

I(t) = I0(t)
1 + sign( TN −mod(t, T ))

2
, (12)

with I0(t) the maximum light intensity.

There are several approaches to approximate I0(t). For our model, we utilize existing light
intensity data on April 25th, 2018 from the Sustainable Waste-to-Bioproducts Engineering Center
(SWBEC). The light intensity is measured as photosynthetically active radiation (PAR) every 15
minutes for 24 hours. We then fit the PAR data with a smooth function I0(t) as shown in Figure 5
for a range of one day. Moreover, we assume each day has the same light pattern when we simulate
for a longer time period.

Figure 5: Light intensity over time. This figure shows the PAR data over a 24
hour period as red dots. The data is fitted with a continuous function shown
as a blue line. The continuous function will be used for later simulations.

2.2.5 Biomass productivity optimization

Harvesting strategy. The algal biofilm grows rapidly when it is thin, and the growth either
stops or significantly slows down once a certain thickness is reached. For instance, as biofilm
thickness increases, biomass becomes “self-shading” and sunlight cannot penetrate the entire biofilm
depth with the result that photosynthesis will be limited and nutrient uptake decreases. In a process
known as sloughing, the algal biofilm will spontaneously detach from the rope substratum as the
attachment surface becomes anaerobic due to heterotrophic respiration minus photoautotrophic
activity. Eventually, the algal biofilm growth becomes equal to or less than the losses experienced
through respiration, cell death, parasitism, and disease to reduce algal biofilm activity.
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Therefore, after the biofilm height reaches a particular value, harvesting must occur to provide
conditions for new growth. To maximize productivity, one must optimize the time points of harvest
with respect to the current height of the biofilm. There are a few considerations: (a) at what value of
biofilm thickness is a harvest appropriate? (b) when a harvest is appropriate and occurs, how much
biofilm should remain on the substrate? and (c) what biomass growth rate is best to harvest? We
intend to answer these questions by conducting various numerical experiments with our proposed
computational models.

RABR rotating speed. Sunlight availability is crucial for microalgal biofilm photosynthesis.
Nevertheless, in reality, sunlight is quite variable from season to season, day to day, and even
minute to minute. At high PAR values, if the reactor is rotating too slowly, photo-inhibition may
result and lower the biomass yield; at low PAR values, if the reactor is rotating too rapidly, there
may be insufficient light penetration into the inner biomass for photosynthesis. Additionally, the
periodic immersion in wastewater and air exposure is critical for gas exchanges (uptaking CO2 and
releasing O2) to maintain proper microalgal biofilm development. Hence, identifying the optimal
reactor rotating speed with respect to other environmental factors, in particular light intensity, is
crucial for better biomass productivity.

Optimal control. With the model in (6), we are able to evaluate the biomass growth and
manipulate controlling factors to optimize biofilm productivity. Here, we evaluate the averaged
biomass productivity in the unit gm−2d−1, i.e. gram per square meters per day, during a period
t ∈ [t0, t1] by

P =
1

t1 − t0
ρ(h(t1)− h(t0)), (13)

and the total productivity of the RABR is LS0P , where S0 is the rope surface area per unit length
and L is the total length of the rope, such that LS0 represents the total surface of the rope for algal
biofilm growth. Here t0 and t1 are the starting and ending time of algal biofilm growth so that
h(t1) − h(t0) is the accumulated height difference of the biomass during the time period t1 − t0.
One major goal in this paper is to solve the optimal control problem

arg max
v,η

P (v, η; I0(t)). (14)

3 Numerical Results and Discussion

3.1 Numerical setups

Model parameters. In this sub-section, all of the model parameters are summarized. First
we list the fixed variables in Table 1. The parameter values are chosen based on existing literature
[1, 14, 3, 13].
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Table 1: Parameter table with fixed parameter values.

Symbol Value Units Description

σ 0.0019 m2/µmol effective absorption cross-section per unit of
photosynthetic units

τ 6.849 s turnover time of the electron transport chain

kd 2.99× 10−4 s−1 damage rate

kr 4.8× 10−4 s−1 repair rate

k 3.6467× 10−4 - constant (link between photosystem dynamics
and growth rate)

R 0.12 d−1 respiration rate

b 1400 m−1 light attenuation factor

ρ 140000 gm−3 dry biomass density

p 6 - number of simulated layers of biofilm

S0 1/7 m2 surface area of a 1-meter-length rope

L 7 m total RABR rope length

h0 1.1× 10−4 m initial height of biofilm

C0 0.2 - initial proportion of biofilm in the photosynthesis
process state of inhibited.

