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ABSTRACT 

Climate-Driven Impacts of Warming and Grazing on  

Sub-Arctic Coastal Wetlands in Alaska 

 
by 

Ryan T. Choi, Doctor of Philosophy 

Utah State University, 2021 

Major Professor: Dr. Karen H. Beard 
Department: Wildland Resources 

Anthropogenic climate change is altering migratory herbivore patterns and 

affecting Arctic plant communities and forage resources. Warmer temperatures can 

increase plant productivity and affect biogeochemical cycling, which can alter resource 

availability for herbivores. Changes in the timing of biotic interactions have the potential 

to create phenological mismatch between plants and herbivores. While investigations of 

mismatch often focus on the effect on herbivores, shifts in trophic interactions can also 

have important ecological consequences for forage availability, nutrient cycling, and 

plant community diversity and composition.   

In chapter 2, I use a manipulative field experiment to investigate how season 

advancement and shifts in goose grazing affects plant physical traits in Carex grazing 

lawns. I show that earlier grazing by geese reduces plant biomass, while season 

advancement and late goose grazing initiate a shift from clonal to sexual reproduction. 

Earlier growing seasons and late grazing have similar effects, but delayed grazing has a 
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greater impact than an equivalent shift in season. Further, some measurements are not 

detectable for several years, while others alter their directional response to treatments 

over time.  

In chapter 3, I examine how phenological mismatch between migratory geese and 

their forage influences soil N availability. I demonstrate that early grazing increases 

inorganic and organic soil N availability, while late grazing decreases inorganic soil N. 

Season advancement increases inorganic soil N, however, this effect is less than that of 

grazing. Although both early grazing and advanced springs are likely to increase N 

availability in the future, earlier goose arrival is likely to be more significant than earlier 

springs in influencing soil N.  

In chapter 4, I investigate how warming and grazing interact to affect community 

diversity and composition in three different coastal plant communities. I show that both 

grazing and warming generally increase community diversity. Grazing changes 

functional group composition by increasing forbs and decreasing grasses in the two more 

coastal communities and decreasing sedges in the most inland community, while 

warming does not affect functional group composition. I also show that treatment effects 

vary at different spatial scales, which suggests the importance of investigating climate-

driven disturbance at both ecosystem- and site-levels.  

(195 pages) 
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PUBLIC ABSTRACT 

Climate-Driven Impacts of Warming and Grazing on  

Sub-Arctic Coastal Wetlands in Alaska 

by 

Ryan Choi 

Climate change is rapidly warming the Arctic, especially at lower latitudes. 

Warmer temperatures and earlier springs are altering the timing of plants and animals, 

especially for long-distance migratory herbivores. Changes in the timing of both plants 

and herbivores have the potential to impact plant productivity and nutrient cycling, while 

also altering plant community diversity and composition.  

In chapter 2, I conducted a field experiment to investigate how earlier growing 

seasons and differences in arrival times of migratory geese influence physical traits of 

sedge forage species. I found that both an earlier growing season and late grazing by 

geese had similar effects on plant traits but delays in grazing had a greater effect than a 

change in spring.  

In chapter 3, I examined how earlier springs and differences in timing of goose 

herbivores affect soil nitrogen availability in sedge grazing lawns. I found that both 

earlier growing season and early grazing by geese increased soil nitrogen, while late 

grazing decreased soil nitrogen. However, early grazing resulted in a greater increase in 

soil nitrogen than an earlier growing season.  

In chapter 4, I investigated how warming and grazing interact to affect plant 

community diversity and composition in three different coastal wetland plant 
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communities. I found that both warming and grazing increase community diversity but 

can also interact to mediate or synergistically increase community effects. Grazing 

decreased dominant grasses but increased low-lying forbs, while warming had little effect 

on functional groups across different communities.  
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CHAPTER 1 

INTRODUCTION 

Introduction 

Anthropogenic climate change is rapidly warming high-latitude regions (IPCC 

2014). The Arctic has warmed on average nearly 2°C at rates twice as fast as lower 

latitudes (Thoman et al. 2020). Season advancement and warmer temperatures are 

altering the timing of biotic interactions, specifically between plants and herbivores 

(Cohen et al. 2018, Kharouba et al. 2018, Renner and Zohner 2018). One of the 

significant consequences of climate change is the temporal decoupling of consumers 

from their forage resources (Visser and Both 2005). Further, climate-driven shifts in the 

timing and intensity of these trophic interactions have the potential to restructure 

communities, affect biogeochemical processes, and alter ecosystem function (Tylianakis 

et al. 2008, Grimm et al. 2013, Bjorkman et al. 2018, Kelsey et al. 2018).  

  In this introductory chapter, I review the potential for phenological mismatch to 

affect plant-herbivore interactions. I then review the effects of warming and herbivory on 

Arctic ecosystems and highlight the predicted impacts in high-latitude coastal wetlands. I 

conclude this chapter by outlining how my dissertation chapters attempt to improve our 

understanding of climate-driven trophic mismatch using novel field-based approaches.  

 
Phenological Mismatch 

Climate change is altering species phenology and range distributions around the 

globe, with advanced growing conditions resulting in warmer, earlier springs (Parmesan 

and Yohe 2003, Post et al. 2009). Shifts in the timing of ecological events can drive 
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‘phenological mismatch’ between species that are adapted to rely on one another, which 

can result in asynchronous timing of life history events that can negatively affect the 

survival of one or both species. Migratory species are particularly vulnerable due to their 

dependence on long-distance teleconnections and sensitivity to changes across different 

latitudes (Tombre et al. 2008). Some migratory species are shifting their timing earlier in 

response to climate-induced season advancement (Kölzsch et al. 2015, Boelman et al. 

2017), however, there is still potential for phenological mismatch between consumers and 

their resources due to differing rates of change in their winter and summer ranges (Mayor 

et al. 2017, Lameris et al. 2017).  

Phenological mismatch is caused by climate-driven shifts in the timing of trophic 

interactions, often between producers and consumers (Miller-Rushing et al. 2010). 

However, in order for mismatch to occur, both a producer and a consumer must express 

some degree of seasonality and the producer must directly affect the survival of the 

consumer (Durant et al. 2007). Further, when investigating consequences of phenological 

mismatch, there is a need to focus on species sensitive to changes in climate-induced 

warming (Beard et al. 2019b). Because mismatch can occur between a wide array of 

different taxa across global terrestrial ecosystems (e.g. plant-goose (Dickey et al. 2008); 

plant-caribou (Post and Forchhammer 2008); salmon-grizzly (Deacy et al. 2017); insect-

bird (Reed et al. 2013); plant-pollinator (Korösi et al. 2018)), it is difficult to define a 

standardized yardstick of climate-driven change (Visser and Both 2005).  

The timing of migratory behaviors are often synchronized to maximize resource 

availability and to optimize growth and reproductive success. For example, with Arctic 

migratory geese, the timing of nesting has evolved to coincide with peak plant N 
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available for goslings at time of hatch (Sedinger and Raveling 1986). However, warmer 

springs can alter the foliar N availability and rate of seasonal decline (Doiron et al. 2014). 

Because geese are highly sensitive to forage quality (Sedinger and Flint 1991, Lindholm 

and Gauthier 1994), shifts in timing and availability of forage can exert strong bottom-up 

controls and negatively impact gosling growth and survival (Doiron et al. 2015, Ross et 

al. 2017, Lohman et al. 2019). Thus, asynchronous shifts in the availability of primary 

resources can have demographic consequences for herbivores and potentially result in 

population declines. 

Figure 1.1 illustrates potential shifts in timing between producers and migratory 

consumers. Ideally, consumers time their behaviors to arrive during peak resource 

quantity and quality (Figure 1.1B), However, due to mismatched cues (for example, 

warming spring conditions compared to fixed photoperiod initiating migration (Bauer et 

al. 2008)), consumers can arrive early or late relative to producers (Figure 1.1A&C), 

which may negatively impact populations. Similarly, advanced growing conditions can 

result in an earlier shift in primary productivity, with consumers arriving on time relative 

to historical patterns but still relatively late to optimize available resources (Figure 1.1D). 

However, if consumers are able to track changes, they may be able to keep up with 

resource availability and avoid asynchronous mismatch (Figure 1.1E). In addition to 

altering the timing of herbivore migration, climate-driven changes can also alter the 

abundance and duration of these relationships which can further drive phenological 

mismatch (Miller-Rushing et al. 2010).  
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Climate Warming  

Warmer temperatures can change Arctic plant communities by altering primary 

productivity (Walker et al. 2006, Elmendorf et al. 2012). Warming can promote growth 

and increase abundance of certain functional groups, like shrubs and graminoids (Arft et 

al. 1999, Tape et al. 2016, Liu et al. 2018). For example, warmer temperatures are driving 

the shrubification of Arctic regions, which can in turn restructure plant communities 

(Myers-Smith et al. 2011). In Arctic and alpine regions, climate-driven warming can 

reduce species diversity and evenness (Hollister et al. 2005, Kaarlejärvi et al. 2017), and 

alter plant community structure and composition (Post and Pedersen 2008, Myers-Smith 

et al. 2011, Yu et al. 2011). Changes in Arctic plant community composition and 

productivity can influence herbivore diversity and abundance (Barrio et al. 2016); affect 

biotic processes including ecosystem productivity, biogeochemical cycling, and 

decomposition (Cornwell et al. 2008, Sjögersten et al. 2008, Myers-Smith et al. 2011); 

and abiotic conditions like temperature, albedo, and snow deposition (Sturm et al. 2001, 

2005, Blok et al. 2010). 

Climate-driven warming can also directly affect biogeochemical processes, such 

as nutrient cycling. Arctic ecosystems are often nitrogen (N) limited due to cold 

temperatures and relatively short growing seasons (Schimel et al. 1996). Earlier springs 

and warmer soils can stimulate microbial enzymatic activity and increase rates of N-

mineralization (Buckeridge and Grogan 2010, Bardgett et al. 2013, Sistla and Schimel 

2013). Season advancement can also increase the labile organic N pool and amino acids 

(Darrouzet-Nardi et al. 2019), which are utilized by Arctic coastal graminoids (Henry and 

Jefferies 2003). However, while warmer temperatures can increase soil N availability, 
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earlier growing seasons also increase plant growth and lead to greater uptake and 

reduction of soil N (Lin et al. 2010, Natali et al. 2012). Thus, overall soil nutrient 

availability is highly dependent on the strength of drivers influencing N demand and 

availability.  

 
Migratory Herbivores 

 The distribution and abundances of migratory herbivores are changing across 

Arctic landscapes (Fox and Madsen 2017, Amundson et al. 2019, Joly et al. 2019). 

Generally, herbivores track green waves of resources along their spring migration routes 

to fuel their intensive energy demands (van der Graaf et al. 2006, Merkle et al. 2016). 

However, some migratory species are shifting northward following retreating thermal 

gradients and optimal temperature envelopes (La Sorte and Thompson 2007, Gornish and 

Tylianakis 2013, Tombre et al. 2019). Some species are shortening migration distance 

travelled, accelerating rates of seasonal migration, or skipping migration stopovers to 

keep up with advancing spring (Ward et al. 2009, La Sorte and Fink 2017, Lameris et al. 

2018).  

Herbivores play a critical role in structuring Arctic plant communities (Jefferies et 

al. 1994, Post et al. 2008), primarily through vegetation removal, trampling, and feces 

deposition (Mulder 1999, Zacheis et al. 2002). These effects of herbivory can directly 

alter plant species composition and community structure (Olofsson et al. 2001, Christie et 

al. 2015, Falk et al. 2015). Because herbivory can stimulate productivity through 

compensatory growth, herbivores can also mediate effects of warming and provide 

community stability and ecological resilience to climate-driven change (Olofsson et al. 

2009, Eskelinen et al. 2017, Kaarlejärvi et al. 2017).   
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Geese are the primary herbivores in Arctic coastal wetlands (Gauthier et al. 2004, 

Madsen et al. 2011). Due to their high-densities, geese can play primary roles in 

controlling biogeochemical processes in Arctic systems (Ruess et al. 1989, Speed et al. 

2010). Geese have positive dynamic feedbacks in regulating their forage resources. 

Specifically, their ability to  through grazing which can increase forage availability on the 

landscape (Person et al. 2003, Uher‐Koch et al. 2019). Because geese play a critical role 

in structuring vegetation habitat, altering forage resource quality, and affecting 

biogeochemical cycling (Kelsey et al. 2018, Leffler et al. 2019, Beard et al. 2019a), 

changes in the abundance or timing of migratory goose herbivores could have 

consequences for nutrient availability in an N-limited system.  

 
Predicted Impacts in Arctic Coastal Wetlands 

Low-elevation Arctic coastal ecosystems are particularly vulnerable to climate-

driven increases in global sea level and tidal inundation (Jones et al. 2009, Tape et al. 

2013). Warmer temperatures are reducing the winter extent of shorefast sea ice that 

would normally buffer coastlines from storm surge events (Vermaire et al. 2013). Coastal 

flooding is increasing in both frequency and intensity and leading to greater rates of 

erosion with losses of up to 15 m year-1 in some regions (Terenzi et al. 2014, Jorgenson et 

al. 2018). 

The Yukon-Kuskokwim (Y-K) Delta is one of the largest river deltas in the world 

encompassing over 75,000 km2 of coastal wetlands (Thorsteinson et al. 1989). It is a 

critical breeding ground for millions of migratory waterfowl and shorebirds that travel 

thousands of miles annually to rear their young (Gill and Handel 1990). The Y-K Delta 

supports the breeding populations of four North American goose species that nest in the 
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active coastal floodplain (Saalfeld et al. 2017): Pacific black brant (Branta bernicla 

nigricans), cackling geese (B. hutchinsii minima), emperor geese (Chen canagica), and 

greater white-fronted geese (Anser albifrons frontalis). While most Y-K Delta goose 

species are relatively stable (Fischer et al. 2017), populations of Pacific black brant are 

declining possibly due to reductions in Carex grazing lawns in the coastal floodplain over 

the past few decades (Sedinger et al. 2019, Lohman et al. 2019, Uher‐Koch et al. 2019).  

The Y-K Delta is predicted to undergo dramatic changes in the coming decades. 

Coastal regions adjacent to the Bering Sea are expected to be submerged by rising sea 

levels forcing low-elevation plant communities and goose herbivores to shift inland 

(Jorgenson et al. 2018). Novel community assemblages will be subjected to wetter and 

warmer conditions and extended growing seasons (Post et al. 2019, SNAP 2020), which 

will exert significant pressure on plant-herbivore interactions and result in complex 

ecological processes on the landscape. Ecological disturbances that hinder plant 

community productivity may compromise the ability of these coastal wetlands to support 

historic goose abundances (Fondell et al. 2011), especially because the inland terraces are 

lower in forage resource density compared to the coastal margin (Person et al. 2003). 

Further, coastal processes threaten the loss of critical breeding habitat for migratory birds 

typically within 15 km of the coast where preferred plant communities are most common 

(Sedinger and Raveling 1984, Babcock and Ely 1994, Schmutz et al. 2002). Goose 

herbivores may potentially respond to plant community shifts by relocating to areas 

where resources are more abundant or altering their migratory behaviors altogether 

(Ward et al. 2009, Flint et al. 2014).  
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A Novel Experimental Approach 

Investigating how climate-driven changes in magnitudes and patterns of trophic 

interactions impact communities are important for predicting and understanding the 

future of functional ecosystems (Walther 2010). Further, the timing of biotic interactions 

is a critical and often missing piece to understanding the ecological consequences of 

phenological mismatch; others have highlighted the need for multi-year experiments that 

investigate shifts between the timing of two species at different trophic levels and 

measure ecosystem responses under current and future scenarios (Beard et al. 2019b). In 

the following chapters, I use a series of novel field experiments to investigate the effects 

of trophic mismatch and shifting spatial patterns on coastal plant communities and 

biogeochemical processes to better understand the potential interacting effects of 

warming and grazing in a rapidly changing Arctic. 

 
Dissertation Outline 

Chapter 2 – Phenological Mismatch Between Season Advancement and Migration 
Timing Alters Arctic Plant Traits 
 

Climate changes is causing season advancement in Arctic regions, which is likely 

to create phenological mismatch between long-distance migratory geese and their forage 

resources. Most studies investigating mismatch have focused on the direct effect on 

herbivores (e.g., Post and Forchhammer 2008; Doiron et al. 2015; Rickbeil et al. 2018), 

however, few studies have investigated the effects of developing mismatches at the lower 

trophic level. Further, the majority of studies that investigated grazing impacts have 

utilized the presence or absence of herbivores or changes in grazing intensity or 

frequency, and not the timing of grazing (e.g. Pastor and others 1993; Frank and Evans 
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1997; Tracy and Frank 1998). We used a novel approach to investigate climate-driven 

phenological mismatch in the Y-K Delta by manipulating the timing of the growing 

season and the timing of herbivory by migratory geese to determine effects on physical 

characteristics and reproductive traits of Carex forage in grazing lawns.  

 
Chapter 3 – Early Goose Arrival Increases Nitrogen Availability More Than an 
Advancing Spring in Coastal Western Alaska 
 

Soil N availability is often limiting in Arctic systems and shifts in the timing of 

spring and goose arrival have consequences for nutrient cycling in coastal ecosystems. 

Even subtle shifts in temporal N availability are important due to the ephemeral nature of 

labile soil N pools (Darrouzet-Nardi and Weintraub 2014). We used a similar 

experimental approach as chapter 2 to investigate how phenological mismatch between 

goose herbivores and their forage can influence soil N availability in Carex grazing 

lawns. We also present a novel approach to better measure soil N availability using ion-

exchange resins during intertidal periods to avoid ionic loss during coastal flooding 

events.  

 
Chapter 4 – Climate-Induced Changes Alter Coastal Wetland Plant Communities 
 
 Coastal processes are expected to shift plant communities and herbivores inland 

(Jorgenson et al. 2018). While Carex grazing lawns are critical forage habitat for 

migratory geese, they comprise less than 1% of the active coastal floodplain in the Y-K 

Delta (Macander et al. 2012). The adjacent coastal terrace communities are also 

important foraging habitat and brood-rearing areas for migratory goose populations 

(Sedinger and Raveling 1986, Lindberg and Sedinger 1998). If coastal erosion and 

flooding result in loss of primary Carex grazing lawn habitat, the adjacent coastal 



10 
 
communities will likely experience a new suite of trophic interactions between plants and 

herbivores further inland. We investigated how shifts in spatial patterns in warming and 

herbivory affect plant communities by using a similar field-based approach to chapters 2 

and 3. In this experiment, we substituted season-long warming for season advancement to 

investigate how greater temperature and spatial shifts in herbivore grazing affect plant 

diversity and composition in three adjacent coastal vegetation communities.  

 
Chapter 5 – Conclusions 
 
 In chapter 5, I summarize the major findings from each chapter and suggest other 

areas of potential research on trophic mismatch.  
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Figure 1.1. Examples illustrating potential shifts in timing between producers and 
migratory consumers that may result in phenological mismatch. Consumers can arrive 
(A) early, (B) on time, or (C) late relative to resource availability. Alternatively, warmer 
temperatures can (D) advance spring conditions and result in mismatch; however, (E) if 
consumers are able to track shifting phenology, they can avoid asynchronous mismatch 
with their resources. Producers = green line; consumers = brown line; historical mean 
timing = dotted line.  
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CHAPTER 2 

PHENOLOGICAL MISMATCH BETWEEN SEASON ADVANCEMENT AND  

MIGRATION TIMING ALTERS ARCTIC PLANT TRAITS1 

 
Abstract 

1. Climate change is creating phenological mismatches between herbivores and their 

plant resources throughout the Arctic. While advancing growing seasons and 

changing arrival times of migratory herbivores can have consequences for 

herbivores and forage quality, developing mismatches could also influence other 

traits of plants, such as above- and belowground biomass and the type of 

reproduction, that are often not investigated. 

2. In coastal western Alaska, we conducted a three-year factorial experiment that 

simulated scenarios of phenological mismatch by manipulating the start of the 

growing season (ca. 3-weeks early and ambient) and grazing times (3-weeks 

early, typical, 3-weeks late, or no-grazing) of Pacific black brant (Branta bernicla 

nigricans), to examine how the timing of these events influence a primary goose 

forage species, Carex subspathacea. 

3. After three years, an advanced growing season compared to a typical growing 

season increased stem heights, standing dead biomass, and the number of 

inflorescences. Early season grazing compared to typical season grazing reduced 

above- and belowground biomass, stem height, and the number of tillers; while 

late season grazing increased the number of inflorescences and standing dead 

                                                      
1 Co-authors: Karen H. Beard, A. Joshua Leffler, Katharine C. Kelsey, Joel A. Schmutz, Jeffrey M. Welker 
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biomass. Therefore, an advanced growing season and late grazing had similar 

directional effects on most plant traits, but a 3-week delay in grazing had an 

impact on traits 3 to 5 times greater than a similarly timed shift in the 

advancement of spring. In addition, changes in response to treatments for some 

variables, such as the number of inflorescences, were not measurable until the 

second year of the experiment, while other variables, such as root productivity 

and number of tillers, changed the direction of their responses to treatments over 

time. 

 
Introduction 

The Arctic is experiencing rapid warming and this has led to earlier growing 

seasons and alterations in the timing of migration by herbivores (Forchhammer, Post, & 

Stenseth, 1998; Inouye, Barr, Armitage, & Inouye, 2000; Ward et al., 2016). Many 

migratory species have evolved to synchronize periods of peak nutrient demand, 

especially during breeding, with periods of high resource availability (Lepage, Gauthier, 

& Reed, 1998; Sedinger & Raveling, 1986). While some species have started to migrate 

earlier in response to climate-induced seasonal advancement (Boelman et al., 2017; 

Kölzsch et al., 2015), the potential for ‘phenological mismatch’ still exists, especially for 

long-distance migrants, due to the differing rates of green-up in their winter and summer 

ranges (Clausen & Clausen, 2013; Lameris, Scholten, et al., 2017; Mayor et al., 2017). 

Under the phenological mismatch (i.e., match-mismatch) hypothesis, there are two 

requirements: first, both species, the producer and consumer, must have a degree of 

seasonality; and second, the producer must exert bottom-up control on the recruitment or 

survival of the consumer (Durant, Hjermann, Ottersen, & Stenseth, 2007). Because of the 



31 
 
rapidly advancing conditions in the Arctic and potentially incorrect cues regarding 

migration in the winter range, this mismatch often takes the form of migratory species 

arriving phenologically ‘late’ to their breeding grounds compared to the start of the 

growing season (Both, Bouwhuis, Lessells, & Visser, 2006; Both et al., 2010).  

Much of the research on phenological mismatch has focused on the population-

level consequences at the higher trophic level, often herbivores (e.g., Post and 

Forchhammer 2008; Doiron et al. 2015; Rickbeil et al. 2018). However, because 

herbivores play a critical role in structuring Arctic plant communities, and climate change 

is influencing the timing of their migration (Jefferies, Klein, & Shaver, 1994; Post, 

Pedersen, Wilmers, & Forchhammer, 2008), it is also important to understand how these 

developing mismatches affect species at lower trophic levels (i.e., plant resources; Fig. 

2.1) (Nakazawa & Doi, 2012). Thus far, empirical studies in terrestrial systems 

investigating phenological mismatch at the lower trophic level have focused on 

reductions in forage quality for herbivores (Beard et al., 2019; Doiron, Gauthier, & 

Lévesque, 2014; Lameris, Jochems, et al., 2017; Zamin, Côté, Tremblay, & Grogan, 

2017), and how mismatches between plants and pollinators influence seed production 

(Forrest, 2015; Kudo & Ida, 2013). An often-overlooked component is how phenological 

mismatches influence the producer itself (i.e., biomass, growth form, and population 

growth) (Nakazawa & Doi, 2012). These studies are needed to understand not only the 

consequences of mismatch for the producer and its potential feedbacks to consumers, but 

also to understand changes to ecosystems as a whole via changes to C and N cycling 

(Kelsey et al., 2018; Leffler et al., 2019). However, to our knowledge, there have not 
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been any empirical studies investigating how phenological mismatch between plants and 

herbivores influence plant traits unrelated to forage quality and plant reproduction. 

Studies on how the timing of herbivory influences plant traits could inform 

hypotheses on how mismatch may influence these traits. However, there are only a 

handful of studies focusing on the timing of herbivory in Arctic systems (Archer & 

Tieszen, 1983; Beaulieu, Gauthier, & Rochefort, 1996; Hik, Sadul, & Jefferies, 1991; 

Person, Babcock, & Ruess, 1998), with more studies from temperate regions (e.g., 

Sullivan and Howe 2009, Davis et al. 2014). There are northern latitude studies focused 

on the frequency (Little, Cutting, Alatalo, & Cooper, 2017; Sjögersten, van der Wal, & 

Woodin, 2012) and intensity of grazing (e.g., Mulder and Ruess 2001), but it is unclear 

how these studies inform how the timing of grazing influences vegetation traits. The 

relevant manipulative experiments investigating the effects of timing of grazing on Arctic 

graminoids generally suggest that earlier grazing reduces above- and belowground 

biomass (Archer and Tieszen 1983; Beaulieu et al. 1996), and that late grazing has the 

opposite effect (Hik et al. 1991). However, this response is not always observed because 

other studies investigating timing of grazing on Arctic graminoids have found no effect 

of grazing timing on biomass (Beaulieu et al. 1996; Raillard and Svoboda 1999; Person et 

al. 1998) or tiller production (Archer & Tieszen, 1983; Beaulieu et al., 1996). Further, 

studies in other systems have found that the timing of grazing can reduce sexual 

reproduction in flowering plants, with plant species responding to both early and late 

grazing (Knight 2003; Sullivan and Howe 2009; Akiyama and Ågren 2012; but see 

Wallace et al. 2008); however, these responses may be different with graminoids, 

especially if they reproduce clonally. These results highlight the complex nature of 



33 
 
grazing timing on plant traits, and the need to investigate how these changes may interact 

with other climate-induced effects in Arctic ecosystems. 