The parameters with undetermined values are summarized in Table 2. Their values will be
specified in the corresponding numerical examples.

Table 2: Parameter table with undetermined parameter values.

Symbol Units Description

T s−1 period of the RABR

v m/s substrate (rope) line speed, with formula v = L
T

I(t) µmol/(m2s) light intensity, as a function of time

η - light exposure percentage, rope length (exposed
to sunlight) over total rope length

hharvest m height of biofilm to remain after each harvest

tharvest s time lags between consecutive biofilm harvests

Numerical schemes. The proposed model (6) is a free surface problem, with a coupled system
of integral differential equations. In order to solve it numerically, we discretize the spatial domain
[0, h] into p ∈ N equally distanced intervals: 0 < z1(t) < z2(t) < · · · < zp(t) < h(t), such that

10



zi(t) =
i− 1

2
p h(t). If we approximate the dynamics with p layers, we obtain the following discrete

system of equations to represent the dynamics in each layer:

d

dt
Bi = σÎi(t)− σÎi(t)Ci(t)−

(σÎi(t)τ + kdσÎi(t)τ + 1

τ

)
Bi(t), i = 1, 2, · · · p,

d

dt
Ci = −krCi(t) + kdσÎi(t)Bi(t), i = 1, 2, · · · p,

d

dt
h(t) =

p∑
i=1

k

τ
Bi(t)

h(t)

p
−Rh(t),

(15)

where Bi(t) and Ci(t) represent the value at z = zi(t), and the light intensity is approximated by

Îi(t) =
p

h

∫ zi+1

zi

I(z, t)e−b(h(t)−z)dz, i = 1, 2, · · · p.

Then, the semi-discrete system in (15) is an ODE system. We introduce the notation

Φ(t) = [B1(t) B2(t) · · ·Bp(t) C1(t) C2(t) · · ·Cp(t) h(t)]T ,

and denote the ODE system in (15) as
d

dt
Φ(t) = F (Φ(t)),

Φ(0) = Φ0.
(16)

The ODE system is then solved by the built-in numerical time-integration solver in Python.

We remark that we use the assumption that C0 = 0.2 for all of our numerical simulations in
this paper. Also, in the rest of this paper, we initialize our values of A, B, and C by

B =
τσI(1− C)

1 + τσI
, A =

1− C
1 + τσI

,

for our numerical calculations. This is compatible with the steady-state solution for the model in
[1]. Another initial condition could be equation (7).

With the harvesting procedure described previously, there is one assumption we made worth
considering. As the light intensity of a layer depends on how many layers are above it, once we
remove the top layers of biofilm, the light intensity immediately changes for the biofilm, including
A, B, and C values. In order to address this change, we reinitialize the A, B, and C values of the
biofilm by (1) collecting the A, B, and C value of all layers of biofilm before harvest, (2) assigning
the new top and bottom layers to have the same A, B, and C values as the old top and bottom
layers, and then (3) interpolating what the A, B, and C values are for the intermediary layers.

3.2 Model comparisons

First of all, we conduct several numerical tests to compare the models. Here we name the
model from [1] as Model I, the model in equation (9) as Model II (i.e., the proposed model with the
assumption of A in steady-state), and the proposed model in equation (6) as model III. Systematic
comparisons among the three models are summarized in Figure 6.

In figure 6(a), we observe a specific range of light intensity for better biomass productivity.
The profile in Figure 6(a) seems appropriate. The three models also seem to have good agreement
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in Figure 6. However, these three models demonstrate quite different results for the optimal rope
exposure, as shown in Figure 6(b). Our proposed model suggests an optimal percentage of rope
exposure for biofilm productivity for the given conditions. In contrast, Model I/II indicates that
all the rope shall be exposed to sunlight, which is not the case in reality.

Furthermore, we comment that Figure 6(b) is a different setup with the numerical example in
[1], where the authors have assumed the exposed rope length is fixed, and the total rope length
changes with respect to the percentage of exposure. We argue that the case in [1] is problematic
as with T fixed, longer rope means faster rotation such that the energy cost cannot be ignored.

(a) (b)

Figure 6: Algal biofilm productivity comparisons between different models.
(a) algal biofilm productivity under various light intensity; (b) algal biofilm
productivity at various percentages of rope exposure to sunlight. In this
example, we have a fixed RABR rotation period of T = 45s for both (a) and
(b), with η = 1 in (a) and I0(t) = 2000µmolm−2s−1 in (b).

From the previous comparisons, note that our proposed model in equation (6) provides realistic
predictions. In the remainder of this paper, we provide a systematic investigation of the major
controlling factors for improving algal-biofilm biomass yield.