In addition to the timing of herbivory, climate change is also advancing the start 

of the growing season in northern latitudes (Walther, 2010). Studies investigating the 

effects of an advanced growing season on plants show that many species produce greater 

early season above- and belowground growth (e.g., Sullivan and Welker 2005), but some 

species with fixed growth strategies do not respond to early season conditions 

(Livensperger et al., 2016; Radville, Post, & Eissenstat, 2016). In general, with early 

season warming, we expect to see taller plants (Hollister, Webber, & Tweedie, 2005; 

Hudson, Henry, & Cornwell, 2011), and earlier flowering and senescence (Arft et al., 

1999; Semenchuk et al., 2016; Sherwood, Debinski, Caragea, & Germino, 2017), with 

some species even able to alter their reproductive output based on size or resource 

availability (Schmid, Bazzaz, & Weiner, 1995). While season advancement may extend 

the duration of the growing season, earlier initiation of growth may also negatively affect 

plants due to colder ambient temperatures and shorter days (Kudo & Hirao, 2006). In 

summary, while we expect both the timing of the growing season and timing of grazing 

to influence plant traits, and hypothesize that both earlier growing seasons and later 

arrival by migratory species may have similar effects on some traits, the relative 

importance of these variables for plants and their potential interactive effects are not well 

studied.  

More than a million migratory birds arrive in the Yukon-Kuskokwim (Y-K) Delta 

in coastal western Alaska each spring for breeding and brood-rearing (Gill & Handel, 

1990). Several migratory goose species, including Pacific black brant (Branta bernicla 
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nigricans), are highly dependent on monospecific stands of the sedge, Carex 

subspathacea, which when heavily grazed takes on a short growth form with extensive 

clonal tillering, lack of inflorescences, and consistent regrowth (Person et al., 1998; 

Ruess, Uliassi, Mulder, & Person, 1997). The arrival time of migratory geese is thought 

to have evolved to coincide with the seasonal availability of high quality forage (Sedinger 

& Raveling, 1986), which can have bottom-up control on gosling growth and subsequent 

survival (Lindholm & Gauthier, 1994; Sedinger & Flint, 1991). However, because the 

timing of goose arrival is often not advancing as quickly as vegetation phenology in 

many northern ecosystems (Dickey, Gauthier, & Cadieux, 2008; Tombre et al., 2008), the 

potential for phenological mismatch exists at this site, and is likely to become more 

common in the future (Both et al., 2010; Clausen & Clausen, 2013; Forchhammer et al., 

1998). While others have studied how phenological mismatch may influence goose 

populations in similar systems (Brook, Leafloor, Abraham, & Douglas, 2015; Doiron et 

al., 2015; Ross, Alisauskas, Douglas, & Kellett, 2017), our study focuses on 

understanding how a potential developing mismatch may influence plant traits of a 

critical forage species. To address our objective, we conducted a three-year field 

experiment that manipulated the start of the growing season (advanced and ambient) and 

the timing of migratory goose grazing (early, typical, and late) to examine how the timing 

of these events and their interaction influence the growth responses of C. subspathacea, 

including above- and belowground biomass, standing dead biomass, growth form, and 

vegetative and sexual reproduction.  
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Methods 

Study site 

We conducted research near the mouth of the Tutakoke River in the central coast 

region of the Y-K Delta in western Alaska (61°15’N, 165°37’W; elevation 2 m) (see Fig. 

A1 in the appendices). The Y-K Delta encompasses over 75,000 km2 of sub-Arctic tundra 

and coastal wetlands along the Bering Sea between the Yukon and Kuskokwim Rivers. 

We conducted our experiment in a brackish wet sedge meadow on the active floodplain 

within 1 km of the coast. Climate is moderated by the Bering Sea with mean monthly 

temperatures ranging from 10 °C in the summer (May through July) to -14 °C midwinter 

(Jorgenson & Ely, 2001). 

The coastal Y-K Delta is one of the primary nesting and brood-rearing areas for 

ca. 50% of the world’s Pacific black brant (Branta bernicla nigricans), with densities of 

ca. 500 nests km2 around the Tutakoke River (Fischer, Williams, & Stehn, 2017). Recent 

data suggest, however, that Pacific black brant have declined by 2-4% annually in the Y-

K Delta over the past decade (Fischer et al., 2017; Leach et al., 2017; Sedinger, Riecke, 

Leach, & Ward, 2019). Brant typically arrive 6 to 12 days before nesting (Lindberg, 

Sedinger, & Flint, 1997), with historic mean hatch on 21-June and mean annual dates 

from 11-June to 30-June over the past 34 years, 1983-2016 (Fischer, Stehn, & Walters, 

2008; Fischer et al., 2017). Goose grazing intensity increases in the period following 

hatch when goslings begin to forage and females recover from nutrient deficits following 

incubation (Sedinger & Raveling, 1990). 

In addition to the variation in timing of peak grazing, the timing of green-up 

varied by over 30 days in the Y-K Delta over the last 30 years, although the general trend 
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is towards an advancing spring (Ross et al., 2017). We used the day of year when the 

50% maximum NDVI (normalized difference vegetation index) is achieved as a 

vegetation phenology metric, and found that green-up varied between 23-May and 25-

June from 1982-2014 (NDVI methods follow Brook et al., 2015). While green-up and 

hatch dates across years are highly correlated in the Y-K Delta, for every day that green-

up has advanced, hatch date only advanced 0.5 days, which suggests there will be greater 

mismatch between brant and their forage in the future (Beard et al., 2019; Leffler et al., 

2019). 

Carex species dominate the Tutakoke landscape with specific species dependent 

on modest changes in elevation. The most tidally proximal C. subspathacea occurs in 

nearly monotypic stands and is so heavily grazed (i.e., brant do not grub) and modified by 

brant that it is often referred to as ‘grazing lawn’ (Person et al., 2003). C. subspathacea is 

an important circumpolar forage species for geese, and when grazed, sexual reproduction 

is suppressed in favor of extensive clonal reproduction (Perillo, Wolanski, Cahoon, & 

Brinson, 2009). It is only after herbivory is removed that C. subspathacea grows taller 

and initiates inflorescence production (Schmid et al., 1995).  

 
Experimental design 

We conducted a three-year experiment using a fully factorial design with two 

timings of season treatments (advanced and ambient) crossed with four timings of 

grazing treatments (early, typical, late, and no-grazing) for a total of eight treatments, 

plus a background grazing control. Our factorial crossings of growing seasons and 

grazing times simulated different phenological mismatch scenarios, where we advanced 

the growing season by three weeks (see below), and altered the timing of goose grazing 
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by minus-three, zero, and plus-three weeks (early, typical, and late grazing). These eight 

treatments represent different degrees of mismatch between the start of the season and 

goose arrival ranging from -3 weeks (e.g., typical green-up and early goose arrival) to +6 

weeks (i.e., early green-up and late goose arrival), and are described in Table 2.1. The 

‘no-grazing’ treatment represents conditions where goose populations substantially 

decline or fail to arrive at the breeding ground.  

We had six replicate blocks located within a 400-m radius for a total of 54 plots, 

each 1.7 m x 0.85 m in size. We installed plots in April 2014 and applied treatments over 

the growing season from 1 May through 15 August for three years. To exclude wild 

goose grazing, we installed fencing around all experimental plots, except the background 

grazing control plots. 

To advance the growing season, we used two adjacent conical open-top chambers 

(OTCs; 30 cm height x 85 cm base dia. x 50 cm top dia.) (Marion et al. 1997). OTCs are 

often used to increase temperature through passive warming, but can also accelerate 

growth at the start of the season (Post et al., 2008; Sullivan & Welker, 2005). OTCs were 

placed on plots 1-May until 1-July, long enough to advance the growing season by three 

weeks when comparing stem height of warmed shoots to ambient. We removed OTCs 

during this period only for goose grazing treatments. We monitored air and soil 

temperature (10 cm above- and belowground) using ibutton microloggers (models 

DS1921G/Z, Maxim Integrated, San Jose, CA) in every plot. 

To manipulate timing of grazing, we constructed fenced goose exclosures (ca. 7.6 

m2) around paired advanced and ambient growing season plots, and introduced wild-

caught geese into the exclosures at certain times during the season. The early, typical and 
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late grazing treatments began 30-May, 20-June, and 9-July, respectively, to approximate 

the 30-day variation in the range of hatch dates (3-June to 9-July) observed over the past 

three decades in the Tutakoke River brant population (Fischer et al., 2008, 2017). Further, 

these dates accounted for the logistical challenges of using actual goose grazing (as 

opposed to simulated), and thus began after we captured nesting female geese in late 

May. 

Grazing treatments (early, typical, and late) consisted of two geese that grazed, 

trampled, and defecated inside exclosures for four 24-h bouts, each separated by 12 days 

over a total of 37 days to simulate approximately 40 days of intense post-hatch grazing 

(Mickelson, 1975). The experimental treatments lasted 3.5 months; thus, we created the 

same grazing intensity in each goose grazing treatment of 7.2 goose-hours m-2 month-1, 

which was based on a previous controlled-grazing study in the same population of geese 

(Herzog & Sedinger, 2004). Total grazing time did not vary between grazing treatments, 

and thus the experimental treatments only differed in the timing of grazing initiation. 

Prior to each treatment, we held geese without food for two hours to allow feces from 

supplemented feed to pass through their digestive system (Prop & Vulink, 1992). After 

completion of the 24-h treatments, we held birds for an additional two hours and returned 

any treatment-derived feces to appropriate experimental plots. When not used in grazing 

treatments, we held geese in a fenced enclosure, allowed them to graze freely on natural 

vegetation, and supplemented goose feed ad libitum. We released all captured geese to 

the wild at the end of each season.  
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Vegetation and soil measurements 

In all 54 plots, we established 10 cm x 10 cm demarcated quadrats where we 

made measurements every three weeks in 2014, and weekly in 2015 and 2016 (~13-May 

to 20-August). In these quadrats, we measured stem height of 10 randomly selected stems 

and counted all observed inflorescences. In each plot, we also destructively harvested 

aboveground biomass every three weeks from different randomly selected 5 cm x 5 cm 

areas all three years. The 5 cm x 5 cm areas were at least 10 cm from the established 10 

cm x 10 cm quadrant. From these samples, we counted tillers and separated live and dead 

aboveground biomass. We measured seasonal root productivity in each plot using two in-

growth root cores (4 cm dia. x 15 cm length) made of 2 mm plastic mesh (Nadelhoffer, 

Johnson, Laundre, Giblin, & Shaver, 2002). We filled in-growth cores with root-free 

substrate, placed them in plots on 25-May, and removed them on 25-August each year. 

We washed aboveground live biomass, dead leaves, and roots free of soil, dried them at 

60 °C to constant weight, and weighed samples in the laboratory.  

 
Statistical analyses 

 All analyses employed a linear mixed model framework with model selection 

using Akaike Information Criteria (AIC). We used the nlme package within the R 

statistical computing environment (Pinheiro et al. 2017; R Core Development Team) to 

fit our models. To compare models with ∆AIC < 2, we used the ANOVA function and 

selected the most parsimonious model. We log-transformed all predictor variables prior 

to analysis to meet assumptions of normality and homogeneity of variance.  

 First, we analyzed the effectiveness of OTCs to advance the growing season as 

the response variable. We used stem heights because we had the most frequent 
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measurements prior to OTC removal, and restricted data to plots that did not experience 

grazing before 1-July to remove the effect of grazing. The model included categorical 

predictors of year and treatment (either ambient or advanced growing season), a 

continuous predictor of day of year (DOY), all interactions, and a random plot-within-

block effect. We used regression coefficients to calculate the amount of time needed for 

ambient plots to reach the same height as advanced plots. We presented this analysis in 

Leffler et al. (2019), but present the findings here for completeness.  

 Next, we examined the effectiveness of our grazing treatments to simulate 

background grazing levels using aboveground biomass as the response variable. We used 

aboveground biomass because we could use complete season data from each year for this 

analysis. We limited analyses to the background control and experimental plots that did 

not receive season advancement. The model included the categorical goose grazing 

treatments and a continuous predictor of DOY, and treated plot nested within block as a 

random effect. We ran each year separately. 

 Then, we tested the effects of timing of the growing season (advanced, ambient) 

and timing of goose grazing (early, typical, late, no-grazing) on plant traits. We used 

plant variables (aboveground live biomass, stem height, standing dead biomass, root 

biomass, tillers, inflorescences) as continuous response variables, experimental 

treatments (start of the growing season, goose grazing) and year as categorical and DOY 

as a continuous fixed effect predictor variables, and treated plot nested within block as a 

random effect. We coded ambient season and typical grazing plots as the reference 

category for the growing season and grazing timing treatment as appropriate, and 

included a first-order autocorrelation structure to account for repeated measures within 
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subjects over time. We limited model combinations to include interactions with no more 

than two predictor variables and determined the most important variables as those present 

in the top performing model. We tested the importance of experimental treatment effects 

on changes in number of inflorescence from years 2 and 3 because we did not detect any 

inflorescences in year 1. We fitted this model using the Automatic Differentiation Model 

Builder with a Poisson response distribution using the glmmADMB package in R 

(Bolker, Skaug, Magnusson, & Nielsen, 2012). This framework corrected for non-normal 

distributions and fitted over-dispersed data and zero-inflated values. 

We conducted a separate analysis to isolate the effects of each of the eight 

experimental mismatch treatments compared to the ambient season–typical grazing 

treatment (0 mismatch, no shifting in timing; Table 2.1). We ran models for vegetation 

variables (aboveground live biomass, stem height, standing dead biomass, root biomass, 

tillers, inflorescences) as continuous response variables, where treatment, year, DOY, and 

their interactions were all treated as fixed effects, and treated plot nested within block as 

a random effect. Inflorescences were fitted using the Poisson response distribution as 

described above.  

 
Results 

Treatment effectiveness 

 OTCs warmed plots on average between 0.6 and 1.7 °C (10 cm aboveground) and 

0.6 and 1.0 °C (10 cm belowground) from 1-June to 1-July. Following OTC removal on 

1-July and for the remainder of the season, temperature differences were < 0.3 °C 

between advanced and ambient treatments. As summarized in Leffler et al. (2019), OTCs 
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were effective at advancing the growing season over each of the three years for both stem 

height and growth rates (see Fig. A2 in the appendices). Modeled height was 37, 78, and 

163 mm in the advanced growing treatment and 18, 42, and 99 mm in the ambient 

treatment in late June of 2014, 2015, and 2016, respectively. Plant growth rate differed 

between season advancement treatments; in 2016, season advancement had a higher rate 

of growth (3.1 mm d-1) than the ambient treatment (1.9 mm d-1). Modeled rates of growth 

indicated that the treatment advanced the season by 22, 18, and 21 days by the end of 

June 2014, 2015, and 2016, respectively, but the differences between treatment growth 

rates did not extend beyond the dates OTCs were installed on plots. 

In year 1 of the experiment, aboveground biomass in background control plots 

was not different from early, typical, or late grazing treatments, but was lower than no-

grazing plots (Table A1 in the appendices). By year 2, background control aboveground 

biomass was not different from early or typical plots, but was lower than late and no-

grazing plots (Table A1 in the appendices). By year 3, background controls were not 

different from early goose grazing treatments (Table A1 in the appendices). This result 

was expected because experimental plots were subjected to three years of manipulations 

based on the historic 30-year average grazing time by geese in the Y-K Delta. The last 

year of the experiment (2016) had the earliest observed mean hatch date on record (11-

June), while all three years of the experiment (2014-2016) had three of the earliest six 

mean hatch dates over the last 34 years in the Y-K Delta (Fischer et al., 2017). Thus, it 

was expected that background control plots would have aboveground biomass more 

similar to early grazing plots by year 3. 
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Vegetation response to treatments 

In this section, vegetation trait responses are compared to ambient season for the 

advanced growing season treatment and to typical grazing for the timing of grazing 

treatments. Vegetation trait percent change is presented as the mean across the last year 

of the experiment unless otherwise indicated. There was no significant interaction 

between grazing timing and season advancement for any of these variables (Table 2.2). 

Timing of grazing did interact with DOY in most top models; however, we do not 

describe the nature of this relationship here because it typically reflected the starting and 

stopping of grazing treatments at different times of year.  

The best-fitting model for aboveground live biomass included year and an 

interaction between timing of grazing and DOY (Table 2.2). Aboveground biomass 

generally increased across years. Aboveground live biomass was not different in 

advanced growing season plots, but aboveground biomass was 52% lower in the early 

grazing treatment and 81% greater with no-grazing than typical grazing (Fig. 2.2A-C).  

For stem height, the top model included year, season advancement, and an 

interaction between timing of goose grazing and DOY (Table 2.2). Like aboveground 

biomass, stem heights generally increased across years. However, unlike aboveground 

biomass, stems were 58% taller in the advanced growing season treatment than in 

ambient plots (Fig. 2.2D-F). Stems were also 63% shorter in the early grazing, and 200% 

taller with no-grazing compared to typical grazing treatments. 

The best-fitting model for standing dead biomass included season advancement 

and an interaction between timing of grazing and year (Table 2.2). Standing dead 

biomass was 101% greater in the advanced growing season treatment compared to 
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ambient plots, but was 569% and 1697% greater in the late and no-goose grazing 

treatments, respectively, compared to typical grazing (Fig. 2.2G-I). Dead biomass 

increased across years, but a response to treatments was not detected in no-grazing plots 

until year 2 and late grazing plots until year 3 (Table A2 in the appendices). 

The best-fitting model for seasonal root productivity included an interaction 

between year and timing of goose grazing (Table 2.2). Root growth was 55% lower in 

early season grazing plots, while root growth increased by 74% in no-grazing plots in 

year 1, but was 15% lower by year 3, compared to typical grazing (Fig. 2.3; Table A2 in 

the appendices). 

The best-fitting model for tiller number included DOY and an interaction between 

timing of goose grazing and year (Table 2.2). In general, tiller number decreased over the 

season (Fig. 2.2J-L). Advancing the growing season did not change the total number of 

tillers. Conversely, tiller numbers were 35% lower with early grazing; and 46% greater 

with no-grazing in the first year, but declined over each successive growing season. By 

year 3, tiller numbers were 36% lower with no-grazing compared to typical grazing 

treatments (Table A2 in the appendices). 

For inflorescence counts, the top model included year, season advancement and 

an interaction between timing of grazing and DOY (Table 2.2). The total number of 

inflorescences were 36% greater in the advanced growing season treatment compared to 

ambient plots; but the late and no-grazing plots produced 515% and 1795% more 

inflorescences, respectively, than typical grazing (Fig. 2.2M-O).  
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Comparing degrees of mismatch 

Top models for vegetation responses to treatments all included treatment and 

either year, DOY, or an interaction between year and DOY (Table 2.3). Compared to the 

ambient season–typical grazing treatment (no shift in timing), the advanced season–early 

grazing treatment (0 mismatch) resulted in reductions in aboveground biomass, root 

biomass, and tiller numbers, while the ambient season–early grazing treatment (-3 

mismatch) only had a reduction in root biomass (Fig. 2.4). While the advanced season–

typical grazing treatment (+3 mismatch) was designed to simulate earlier plant phenology 

without changing timing of goose grazing, stem height was the only measurement to 

increase compared to the ambient–typical treatment (no shift in timing), and this was only 

detected in the third year of treatments (Table A3 in the appendices). 

Both the ambient season–late grazing (+3 mismatch) and advanced season–late 

grazing (+6 mismatch) treatments resulted in increased inflorescences and standing dead 

by the third year compared to the ambient–typical treatment (no shift in timing); 

however, the advanced season–late grazing treatment (+6 mismatch) also had increased 

aboveground biomass and taller stem heights by year 3 (Fig. 2.4). Both no-grazing plots 

had taller stem heights and increased aboveground biomass, standing dead, 

inflorescences, and decreased tiller numbers by year 3 compared to the ambient-typical 

treatment (no shift in timing) (Fig. 2.4; Table A3 in the appendices). The ambient–no-

grazing treatment was the only ambient season treatment that had greater stem height 

than the ambient–typical treatment (no shift in timing). 
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Discussion 

To the best of our knowledge, this is one of the first experimental studies 

designed to investigate the effects of plant-herbivore phenological mismatch on the traits 

of the producer instead of the consumer. Here, we highlight three primary findings. First, 

both treatments simulating conditions consistent with future predictions for the Y-K 

Delta (an earlier growing season and delayed grazing) had similar effects and generally 

resulted in greater aboveground biomass and increased inflorescence production. Future 

climate change in the Y-K Delta is expected to advance the growing season (Hinzman et 

al., 2013); however, the response in timing of arrival by geese is less certain as geese 

have alternatives for dealing with climate change, such as migrating to different breeding 

sites or not migrating as far south in the winter (Ward et al., 2009, 2005). If geese in this 

system start to delay their migrations, as they have in other systems (Clausen & Clausen, 

2013; Ross et al., 2017), our results suggest that the responses to the advanced growing 

season will be even greater for C. subspathacea.  

Second, the response of geese to climate change has greater implications for 

C. subspathacea than advancing local spring conditions (Fig. 2.5). The advanced growing 

season treatment successfully advanced the timing of plant growth by about 20 days, 

similar to the 21-day difference in timing of our experimental grazing treatments, making 

the shift in timing of the two treatments comparable. Notably, for the variables where 

both the advanced growing season and grazing treatments both had an effect (standing 

dead and inflorescences), late grazing effects on plant traits were between 3 and 5 times 

greater than the effects of a similar advancement of the growing season. Thus, 
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determining how C. subspathacea will change in the future is largely dependent on how 

climate change influences migratory goose arrival to this system.  

Third, some plant responses were not evident until the second or third year of the 

experiment, suggesting that consistent directional changes in mismatch over consecutive 

years may be needed to produce measurable effects of vegetation on the landscape. 

Treatments were repeated at the same plots in subsequent years, and because natural 

inter-annual variability in the start of the growing season and goose arrival across years is 

quite large (Fischer et al., 2017; Leffler et al., 2019), it might take several years to 

observe these effects in real time. Further, this result also has implications for shorter-

term experiments that might underestimate the long-term consequences of mismatch on 

lower trophic level processes.  

 
Treatment effects on aboveground live, dead, and root biomass 

Timing of grazing treatments had a greater effect on aboveground vegetation 

responses than did season advancement (Fig. 2.5). Both aboveground biomass and stem 

heights were reduced by early grazing and increased with no-grazing treatments. These 

responses are similar to findings by Archer and Tieszen (1983) and Beaulieu et al. 

(1996), but differ from studies that found no effect of timing of grazing on aboveground 

biomass in Arctic graminoids (Person et al., 1998; Raillard & Svoboda, 1999). In 

addition, results differ from Hik et al. (1991) who found that graminoid growth in 

Hudson Bay was reduced with late grazing. We speculate that we did not find this result 

because our late grazing treatments ended 3 weeks earlier than Hik et al. (1991) and 

additional seasonal growth may have allowed plants to recover. While we did not find an 

effect of the advanced growing season on live aboveground biomass, similar to other 
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studies (e.g., Hudson et al. 2011, Radville et al. 2016), we found that stem heights were 

taller with season advancement (Hollister et al., 2005; Hudson et al., 2011). Standing 

dead biomass also increased 101% with an advanced growing season; although, the effect 

was 3 to 9 times greater with late and no-grazing, respectively.  

Our aboveground treatments had effects on belowground plant responses as well. 

Similar to other studies (Blume-Werry, Jansson, & Milbau, 2017; Radville et al., 2016), 

we found that an advanced growing season had no effect on root productivity. However, 

seasonal root productivity was reduced by 55% with early grazing (Archer & Tieszen, 

1983). These results suggest that the timing and presence of aboveground grazing in this 

system can influence the annual root production of C, which is an important input of C in 

the Arctic (Iversen et al., 2015; Tarnocai et al., 2009).  

These results are important because changes of aboveground and belowground 

biomass have consequences for C-cycling in this system. More specifically, the condition 

of greatest mismatch, advanced growing season and later arrival by geese (+6 mismatch), 

is expected to result in vegetation with 106% more aboveground biomass, 220% taller 

stem heights and 12829% more standing dead biomass, as well as increased 

photosynthesis and C-uptake (Leffler et al., 2019). 

 
Treatment effects on tiller and inflorescence number 

Graminoids are highly tolerant of grazing and defoliation compared to other plant 

species (Briske & Richards, 1995; Coughenour, 1985), and while grazing can initiate the 

production of new tiller growth, it can also reduce the number of tillers and their size 

(Jónsdóttir, 1991; Welker, Briske, & Weaver, 1987). Season advancement had no 
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observable effect on tiller number, but tiller number was influenced by the timing of 

grazing. Early grazing initially reduced the number of tillers; however, in year 2, early 

grazing was associated with increased tiller number and then again decreased tiller 

number in year 3. This is dissimilar to previous research that found no tiller response to 

grazing timing on Arctic graminoids (Archer & Tieszen, 1983; Beaulieu et al., 1996), 

although both of these studies were conducted with different plant species than the one 

used in this study. These results suggest that if geese arrive too early, they could 

negatively impact the abundance of their forage species.  