3.3 Optimal control for biomass productivity

First of all, we take an in-depth look at three controlling factors affecting productivity: light
intensity, RABR peripheral velocity, and exposure percentage of the RABR to sunlight. Given
the complexity of this problem, it is not practical to simultaneously visualize the phase diagram
for multiple variables. Thus, we provide three visualization sequences by fixing one of the three
parameters while changing the other two in their physical ranges. In the remainder of this sub-
section, we fix the rope length L = 7 m and use constant light for eight-hour-span simulations.

In the first case, we explore biomass productivity under various light intensities. The results
of eight simulations are summarized in Figure 7. We observe that when the light intensity is low,
in Figure 7(a), a large proportion of rope shall be exposed to gain higher biomass productivity.
However, less rope shall be exposed to gain higher productivity when light intensity is high, observed
in Figure 7(f). RABR peripheral velocity does not seem to have strong effects when the light
intensity is low. Also, we observe that faster speed is favorable when the light intensity is strong,
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as indicated in Figure 7(e).

(a) (b)

(c) (d)

(e) (f)

Figure 7: Algal biofilm productivity under varying light intensity
situations. In this figure, the algal biofilm productivity over an eight-
hour period are shown, under constant light intensity with I0 =
100, 150, 300, 500, 1000, 2000µmolm−2s−1.

Next, we investigate the algal biofilm growth under various peripheral velocities. The simulation
results are summarized in Figure 8. From Figure 8, we observe that less rope exposure is preferred
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when the light intensity is strong, in order to obtain higher biomass productivity. This result is
consistent with the results in Figure 7. Figure 8(d) shows a clear nonlinear correlation between light
intensity and rope exposure for optimal productivity when the RABR is rotating fast. When the
RABR is rotating very slowly, as in Figure 8(a), the RBAR will not be able to take full advantage
of the sunlight, and the more rope exposure is always favorable for higher productivity.

(a) (b)

(c) (d)

Figure 8: Algal biofilm productivity with various RABR peripheral velocities.
Here the algal biofilm productivity are shown, with various RBAR peripheral
velocity v = 0.05ms−1, 0.2ms−1, 0.5ms−1 and 2ms−1.

In the discussions above, we provide a systematic investigation of productivity at various
light intensities and rope line velocities. Next, we inspect the biomass growth at various rope
exposure percentages. Here we fix the total rope length and vary the percentage of the rope
exposed to the sunlight. The numerical results are summarized in Figure 9. We observe that the
optimal productivity shifts to weaker light intensity and slower peripheral velocity, with more rope
exposed to sunlight, which is agreeable with reality. The effects of peripheral velocity on biomass
productivity become weaker with more rope exposed to the sunlight.
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(a) (b)

(c) (d)

Figure 9: Algal biofilm productivity at various percentages of rope exposure.
Here the biofilm productivity with light exposure percentage η = 1

7 , 1
4 , 1

2 , 3
4 are

presented.

3.4 Harvesting strategies

To date, there is little information reported in the literature regarding exploring optimal
harvesting strategies for algal biofilms in wastewater treatment. In this sub-section, we evaluate
optimal harvesting frequency and height of biofilms remaining after harvesting to obtain the best
algal biofilm productivity. Note the expense of harvest operations [10, 21] will not be considered in
the current paper. We are also assuming a uniform thickness of biofilm remains on the rope after
each harvest operation. A more realistic procedure with stochastic processes will be explored in
our future work.

Several numerical investigations have been conducted. Here we present one case with fixed rope
length L = 7 m and light intensity over every day (24 hours) in Figure 5. An eight week time span
of RABR operations is simulated with various harvesting frequencies and remaining biofilm heights
after harvesting. The numerical results are summarized in Figure 10. These results demonstrate
how our current harvesting mechanism identifies strategies to increase biomass productivities during
wastewater treatment. We observe that the biofilm productivity is low without harvesting and
increases with more frequent harvesting operations. We also observe that a finite amount of biofilm
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Figure 10: A surface plot of the RABR biomass productivity with various
harvest strategies. Here hharvest is the biofilm height to achieve after harvest,
and tharvest is the time interval between two consecutive harvest operations.
This figure indicates that harvesting algal biofilms frequently with proper height
left will increase the biomass yield. For this figure, we use T = 45s, I0(t) from
Figure 5, and η = 1

7 .

shall serve as a residual after each harvest for algal biofilms to reproduce quickly.