Goose herbivory at our site maintains short tiller height and low standing biomass 

in grazing lawns (Person et al., 2003; Sedinger & Raveling, 1986), and C. subspathacea 

typically does not produce inflorescences but rather reproduces clonally (Perillo et al., 

2009) (Fig. 2.2M). However, if grazing is reduced or removed, once C. subspathacea 

reaches a minimum size and stores sufficient resources, it often initiates sexual 

reproduction (Schmid et al., 1995). While the biomass and height response to treatments 

was immediate, the reproductive response by C. subspathacea to changes in herbivory 

was delayed for one to two seasons. For example, no plots produced inflorescences in 

year 1 of the experiment, while some no-grazing treatment plots produced inflorescences 

in year 2. By year 3, the advanced growing season (compared to ambient), late, and no-

grazing treatments (compared to typical grazing) increased the number of inflorescences 

by 36%, 515%, and 1795%, respectively. Interestingly, both season advancement and 

timing of grazing treatments did not change the timing of peak inflorescence production 

(~10 June), even though other studies show the advancement of inflorescences with an 

earlier growing season (Blume-Werry et al., 2017; Semenchuk et al., 2016; Sherwood et 
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al., 2017). Under the simulated condition of greatest mismatch, season advancement and 

late grazing, we observed a 1478% increase in sexual reproduction, which will likely 

increase genetic diversity and potentially influence long-term plant dynamics in this 

system. 

 
Differences in mismatch comparisons 

The treatments with the greatest changes in plant response variables were the 

plots with no grazing, which resulted in significant changes for all measured plant traits 

except root biomass (Fig. 2.6). The advanced season–late grazing (+6 mismatch) is the 

treatment with the greatest degree of experimental mismatch (six-weeks) and had the 

second greatest number of significant differences in response variables compared to the 

ambient season–typical grazing treatment (no shift in timing; Fig. 2.6). The advanced 

season–late grazing combination (+6 mismatch) received two treatments, both season 

advancement and delayed grazing, with similar directional effects on response variables; 

therefore, we would expect this treatment to have a compounding impact on vegetation 

traits. If geese continue to arrive late to a landscape with an advanced growing season, or 

not arrive at all, vegetation will become taller, older, and lower quality forage for geese 

(Beard et al., 2019), and possibly shift from clonal to sexual reproduction. 

While the treatments were designed to examine different degrees of phenological 

mismatch, the timing and direction of the mismatch also influenced plant response. For 

example, both the advanced season–typical grazing (+3 mismatch) and ambient season–

late grazing (+3 mismatch) conditions had the same size and direction of mismatch. More 

specifically, advanced season–typical grazing (+3 mismatch) had a three-week advance 

in the growing season with no advance in grazing, while ambient season–late grazing (+3 
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mismatch) had no advance in the growing season and a three-week delay in grazing. 

However, these two similar mismatch conditions had differing effects; the advanced 

season–typical grazing had a delayed response in stem height by the third year, while the 

ambient season–late grazing had an increase in inflorescences and a delayed increase in 

dead biomass (Fig. 2.4). Similarly, while the advanced season–early grazing treatment (0 

mismatch) and ambient season–typical grazing treatment (no shift in timing) both 

simulated no mismatch between the growing season and goose arrival, the advanced 

season–early grazing treatment resulted in significant reductions in aboveground live 

biomass, tiller number, and root biomass (Figs 2.4 & 2.6). Our results suggest that 

phenological mismatches can have different influences on plant responses, depending on 

environmental conditions and when they occur seasonally. 

 
Delays in plant response over time 

In our experiment, we maintained the same treatment in each plot over three years 

so we could investigate the effects of multiple years of treatments. Some plant responses 

to treatments, such as aboveground biomass and stem heights, were measurable in the 

first year and did not change direction over the experiment (Fig. 2.2A-F). However, other 

variables such as tillers, inflorescences, and standing dead biomass, required multiple 

years of the same recurring treatments to observe the effect (Figs 2.2 & 2.4). While there 

is a directional expectation with phenological mismatch, such that the season starts earlier 

and the geese arrive functionally later (Brook et al., 2015; Forchhammer et al., 1998; 

Ross et al., 2017), in reality there is a high inter-annual variation in the timing of these 

events (Fischer et al., 2017; Leffler et al., 2019), and it might require multiple years of 

directional change in these timings for plants to exhibit a response.  
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Despite the strong directional response of some plant growth variables to our 

treatments, other responses shifted in direction over time. For example, both tiller number 

and root growth increased in response to no-grazing in the first year (Figs 2.2J & 2.3). 

However, tiller numbers were significantly reduced by year 2 and root growth by year 3 

in the no-grazing treatment. As stem height and biomass increased, there was greater 

shading and higher competition for light resources between tillers (Jónsdóttir, 1991). 

Additionally, soil measurements made in the same experimental plots suggest that late 

and no-grazing treatments had reduced soil nitrogen availability due to increased plant 

uptake and a depletion of resources in the rooting zone (Beard & Choi, 2017). This 

suggests that some plant traits can have initial responses to timing of grazing that might 

change once plants reach a certain size or resource availability threshold.  

 
Additive treatment effects 

For some variables, it appears that changes to both the timing of grazing and 

season advancement were necessary to observe a measurable response. For example, 

while advanced season–early grazing (0 mismatch) and ambient season–early grazing (-3 

mismatch) treatments both had early season grazing, the aboveground biomass and tiller 

number declined with 0 but not -3 mismatch. This suggests that an advanced growing 

season in addition to early grazing was required for plants to demonstrate this response. 

This result is interesting for two reasons. First, the advanced season–early grazing 

treatment had no mismatch between the start of the season and grazing, while the ambient 

season–early grazing treatment (-3 mismatch) had three-weeks of earlier grazing prior to 

the start of the growing season. We found, counterintuitively in this case, that the no 

mismatch treatment had a larger effect on plant response than the treatment with a three-
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week mismatch. Second, the direction of the response observed in the advanced season–

early grazing treatment (0 mismatch), with decreased aboveground biomass and tiller 

numbers, seems counter to the effects of an earlier growing season. It is possible that the 

additive stress of an advanced growing season, such as shorter day length and colder 

temperatures earlier in the year, and early grazing limited the ability of plants to grow, 

even under conditions of no mismatch. These results highlight the unexpected changes 

that may be observed in plants experiencing phenological mismatch. 

 
Conclusion 

The manipulative use of timing of the growing season and timing of herbivory in 

our experiment offers a novel approach to investigating climate-driven phenological 

mismatch. Our results indicate that climate-driven changes in the timing of goose arrival 

have much greater consequences for coastal sedge vegetation than a similar shift in 

timing of local spring conditions. Thus, determining how climate change will influence 

the timing of migratory goose arrival to these systems is critical to understanding plant 

responses. The long-term implications for phenological mismatch on vegetation may be 

difficult to predict in some cases because some variables require years to observe changes 

or alter their directional response over time. However, it seems that important thresholds 

can be reached in as little as two years; for example, C. subspathacea shifted from being 

clonally to sexually reproductive. Thus, even short-term phenological mismatch may 

have long-term implications for the genetic diversity and population dynamics of 

important forage species in the Arctic. 
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Tables 

Table 2.1. Treatments used in the experiment described using degree of phenological 
mismatch. Season indicates if the season started either 3 weeks early (-3) or ambient 
timing (0). Grazing indicates if the grazing started 3 weeks early (-3), typical timing (0), 
or 3 weeks late (+3). Mismatch indicates the relative difference in weeks between the 
timing of season and goose grazing. N/A=non-applicable. 
 
Treatment Season Grazing Season Grazing Mismatch Result 

1 Advanced Early -3 -3 0 Geese match 
early green-up 
with early 
grazing 

2 Ambient Early 0 -3 -3 Geese arrive 
early in a season 
with current 
green-up time 

3 Advanced Typical -3 0 +3 Early green-up 
with no change in 
goose grazing 

4 Ambient Typical 0 0 No shift 
in timing 

Represent long-
term, typical 
conditions of the 
system 

5 Advanced Late -3 +3 +6 Early green-up 
with geese 
arriving late  

6 Ambient Late 0 +3 +3 Normal green-up 
with late goose 
grazing 

7 Advanced None -3 N/A N/A No mismatch; 
early green-up 
and no grazing 

8 Ambient None 0 N/A N/A No mismatch; 
normal green-up 
and no grazing 
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Table 2.2. Results from the experimental treatments analysis showing the top four 
performing models for plant trait response variables based on AIC model selection over 
three years (2014-16). Abbreviations: Grazing = goose grazing treatment, Season = 
season advancement treatment, DOY = day of year. Models with interaction terms imply 
inclusion of the main effect. () indicates parsimonious model selection for top models 
with ∆AIC < 2.  
 
Model logLik AIC ∆LogLik ∆AIC Df Weight 
Aboveground biomass       
Year + Grazing*DOY + 
Season -530.7 1091.5 107.2 0.0 15 0.560 
Year + Grazing*DOY -532.0 1092.0 106.0 0.5 14 0.440  
Year*Grazing + Season + 
DOY -536.3 1108.6 101.6 17.1 18 <0.001 
Year*Grazing + DOY -537.5 1109.0 100.5 17.5 17 <0.001 
       
Stem height       
Year + Grazing*DOY + 
Season -572.5 1175.0 169.3 0.0 15 1 
Year + Grazing*DOY -580.7 1189.4 161.2 14.4 14 <0.001 
Year*Grazing + Season + 
DOY -590.1 1216.2 151.8 41.2 18 <0.001 
Year + Grazing*Season + 
DOY -599.8 1229.6 142.1 54.6 15 <0.001 
       
Standing dead       
Year*Grazing + Season -853.3 1732.5 106.9 0.0 13 0.573  
Year*Grazing + Season + 
DOY -852.8 1733.5 107.4 1.0 14 0.348 
Year*Grazing -856.7 1737.5 103.4 4.9 12 0.049 
Year*Grazing + DOY -856.2 1738.5 103.9 5.9 13 0.030 
       
Root biomass       
Year*Grazing -140.2 312.3 35.5 0.0 16 0.637  
Year*Grazing + Season -140.1 314.2 35.6 1.8 17 0.257 
Year + Grazing -148.4 316.8 27.3 4.4 10 0.070 
Year + Grazing + Season -148.3 318.6 27.4 6.2 11 0.028 
       
Tiller number       
Year*Grazing + DOY -276.9 579.8 42.2 0.0 13 0.542  
Year*Grazing + Season + 
DOY -276.1 580.2 43.0 0.4 14 0.449 
Year*Grazing -282.7 589.3 36.4 9.5 12 0.005 
Year*Grazing + Season -281.9 589.7 37.2 9.9 13 0.004 
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Inflorescence number       
Year + Grazing*DOY + 
Season -1132.3 2286.6 274.8 0.0 11 0.78  
Year + Grazing*DOY -1134.6 2289.1 272.5 2.5 10 0.22 
Year + Grazing*Season + 
DOY -1144.4 2310.8 262.7 24.2 11 <0.001 
Year + Grazing + Season 
+DOY -1154.0 2324.1 253.1 37.4 8 <0.001 
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Table 2.3. Results from the experimental treatment analysis showing the top four 
performing models for plant trait response variables based on AIC model selection for 
treatment comparisons over three years (2014-16). Abbreviations: Treatment = difference 
between ambient-typical conditions and other treatments, DOY = day of year. Models 
with interaction terms imply inclusion of the main effect. () indicates parsimonious 
model selection for top models with ∆AIC < 2. 
 