We also present biofilm thickness at various times for comparison for four typical harvesting
scenarios in Figure 11. We observe that the biofilm thickness keeps increasing and reaches a
plateau without harvesting, as shown in Figure 11(a). For cases with harvesting given in Figure
11(b-d), the biofilm heights are periodic, synchronizing with the harvesting operations. Figure
11(b) has the minimum productivity in all four cases. A contributing factor to this result is that
the procedure leaves less biofilm after each harvest as shown in Figure 11. Results presented in
Figure 11 indicate that suitable biomass must remain after each harvesting to maintain optimal
RABR biofilm productivity.
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(a) (b)

(c) (d)

Figure 11: Algal biofilm heights over an eight-week period for different
harvesting strategies. This figure shows the time sequence of biofilm thickness at
four harvesting cases: (a) no harvest; (b) harvest every 2 days leaving hharvest =
0.00025m of biofilm; (c) harvest every 2 weeks with hharvest = 0.001m; (d)
harvest every 3.5 days with hharvest = 0.002m. For this figure, we use T = 45s,
I0(t) from Figure 5 and η = 1

7 .

4 Conclusion

In this paper, we have proposed a predictive computational model to investigate algal biofilm
growth on rotating algal biofilm reactors (RABR). The effect of light intensity, peripheral velocity,
and percentage of rope exposure on biomass productivity have been systematically investigated.
Optimal harvesting strategies have also been explored. Our results show that optimal control of
these factors to maximize biomass productivity is doable. The proposed model could be further
calibrated to generate reliable predictions for nontrivial applications for investigating the efficient
application of microalgal biofilms in wastewater treatment.

However, due to the problem complexity, several additional investigations are required to design
a RABR system that can automatically adjust its rotating speed and light exposure based on
environmental factors such as light intensity and nutrient availability. In addition, biomass nutrient
transfer shall be considered for a more realistic model. Optimal control will also be investigated
for energy efficiency in biomass production.
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5 Reflective Writing Section

Since April of 2019, I have been actively participating in research. As a pure mathematics major
with a minor in computer science, I wanted to push the boundaries of my academic knowledge as
well as prepare myself for an eventual master’s program. When beginning my research with Dr.
Jia Zhao, I immediately saw the importance and significance of our work, as well as gain an
understanding of the richness in opportunities such endeavors provide. It was my agreement to
conduct research with Dr. Zhao that catalyzed my enrollment in the USU Honors Program; I did
not know exactly where my research would take me, but I knew that wherever I landed I could
complete the required capstone for the Honors Program. Following a summer of preparation, Dr.
Zhao introduced me to the rest of our team for this project in September 2019. The team included;
Dr. Ronald Sims and Dylan Ellis of the Biological Engineering Department and Ph.D. student
Zengyan Zheng of the Mathematics Statistics Department. Together we have mathematically
modeled algae biofilm growth for wastewater treatment. As a leading contributor to this project,
I provided the code and numerical results for our models as well as led discussions in our weekly
meetings on improving the model. While I have solely focused on interpreting the model in an
ordinary differential equation context, Zengyan Zheng has started work on developing a partial
differential equation model. Coming from the Biological Engineering Departments, Dr. Sims and
Dylan Ellis offered crucial feedback and information to ensure our model reflected realistic results
found in wastewater treatment. They also provided important literature to enrich our model in
an engineering context. As my mentor, Dr. Zhao facilitated our weekly meetings and guided
discussions and further research when necessary.

My capstone reflects this interdisciplinary effort.

Around September 2020, after nearly a year working on this project, Dr. Zhao was invited to
submit a chapter in a topical volume titled “Contemporary Research in Mathematical Biology”
and invited me to write about our work for the chapter. Over the course of the Fall 2020 semester,
I collaborated with my colleagues to produce a manuscript that met the academic rigor necessary
to be included in the book. As the first author, I wrote the rough draft of the manuscript as well as
provided an outline of the results section. Once I generated all the necessary figures for our paper
and wrote a rough draft of our results section, as a team, we polished the draft and added in more
detail. As co-author, Dr. Zhao played a significant role in adding a level of detail that I could not
have done alone in time for our December 15th deadline. Zengyan Zheng assisted in evaluating the
formatting of the math equations in our paper as well as standardizing the references section in
the paper. In order to have consistent terminology and concepts found in biological engineering,
Dr. Sims and Dylan Ellis assisted in writing our background section as well as verified our diction
in our results section. While I am the first author and have spearheaded this research through
my code, numerical results, and writing, such an interdisciplinary endeavor would not have been
possible without my other team members.