Model logLik AIC ∆LogLik ∆AIC Df Weight 
Aboveground biomass       
Treatment + Year*DOY -533.2 1100.4 104.7 0.0 17 1 
Treatment*Year + DOY -532.7 1123.3 105.3 22.9 29 <0.001 
Treatment + Year + DOY -548.0 1126.0 89.9 25.6 15 <0.001 
Treatment*Year -561.8 1143.5 76.2 43.1 10 <0.001 
       
Stem height       
Treatment*Year + DOY -561.1 1180.2 156.3 0.0 29 0.55  
Treatment + Year*DOY -573.3 1180.6 144.1 0.4 17 0.44 
Treatment + Year + DOY -578.6 1187.3 138.8 7.1 15 0.02 
Year + DOY -614.3 1248.5 103.1 68.4 10 <0.001 
       
Standing dead       
Treatment*Year -845.6 1731.1 114.6 0.0 20 0.62  
Treatment*Year + DOY -845.0 1732.1 115.1 0.9 21 0.38 
Treatment + Year -878.4 1782.8 81.7 51.7 13 <0.001 
Treatment + Year + DOY -878.1 1784.1 82.1 53.0 14 <0.001 
       
Root biomass       
Treatment + Year -147.3 322.6 28.4 0.0 14 0.97 
Treatment*Year -136.8 329.6 38.9 7.0 28 0.03 
Treatment -157.6 339.2 18.1 16.6 12 <0.001 
Year -164.2 342.4 11.5 19.8 7 <0.001 
       
Tiller number       
Treatment*Year + DOY -268.4 594.9 50.7 0.0 29 0.99 
Treatment*Year -274.4 604.9 44.7 10.0 28 0.01 
Year + DOY -304.1 624.2 15.0 29.3 8 <0.001 
Treatment + Year + DOY -297.2 624.3 22.0 29.4 15 <0.001 
       
Inflorescence number       
Treatment + DOY -1036.8 2095.6 279.7 0.0 11 0.87 
Treatment*DOY -1031.7 2099.3 284.8 3.7 18 0.13 
Treatment -1053.6 2127.2 262.9 31.6 10 <0.001 

Treatment*Year + DOY -1127.1 2264.2 189.4 
168.
5 5 <0.001 
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Figures 

 
Figure 2.1. Conceptual diagram of the understudied aspect of phenological mismatch 
using the Yukon-Kuskokwim Delta as an example. Most studies on phenological 
mismatch focus on the effects on consumer traits. Few studies focus on the effects on 
producer traits (dotted box), which is also important and the focus of this study.  
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Figure 2.2. Mean plant trait responses to experimental season advancement and timing of 
grazing treatments from 2014-2016. (A-C) aboveground dry biomass (g m-2), (D-F) stem 
heights (mm), (G-I) standing dead biomass (g m-2), (J-L) number of tillers (# m-2), (M-O) 
number of inflorescences (# m-2). Error bars are ± 1 SE (n=6 replicates).  
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Figure 2.3. Season-long root biomass (g m-2) (± 1 SE) (~25-May to 25-August) collected 
from 15 cm in-growth root cores for treatment plots from 2014-2016 (n=6 replicates). For 
Treatment key, see Table 2.1. 
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Figure 2.4. Season-long mean plant trait responses to experimental mismatch treatments 
from 2016. (A) aboveground dry biomass (g m-2), (B) stem heights (mm), (C) standing 
dead biomass (g m-2), (D) root biomass (g m-2), (E) number of tillers (# m-2), and (F) 
number of inflorescences (# m-2). Dashed lines indicate the ambient–typical treatment (no 
shift in timing). (*) indicates effect of mismatch compared to the ambient season–typical 
grazing treatment (+) indicates effect not detected until year 2 or 3; (^) indicates change 
in direction of response to treatments over time (p<0.05). Error bars are ± 1 SE (n=6 
replicates).   
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Figure 2.5. Conceptual figure of experimental treatments (timing of grazing and season 
advancement) on plant trait responses compared to typical grazing and ambient season 
after three years. Red arrows (–) indicate a negative effect; blue arrows (+) indicate a 
positive effect. Solid lines indicate an effect observed in all years; dashed lines indicate 
an effect only observed after the first season.  
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Figure 2.6. Conceptual figure of experimental mismatch on plant trait responses 
compared to ambient season-typical grazing (no shift in timing) after three years of 
treatments. Red arrows (-) indicate a significant negative effect; blue arrows (+) indicate 
a significant positive effect. Solid lines indicate an effect observed in all years; dashed 
lines indicate an effect only observed after the first season.  
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CHAPTER 3 

EARLY GOOSE ARRIVAL INCREASES SOIL NITROGEN AVAILABILITY MORE 

THAN AN ADVANCING SPRING IN COASTAL WESTERN ALASKA2 

 
Abstract 

An understudied aspect of climate change-induced phenological mismatch is its 

effect on ecosystem functioning, such as nitrogen (N) cycling. Migratory herbivore 

arrival time may alter N inputs and plant-herbivore feedbacks, while earlier springs are 

predicted to increase N cycling rates through warmer temperatures. However, the relative 

importance of these shifts in timing and how they interact to affect N cycling are largely 

unknown. We conducted a three-year factorial experiment in coastal western Alaska that 

simulated different timings of Pacific black brant (Branta bernicla nigricans) arrival (3-

weeks early, typical, 3-weeks late, or no-grazing) and the growing season (ca. 3-weeks 

advanced and ambient) on adsorbed and mobile inorganic (NH4
+-N, NO3

--N), and mobile 

organic N (amino acid) pools. Early grazing increased NH4
+-N, NO3

--N, and amino acids 

by 103%, 119%, and 7%, respectively, while late grazing reduced adsorbed NH4
+-N and 

NO3
--N by 16% and 17%, respectively. In comparison, the advanced growing season 

increased mobile NH4
+-N by 26%. The arrival time by geese and the start of the season 

did not interact to influence soil N availability. While the onset of spring in our system is 

advancing at twice the rate of migratory goose arrival, earlier goose migration is likely to 

be more significant than the advances in springs in influencing soil N, although both 

early goose arrival and advanced springs are likely to increase N availability in the future. 

                                                      
2 Co-authors: Karen H. Beard, Katharine C. Kelsey, A. Joshua Leffler, Joel A. Schmutz, Jeffrey M. Welker 
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This increase in soil N resources can have a lasting impact on plant community 

composition and productivity in this N-limited ecosystem.  

 
Introduction 

Northern latitudes are experiencing rapid warming and spring advancement, 

which is altering the timing of biological interactions, especially for long-distance 

migratory species (Cohen and others 2018; Renner and Zohner 2018). While some 

species, such as migratory geese, have started to shift the timing of their migration earlier 

in response to climate-induced season advancement (Kölzsch and others 2015; Boelman 

and others 2017), there is still potential for resource-consumer ‘phenological mismatch’ 

due to the different rates of climatic change in their winter and summer ranges (Lameris 

and others 2017; Mayor and others 2017). Phenological mismatch between long-distance 

migratory birds and their resources is already negatively affecting higher trophic 

herbivores through reductions in resource availability and forage quality (Doiron and 

others 2015; Ross and others 2017). While it is unclear if the mismatch will persist, it is 

likely that these mismatches will have long-term consequences for some northern 

systems due to the rapid occurrence of change in the Arctic (Miller-Rushing and others 

2010). An understudied aspect of phenological mismatch is how ecosystem-level 

processes, such as nutrient cycling, may be impacted (Kelsey and others 2018; Heberling 

and others 2019; Leffler and others 2019), and until recently this has been largely 

overlooked (Beard and others 2019b).  

Investigating how developing phenological mismatch influences soil nitrogen (N) 

availability is fundamental for understanding how northern latitudes are changing 

because N is often a limiting resource for plant growth in these systems (Schimel and 



79 
 
others 1996). Shifts in the timing of trophic interactions (i.e., changes in herbivory) and 

subsequent N inputs (i.e., litter, feces) may alter soil N available for plant uptake and 

microbial immobilization over the brief summer growing season (Ruess and others 

1997); however, the direction or magnitude of these responses is uncertain. Because plant 

growth is highly coupled to N availability (Grogan and Zamin 2018), climate-induced 

changes to inorganic (NH4
+-N, NO3

--N) and organic N (amino acid) pools can directly 

alter ecosystem functioning, including changes in plant productivity and microbial 

respiration (Belay-Tedla and others 2009; Sistla and others 2012; Schaeffer and others 

2013), or even lead to ecosystem loss of N through leaching or denitrification 

(Buckeridge and others 2010; Martinsen and others 2012) (Figure 3.1). Determining the 

effects of resource-consumer phenological mismatch on N cycling requires investigating 

shifts in the timing of the consumer (i.e., herbivory) and shifts in the timing of the 

resource (i.e., plant growing season) as separate temporal controls. 

The first critical temporal controls are changes in the seasonal timing of herbivory 

(Clausen and Clausen 2013; Lameris and others 2017). Migratory geese, for example, are 

arriving earlier to their Arctic breeding grounds, but some species are not arriving early 

enough to match the advanced rate of plant green-up (Doiron and others 2015; Ross and 

others 2017). The timing of migratory goose arrival is expected to be particularly 

important to N cycling, especially in the coastal Arctic where geese occur at high 

densities and function as ecosystem engineers (e.g. Uher‐Koch and others 2019). Goose 

herbivory has the ability to affect N cycling in three ways: the direct removal of 

aboveground tissue through grazing, the addition of soluble N through fecal deposition, 

and the trampling of standing dead litter into the soil promoting the turnover of organic 
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material and rapid decomposition (Bazely and Jefferies 1989; Ruess and others 1997; 

Zacheis and others 2002). Previous work found that early goose grazing reduced above- 

and belowground plant biomass while later arrival and grazing had the opposite effect 

(Choi and others 2019). The changing arrival time of geese also alters the timing of goose 

fecal inputs, which can be an important source of soluble organic N (Henry and Jefferies 

2002). Based on our understanding of how the timing of goose herbivory influences 

vegetation, and the ability of coastal graminoids to utilize amino acids and inorganic N 

forms (Henry and Jefferies 2003; Welker and others 2003), we predict that shifts in the 

timing of goose arrival have the potential to alter both organic and inorganic N 

availability (Figure 3.1). 

The second temporal controls are changes in climate-driven shifts in the resource, 

most often through advancement of the growing season and resulting higher rates of soil 

N cycling (N mineralization [Nmin], ammonification, denitrification) (Buckeridge and 

Grogan 2010; Bardgett and others 2013). Warmer soil temperatures from season 

advancement can stimulate microbial enzymatic activity (Sistla and Schimel 2013), 

which can increase soil NH4
+-N and NO3

--N pools, and gaseous N efflux (Blankinship 

and Hart 2012; Bai and others 2013). Earlier springs can also increase the labile organic 

N pool and amino acids (Darrouzet-Nardi and others 2019), which are an important 

source of N for coastal graminoids in Arctic systems (Henry and Jefferies 2003). 

However, advanced growing seasons also increase plant growth and demand (Lin and 

others 2010), thereby reducing N pools through greater plant uptake (Natali and others 

2012) and microbial immobilization (Jonasson and others 1999). Because of the 

microbial response to earlier warmer temperatures and extension of the growing season, 
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we predict that season advancement will mobilize more soil N than can be assimilated by 

plant growth.  

There is a growing climate-driven phenological mismatch between the timing of 

herbivory by wild geese and the timing of the growing season, and a gap in our 

knowledge of how changes in the relative importance of these processes influence N 

cycling and soil N pools. To address this, we conducted a three-year field experiment that 

manipulated the timing of migratory goose arrival (early, typical, late, and no arrival) and 

the growing season (advanced and ambient). We then measured how the timing of these 

events and their interactions influence inorganic (NH4
+-N, NO3

--N) and organic (amino 

acid) soil N pools and Nmin rates. We hypothesized that: H1) early goose arrival results in 

larger inorganic and organic N pools earlier in the season because early goose grazing 

reduces above- and belowground plant biomass (Choi and others 2019) and initiates 

earlier fecal inputs and trampling, while late migration has the opposite effect (Figure 

3.1); H2) season advancement and associated early season soil warming stimulate 

microbial net N mobilization (i.e. the production and release of organic N and inorganic 

Nmin), which outweighs any reduction from early season plant growth (Leffler and others 

2019), and results in larger inorganic N pools compared to an ambient season; and H3) 

the interaction between earlier goose arrival and season advancement synergistically 

increase pools of inorganic and organic N because of the combined effect from warmer 

soil temperatures and earlier grazing, feces, and trampling.  
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Methods 

Study site 

We conducted this study near the Tutakoke River in the central coastal region of 

the Yukon-Kuskokwim (Y-K) Delta in western Alaska (61°15’N, 165°37’W; elevation 2 

m). The Y-K Delta is over 125,000 km2 of coastal tundra between the Yukon and 

Kuskokwim Rivers along the Bering Sea. We established experimental plots within 1 km 

of the coast in a wet sedge meadow on the active floodplain. Climate in the area is 

moderated by the Bering Sea with mean temperatures ranging from -14 to 10 °C in 

midwinter and summer, respectively (Jorgenson and Ely 2001). 

Soils at our site are saturated and brackish, often mesohaline (8,000-30,000 µS 

cm-1; 0.5-18 ppt), frequently inundated by monthly tides, and characterized by 

interbedded layers of silt and sandy loams (Jorgenson 2000). Permafrost, while found 

further inland, is not present in the active coastal floodplain. Soils are classified as 

histosols and have a bulk density of 0.69 g cm-3, and 9.5% organic content consisting of 

4.7% C and 0.3% N.   

Carex graminoids are the dominant vegetation in the coastal Y-K Delta. C. 

subspathacea, in particular, is a critically important goose forage species, that occurs in 

near monotypic stands along the margins of ponds and tidal flats, and is so heavily grazed 

and modified by geese that when altered, it is referred to as ‘grazing lawn’ (Person and 

others 2003). Using the day of year when NDVI (normalized difference vegetation index) 

reaches 50% of its maximum as a vegetation phenology metric (Brook and others 2015), 

green-up has varied over 30 days (23-May to 25-June) over the last 35 years (1982-

2016), but has occurred on average 0.3 days earlier per year (Leffler and others 2019).  
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Geese time their long-distance migration to optimize their nutrient demands with 

a narrow window of peak nutrient availability in the spring (Sedinger and Raveling 

1986). Approximately 50% of the world’s Pacific black brant (Branta bernicla nigricans) 

nest in the coastal Y-K Delta, with ca. 30-day variation in the range of hatch dates (3-

June to 9-July) observed over 34 years (1983-2016) (Fischer and others 2008, 2017). 