Due to the paper’s interdisciplinary nature, I have been able to acquire and grow skills in
a mathematical, computational, and engineering context. As our model is a series of ordinary
differential equations, I have become much more versed in the connection of nonlinear dynamics
in the context of univariate differential systems. As we begin to introduce additional variables
into our model, I have utilized my work in MATH 6620 with Dr. Zhao, a course dedicated to
numerically solving and understanding partial differential equations. From the extensive literature
reviews conducted for this project, I have become educated on different modeling techniques as
well as the theory behind them. With encouragement from Dr. Zhao, I enrolled in the GAMM
Juniors’ Summer School on Applied Mathematics and Mechanics to learn more about data-driven
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methods of generating mathematical models.

Aside from math theory, I have refined my skills in computer science and programming.
In tandem with learning numerical methods to solve our model, I have learned the necessary
programming to write and execute the needed numerical methods. Along with proper coding
etiquette, Dr. Zhao has guided me in learning the best way to catalog and store previous code to
allow for easy retrieval and rereading. Over the last year, Dr. Zhao allowed me access to his server
on campus to execute computationally heavy algorithms. I have learned how to preprocess, execute,
and post-process data retrieved from his server for our model. When beginning my research, it
would take nearly an hour to generate 8 data points for our figures in the manuscript. Towards the
end of my capstone, I was able to generate nearly 400 data points in an hour.

One of the most rewarding aspects of this capstone has been the immersion I have experienced
into the world of Biological Engineering and wastewater treatment. My research inspired me to
become a member of the Institute of Biological Engineering. This has allowed me to present
my research at the Intermountain Biological Engineering Conference twice. As our research
improves the ability of wastewater treatment plants to reduce the creation of harmful algal blooms
downstream, I have had the opportunity to visit and tour the Central Valley of Water Reclamation
Facility (CVWRF), the largest wastewater treatment plant in Utah. I have also been given tours
at WesTec Engineering Inc, our partners helping eventually construct pilot and full-scale RABRs
for CVWRF. I was employed by Dr. Sims to conduct laboratory work over the Summer of 2020
to better prepare and facilitate data collection of laboratory-scale rotating algae biofilm reactors
(RABRs). In addition to lab safety and diver’s safety training, I learned basic and essential skills
to harvest and record data on the algae in the RABRs. I am also taking a special topics course on
bioreactors with Dr. Sims to further understand the mechanisms of a RABR. This is a first of its
kind in the Biological Engineering Department as I am not an engineering major.

While there has been success in the analytical side of mathematically modeling algae biofilm,
there have been significant challenges to obtaining a data-driven model as originally proposed in
my capstone proposal. Due to COVID-19 restrictions, we had to postpone the construction of
laboratory RABRs from Spring 2020 to Fall 2021. During the Fall semester, myself, Dr. Sims, and
a handful of other biological engineer students constructed nine laboratory-scale RABRs. We have
had issues of some RABRs not spinning, others becoming contaminated, and others spinning into
the wall of their tank and spilling out following their six-week inoculation period to allow for initial
algae growth. Unfortunately, the current state of the laboratory RABRs is not sufficient for proper
data collection. However, I am deeply appreciative of the essential laboratory and mechanical
skills I have acquired. After receiving a $1.9 million grant from the Department of Energy, the
Biological Engineering Department will be overseeing the construction of higher quality laboratory-
scale RABRs in May 2021. I look forward to using the data from the upcoming RABRs to facilitate
a data-driven model for mathematically modeling biofilm growth as I continue my studies as a USU
graduate student.

This capstone has given me the opportunity to grow my skills as a researcher as well. I have
had the opportunity to present my research on a local, statewide, national, and international scale.
I have learned the process of writing proposals for grants and awards. From numerous edits and
optimizations on our model, I have learned that research is a very iterative process. There have
been a handful of times that, after making an optimization on our model, I look back to our earlier
research and think, “How we did not come up with the idea earlier?”. For example, weeks before
publishing our paper, we noticed a critical division error that threw off all numerical results by
a scalar factor and had to be rescaled. I have also learned throughout this project that research
is often nonlinear. That is, there are periods with rapid developments and then others where
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additional progress seems daunting.

After looking back on this previous year of research, I feel accomplished by what I have done
even though it may be difficult from a day-to-day basis to see the progress. After hours of coding,
reading, and discussing, my colleagues and I have developed an analytical model to predict algae
biofilm growth. I have learned important skills as an academic and a researcher. I have been able to
develop essential skills in both academia and industry within the fields of math, computer science,
and biological engineering. I am eager to see where my future research takes me and am grateful
for my experiences as an undergraduate at Utah State University.
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