However, the three years of our experiment (2014, 2015, 2016) had three of the earliest 

six hatch dates for black brant in the Y-K Delta, especially year 3 (2016), which was the 

earliest on record (Fischer and others 2017). At our site, there is a positive correlation 

between NDVI spring advancement and hatch date (R2 = 0.78), but geese do not appear 

able to keep up with the timing of spring with migratory arrival occurring on average 

0.14 days earlier per year (Fischer and others 2017).  

 
Phenology experiment 

We conducted a three-year fully factorial experiment simulating scenarios of 

phenological mismatch. This experiment has been used to investigate changes in 

greenhouse gas flux (Kelsey and others 2018; Leffler and others 2019), forage quality 

(Beard and others 2019a) and plant traits (Choi and others 2019) and is described in those 

studies. Briefly, we used four timings of grazing (early, typical, late, and no-grazing) 

crossed with two timings of the growing season (advanced and ambient) for a total of 

eight treatments. We altered the timing of goose grazing by minus-three, zero, and plus-

three weeks (early, typical, and late treatments, respectively), and advanced the growing 

season by three weeks (see below). The ‘typical’ goose treatment represented historic 

mean arrival and grazing and acted as the grazing treatment control, while the ‘no-

grazing’ treatment represented potential future scenarios where goose populations decline 
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to near zero or fail to arrive. We also had a background grazing control plot in each block 

that was used to compare the effectiveness of our experimental grazing, but not as a 

statistical comparison for our treatments. Thus, we had a total of 54 plots in six replicate 

blocks located within 700 m. All plots were established in April 2014 and were 1.7 m x 

0.85 m in size. We installed fencing around all paired advanced and ambient growing 

season plots, except the background grazing control, to exclude wild goose grazing. 

Treatments were assigned randomly and applied to the same plots from 1-May through 

15-August each year. 

We manipulated timing of grazing by introducing wild-caught geese into fenced 

goose exclosures (ca. 7.6 m2) at specific times during the season. Early, typical and late 

grazing treatments began on 30-May, 20-June, and 9-July, respectively, to approximate 

the 30-day variation in the range of historic mean hatch dates (3-June to 9-July) (Fischer 

and others 2017). These dates are the biologically relevant means for our system and 

allowed us to use actual geese (as opposed to simulated grazing) in our experiments, 

which required treatments to start after nest initiation so they could be captured. 

Aboveground biomass in background control plots did not differ from typical grazing 

plots in years 1 and 2 or early goose grazing plots for all three years (Choi and others 

2019). Because the experiment coincided with three of the six earliest mean hatch dates 

in the Y-K Delta over the last 34 years and the last year of our experiment was the 

earliest on record (Fischer and others 2017), we expected that background controls would 

be more similar to early goose grazing treatments by year 3.   

Grazing treatments only differed in the timing of grazing initiation; we kept total 

grazing time constant among treatments. While earlier shifts in migratory goose arrival 
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might result in a longer available season for grazing, the duration of time spent on Carex 

grazing lawns is constrained by the development time of goslings, typically ca. 40 days 

(Sedinger and others 2001). Furthermore, differences in timing of grazing treatments are 

attributed to the timing of grazing initiation, and not variation in the duration of grazing. 

Experimental grazing treatments (early, typical, and late grazing) consisted of two brant 

geese grazing, trampling and defecating inside exclosures during four 24 h bouts 

separated by 12 days over a total of 37 days to simulate post-hatch grazing. Unlike other 

goose species in the Y-K Delta, black brant are grazers and do not grub during the 

summer (Sedinger and Raveling 1984). Prior to each grazing treatment, we held geese for 

two hours without food to allow feces from captive feeding to pass through their 

digestive system. After each 24 h grazing treatment, we held birds for an additional two 

hours to collect feces which were returned to the appropriate plots. In between grazing 

treatments, we held geese in a fenced enclosure and allowed them to graze freely on 

natural vegetation, supplemented ad libitum with commercial goose feed. Captive geese 

were released into the wild at the end of each season.  

We used two adjacent conical passive-warming open-top chambers (OTCs; 30 cm 

height x 85 cm base dia. x 50 cm top dia.) to initiate an earlier growing season in the 

advanced season plots. We placed OTCs on plots from 1-May to 1-July, and removed 

them only during goose grazing treatments. We monitored air and soil temperature (10 

cm above- and belowground) inside and outside OTCs in every plot each growing season. 

These OTCs doubled mean vegetation height and advanced the growing season by 22, 

18, and 21 days by the end of June 2014, 2015, and 2016, respectively (Leffler and others 
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2019). OTCs warmed plots on average between 0.6 and 1.7 °C (aboveground) and 0.6 

and 1.0 °C (belowground). 

 
Soil N measurements 

 We measured inorganic (NH4
+-N, NO3

--N) and organic N (amino acids) and N 

mineralization in all treatments of the experiment. Inorganic N (NH4
+-N, NO3

--N) was 

measured via two methods, while organic N (amino acids) was measured via one method 

over three years. Nmin was measured only during the third year of the experiment. 

We used ion-exchange resin strips (2.5 cm wide x 10 cm length; CR67 & 

AR204SZRA, General Electricals, Watertown, MA) to measure inorganic N (NH4
+-N, 

NO3
--N) available to adsorb to soil particles (Qian and Schoenau 1995). We prepared 

cation and anion strips separately using the same procedure. We immersed and shook 

strips in baths of 0.5 M HCl for 1 h and 0.5 M NaHCO3 for 5 h, and then washed and 

stored them with deionized water. In the center of each plot, we installed six to eight 

cation and anion resin pairs vertically 10 cm into the ground until the top was even with 

the surface of the soil. We collected resins every two weeks, each time yielding a 

cumulative measure of adsorbed inorganic N. Upon collection, we froze all resins in the 

field. In the laboratory, we washed all resins using 50 mL of 2M KCl and froze extracts 

until analysis.  

Because some of our plots experienced seasonal inundation during high tide 

events, we used an additional resin approach to measure soil inorganic N. Seawater has a 

high ionic potential and tidal flooding can interfere with measurements by striping resin 

ion-exchange sites of adsorbed inorganic N (McBride 1989). High spring tides flooded 

and inundated several experimental blocks each season (Julian date 2014 (205), 2015 
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(186), 2016 (185, 210)), which corresponded with a drop-off in resin-collected N on 

strips that remained in situ (Figure 3.2). To address this problem in years 2 and 3, we 

installed intertidal resin sets for three weeks between monthly peak tides, determined 

from regional NOAA tide predictions (Dall Point, AK; tidesandcurrents.noaa.gov), and 

collected pairs from plots before the next peak tidal event. Both cumulative and intertidal 

resin incubations had their own strengths and results show similar trends, so we present 

both datasets for completeness. Resin measurements represent N adsorption by soil ion-

exchange sites over time, and separate resin collections are referred to as either 

‘cumulative’ or ‘intertidal’. 

We used microlysimeters to measure labile inorganic (NH4
+-N, NO3

--N) and 

organic N (amino acids) pools in soil pore water. At the center of each plot, we installed a 

single 10-cm rhizon soil moisture microlysimeter (Eijkelkamp, Giesbeek, Netherlands) 

perpendicular into the soil surface and left them in place over the season. We used plastic 

syringes to collect 10 mL pore water samples from the top 10 cm of soil every two 

weeks, and used 1µm, 25-mm diameter Acrodisc glass fiber syringe filters (Pall 

Laboratory, Port Washington, NY) to pre-filter soil pore water before storing and 

freezing samples until analysis. Microlysimeter measurements represent labile N 

available in soil pore water at the time of collection. 

During the final year of the experiment, we measured net Nmin rates in each 

experimental plot (n = 54) using the buried bag technique (Robertson and others 1999). 

On 1-June, we took two, 4-cm diameter cores from the top 10 cm of soil in each plot. We 

collected one core and placed the other intact in a polyethylene bag and buried it in situ 

until 1-August. We homogenized, sieved, and extracted both cores within 24 h of 
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collection. From each core, we extracted 10 g of root-free soil in 50 mL of 2M KCl, 

filtered, and froze samples until analysis. We calculated net Nmin (µg N g-dry soil-1 d-1) as 

the difference in total NH4
+-N and NO3

--N between the initial harvest and final harvest 

divided by the total number of days in situ. 

We analyzed filtrate from resin extracts, microlysimeter samples, and Nmin 

measurements using colorimetric (NH4
+-N, NO3

--N) or fluorometric (amino acid) 

microplate assays. We used the Berlethot reaction for NH4
+-N (Rhine and others 1998) 

and the Griess reaction for NO3
--N (Doane and Horwáth 2003). We measured organic N 

(amino acid) using fluorescence of samples with o-phthaldialdehyde and β-

mercaptoethanol (Jones and others 2002). Absorbance and fluorescence values were 

measured with a SynergyTM H4 Hybrid Multi-Mode Microplate Reader (Bio-Tek Inc., 

Winooski, VT) at Utah State University.  

 
Statistical analysis 

We tested the effects of timing of goose grazing (early, typical, late, no-grazing) 

and timing of the growing season (advanced, ambient) on soil N availability. We used 

NH4
+-N, NO3

--N and amino acids, and Nmin measurements as continuous response 

variables, experimental treatments (timing of goose grazing, start of the growing season), 

sampling date, and year as fixed-effect predictor variables, and treated plot nested within 

block as a random effect. Separate models were used for each measured N pool 

(cumulative and intertidal resin NH4
+-N and NO3

--N, and microlysimeter NH4
+-N, NO3

--

N, and amino acids). We tested distributions of continuous variables for normality and 

homogeneity of variance, and log-transformed all predictor variables prior to analysis to 
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meet these assumptions. We coded ambient season and typical grazing plots as the 

reference comparison for the growing season and grazing season treatment, as 

appropriate. Our models included interactions of fixed-effect predictors, but we limited 

interactions to combinations of no more than two variables. We determined variable 

importance by inclusion in the top-performing model. We included a first-order 

autocorrelation structure to account for repeated measures within subjects over time.  

For all analyses, we used a linear mixed model framework with model selection 

and Akaike Information Criteria (AIC). We fit all models using the nlme package within 

the R statistical computing environment (Pinheiro and others 2017, R Core Development 

Team). We selected top models based on ∆AIC and considered models to be similar if 

∆AIC<2 (Burnham and others 2011). Using the nlme summary function, we determined 

the fixed effect parameter estimates for top model variables that were statistically 

different from the reference intercept (ambient season, typical grazing) (Table B1 in the 

appendices). For simplicity and to capture the effects after three years of experimental 

treatments, we present soil N percent change as the mean across the last year of the 

experiment unless otherwise indicated. 

 
Results 

Across all N pool measurements, both timing of grazing and timing of season 

were included in the top models highlighting the strength of timing of goose herbivory 

and season advancement treatments on soil N availability (Table 3.1). There were no 

interactions between the timing of grazing and timing of season in any of our top models.  

Cumulative and intertidal ion-exchange resins and soil pore water in early grazing 

plots had 62%, 21% and 103% more NH4
+-N, respectively, compared to typical grazing 
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treatment (Figures 3.2-3.4). Intertidal resins had 16% less NH4

+-N available in late 

grazing than typical grazing treatments (Figures 3.3A-B). Comparatively, the advanced 

growing season had a 2% and 26% increase in intertidal and soil pore NH4
+-N pools, 

respectively, compared to the ambient treatment by year 3 (Table B1 in the appendices). 

The top-ranking models for resin-adsorbed soil NH4
+-N included year, season 

advancement, and an interaction between timing of grazing and sampling date, whereas 

top-ranking models for NH4
+-N in soil pore water included timing of grazing, season 

advancement, and an interaction between year and sampling date (Table 3.1).  

Early grazing had seasonal peaks in intertidal resin-adsorbed NH4
+-N that 

coincided with early grazing treatments (~30-May to 10-July), ~30 days earlier than 

typical grazing. Similarly, late grazing delayed seasonal peak intertidal resin-adsorbed 

NH4
+-N by ~20 days later in the season compared to typical grazing plots (Figures 3.3A-

B), which coincided with the timing of late grazing treatments (~9-July to 15-August). 

Unlike early grazing, an advanced growing season did not shift the peak timing of soil 

NH4
+-N available for biological assimilation. 

Cumulative resin-adsorbed NO3
--N declined while intertidal resin and soil pore 

NO3
--N increased across the three years. Top models for resin-adsorbed and soil pore 

NO3
--N all included timing of grazing, season advancement, and year, or an interaction 

between timing of grazing or year, and sampling date (Table 3.1). Intertidal and soil pore 

NO3
--N increased 139% and 119% in the early grazing treatment compared to typical 

grazing treatment, while cumulative resin-adsorbed NO3
--N decreased by 17% in late 

grazing treatment (Figures 3.2-3.4, Table 3.2). Intertidal resins also had 51% more NO3
--

N in no-grazing treatment than typical grazing plots in the last year of the experiment, but 
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had 21% less NO3

--N in the same plots the previous year (Figures. 3.3C-D, Table 3.2). 

While season advancement was found in all the top models, it was not significant (Table 

B1 in the appendices). 

Experimental treatments had no measurable effect on net Nmin rates in year 3. The 

top models for both net Nmin NH4
+-N and NO3

--N either included just season 

advancement or the null model (Table 3.1). In general, the advanced growing season 

decreased Nmin rates for NH4
+-N and NO3

--N by 176% and 8%, respectively; however, 

these effects were not significant (Table B1 in the appendices). Across all plots, mean net 

Nmin rates were 0.10 ± 0.24 µg NH4
+-N g-dry soil-1 d-1 and 0.22 ± 0.07 µg NO3

--N g-dry 

soil-1 d-1, or a total of 0.31 ± 0.25 µg inorganic N g-dry  

soil-1 d-1.  

 Amino acids increased by 7% in the early grazing treatment compared to the 

typical grazing treatment, with peaks in availability observed early in the growing season 

(Figures 3.4G-I). The top model for soil pore amino acid concentrations included timing 

of grazing and an interaction between year and sampling date, while the second-ranked 

model with ∆AIC<2 also included season advancement (Table 3.1). While season 

advancement was included in the second-ranked model, it was not significant (Table B1 

in the appendices). 

 
Discussion 

Our experimental results suggest that the timing of migratory goose grazing (i.e. 

goose arrival date) has a greater impact on soil N availability than advancement of the 

growing season in this N-limited coastal ecosystem. Early goose grazing had the greatest 
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measurable effect on soil N by increasing both inorganic and organic soil N pools. 

Season advancement also increased soil NH4
+-N availability, but compared to early 

grazing only had a limited effect on soil N pools, despite a similar three-week shift in 

timing (Figure 3.5). Furthermore, there was no synergistic interaction between timing of 

goose arrival and timing of spring advancement on soil N availability. Our findings 

suggest that in coastal western Alaska, where migratory geese are arriving earlier into a 

phenologically advanced system, soil N availability will increase. Larger soil N pools are 

important for plant nutrient availability, and even short-term impacts on soil N pools can 

have lasting effects on forage quality (Ruess and others 2019), or alter plant community 

composition and productivity (Ruess and others 1997; Boyer and Zedler 1999). These 

shifts in N may facilitate shifts from graminoid to shrub-dominant vegetation, resulting in 

a reduction of Carex grazing lawns and goose forage resources (Myers-Smith and others 

2011; Carlson and others 2018). Finally, increased N availability can also result in the 

greater likelihood of N leaching and potential loss (Jonasson and others 1999). 

 
Soil inorganic N response to timing of grazing treatments 

Our findings support hypothesis (H1) that timing of grazing can affect inorganic 

soil N pools (NH4
+-N, NO3

--N), and early grazing had the greatest impact (Figure 3.5). 

More specifically, early grazing increased resin-adsorbed and soil pore NH4
+-N 

availability, which suggests the long-term and short-term influence of this treatment on 

the different extractable pools. Late grazing also influenced soil N, primarily by reducing 

intertidal resin-adsorbed NH4
+-N but not soil pore NH4

+-N (Table 3.2), which suggests 

that the draw down may have taken time (up to three weeks for intertidal resins) for 

effects to accumulate. By delaying peak NH4
+-N availability and storing N in plant 
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tissues, late grazing retains N in the system and returns it slowly through decomposition 

and microbial turnover, reducing the potential for N leaching and loss. 

Similar to soil NH4
+-N, our findings supported hypothesis (H1) that the timing of 

grazing also affected NO3
--N pools. Changes in pool sizes of NH4

+-N with both early and 

late grazing resulted in similar relative changes in NO3
--N with the same treatment. 

However, overall NO3
--N concentrations observed across all treatments were 10 times 

lower than NH4
+-N. We offer four potential mechanisms for this pattern. First, NO3

--N is 

highly mobile in the soil and easily lost through leaching or uptake by plants (Miller and 

Cramer 2005). Second, saturated soils and low O2 conditions can limit rates of aerobic 

nitrification (White and Reddy 2003). Third, the anaerobic microbial dissimilatory nitrate 

reduction to ammonium pathway, a process that converts NO3
--N back into NH4

+-N and 

occurs in highly reducing environments or flooded soils, may have suppressed NO3
--N 

accumulation (Giblin and others 2013). Finally, it is also possible that NO3
--N produced 

in the soil can be denitrified (Tiedje 1988); however, concurrent measurements in our 

experimental plots found no significant N2O gaseous efflux from our ecosystem (Kelsey 

and others 2018), suggesting that this is an unlikely pathway.  

 
Soil inorganic N response to season advancement 

Our results support hypothesis (H2) that, by stimulating microbial activity 

through warmer early season conditions, season advancement increased soil NH4
+-N 

pools in excess of any increased plant uptake. Similar to other studies investigating 

season advancement (Borner and others 2008; Buckeridge and others 2010; Rogers and 

others 2011), we found a moderate effect of an advanced growing season on soil NH4
+-N. 

Season advancement also increased soil respiration in our experimental plots (Leffler and 
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others 2019), which suggests that higher rates of microbial N cycling contributed to N 

pools. Despite having a similar shift in timing of grazing (+3 weeks), this increase was 

less than the effect of early grazing, which had a four-fold increase in soil pore NH4
+-N 

(Table 3.2), and highlights the importance of earlier migratory arrival at our site. While 

an advanced growing season increased NH4
+-N, it did not result in a significant increase 

in NO3
--N pools, likely due to the anaerobic suppression of nitrification in saturated soils 

earlier in the season.  

 
N mineralization response to treatments 

We found that Nmin had no measurable response to an advanced season or timing 

of grazing treatments and was highly variable among plots, which refutes hypotheses (H1 

& H2) that earlier grazing and an advanced growing season stimulated net N 

mobilization. Others have found that Nmin rates were not affected by vegetation clipping 

treatments in Carex grazing lawns at our site (Person and Ruess 2003) or by goose 

grazing in the Hudson Bay (Wilson and Jefferies 1996). Studies reporting increases in 

Nmin from experimental warming had soil temperature increases of 1-3 ºC (e.g. DeMarco 

and others 2011), suggesting that perhaps our season advancement treatments (0.6 to 1.0 

˚C at 10 cm belowground only for the first half of the season) were insufficient to 

increase season-long rates of Nmin and production. The lack of an Nmin response suggests 

that the observed changes in N pools from timing of grazing and season advancement 

were likely driven by plant uptake or microbial immobilization. 

  



95 
 
Soil organic N pool response to treatments 

Our findings support our hypothesis (H1) that early grazing increases organic N 

(amino acid) concentrations (Figures 3.2G-H). Early peaks in amino acids were observed 

in all treatments and may have resulted from the post-melt release of organic N from the 

lysing of root and microbial cells during freeze/thaw events in the fall and early spring 

(Grogan and others 2004). The rapid decline in amino acid concentrations early season 

coincided with the uptake of available N by roots for plant growth, as suggested by others 

in high latitude systems (Weintraub and Schimel 2005; Edwards and others 2006), and 

likely occurred to a lesser degree in the early grazing treatment due to reduced plant 

growth (Choi and others 2019). Because microlysimeters measured labile inorganic and 

organic N available in soil pore water (Darrouzet-Nardi and Weintraub 2014), the 

observed season-long draw down of the organic N pool suggests that plants and microbes 

are utilizing the most easily available limiting resources (Hobbie and Hobbie 2012) 

(Figures 3.2G-I). 

 
N pathways  

We propose that reduced plant uptake was the primary mechanism driving the 

increase in available soil N in the early grazing treatments. Although grazing has the 

potential to stimulate graminoid productivity through compensatory growth (Grogan and 

Zamin 2018), in our treatments early grazing reduced above- and belowground biomass 

by 52% and 55%, respectively, while late grazing increased inflorescences and dead 

biomass by 515% and 569%, respectively (Choi and others 2019), compared to typical 

grazing plots (Figure 3.5). These grazing effects had lasting legacy effects on plant 
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productivity in subsequent seasons (Choi and others 2019), which corresponded with 

changes in soil N availability by the end of our three year experiment. 

It is possible that other mechanisms contributed to the observed increases in soil 

N availability. In northern latitudes where geese are the dominant herbivores, feces are 

thought to be important sources of soil N (Bazely and Jefferies 1985). Research 

conducted in another Arctic coastal system detected amino acid signatures of goose feces 

in the soil profile (Henry and Jefferies 2002), and plant foliar δ15N from our early grazing 

treatments had enriched δ15N values (3.3‰) that more closely matched the values of 

goose feces (3.7‰), as opposed to late and no-grazing treatments (2.7‰ and 2.1‰, 

respectively) (Beard and Choi 2017). Because of the non-mycorrhizal nature of 

graminoids (Welker and others 2003; Craine and others 2009), changes in leaf δ15N of 

Carex species are often due to shifts in N sources, such as herbivore N inputs (Sjögersten 

and others 2010), and the observed changes are likely indicative of substantial N 

recycling between geese and plants. 

Although it is likely that geese are important sources of N for plants, the effect of 

goose feces on N pool sizes remains unclear. An experiment at our site that manipulated 

goose fecal densities on Carex grazing lawns by creating plots with double, ambient, and 

no feces found no changes in inorganic or organic soil N availability using the same N 

collection methods used in the present study (Beard and Choi 2017). Further, changes in 

fecal density did not change Carex biomass or forage quality (Beard and Choi 2017). 

Observations of goose feces at our site suggest that pellets often dry up and are not 

incorporated into the soil through trampling, while frequent flooding and high tide events 

redistributed or removed 85-90% of feces (Beard and Choi 2017). Because soluble N 
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rapidly declines in goose feces after deposition (Bazely and Jefferies 1985), we speculate 

that a portion of N volatilizes into the atmosphere. While we believe that goose feces play 

a role in soil N availability, the magnitude of its influence on soil N pools at our site still 

warrants further investigation.  

 
Treatment interactions 

While both early grazing and an advanced growing season, in general, increase N 

availability in soil pools, there were no observed interactions between timing of grazing 

and timing of season treatments (H3). It is possible that the compensatory growth 

response of Carex grazing lawns to early goose herbivory, in particular because of the 

increased soil N availability (Grogan and Zamin 2018), may have dampened the increase 

in N availability from early grazing and the advanced season (Choi and others 2019). 

Alternatively, while warmer temperatures and reduced leaf shading seemed to increase N 

mobilization, these conditions also likely lowered soil water content, thereby limiting 

rates of microbial decomposition and accumulation of inorganic N pools (Skopp and 

others 1990). Because both earlier goose arrival and advancing green-up are occurring at 

our site, our findings suggest that there will be additive, but not synergistic, increases in 

soil N availability.  

 
Soil N collections and limitations 

The different methods of N measurements we employed captured different 

aspects of the available soil N pools. We used microlysimeters to measure the labile soil 

pore N pools at biweekly intervals and this N was more sensitive to short-term 

differences in availability, compared to the less frequently collected ion-exchange resins 
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that accumulated changes in soil adsorbed N over time. Of the resin measurements, it is 

not surprising that intertidal resins detected a stronger response to grazing treatments 

given that they were designed to reduce interference from tidal inundation. Because N 

availability in northern coastal systems has high temporal and spatial variability 

(McLaren and others 2017; Darrouzet-Nardi and others 2019), our relatively high 

frequency of measurements and multiple approaches helped improve our understanding 

of soil N fluctuations and availability across the growing season. 

 
Conclusion 

Climate-driven advances in spring green-up and goose arrival are occurring in the 

Y-K Delta. While both earlier growing seasons and earlier goose arrival result in 

increased soil NH4
+-N availability, the effect of season advancement was less than that of 

early goose grazing, even though both treatments were earlier by about three weeks. Our 

findings suggest that climate-driven changes in the timing of migratory goose arrival has 

important top-down control on the timing and availability of N, which is a critical 

limiting resource in this northern coastal wetland. While larger soil N pools are important 

for plant nutrient availability, they can also result in a greater likelihood of leaching and 

potential loss. If these earlier migratory patterns persist, greater soil N availability is also 

likely to result in altered vegetation community composition and potential loss of goose 

forage resources.  
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Tables 

Table 3.1. Top four performing models for soil N response variables based on AIC 
model selection for experimental treatments over three years (2014-16). Abbreviations: 
Grazing = timing of goose grazing treatment, Season = season advancement treatment, 
Date = sampling date. Models with interaction terms imply inclusion of the main effect. 
Bolding indicate top models with ∆AIC<2. 
 
Model logLik AIC ∆LogLik ∆AIC df weight 
Cumulative resin NH4

+-N       
Year + Grazing*Date -1155.1 2338.3 111.2 0.0 14 0.564 
Year + Grazing*Date + 
Season -1154.4 2338.8 112.0 0.5 15 0.434 
Year*Date + Grazing -1162.3 2350.6 104.0 12.3 13 0.001 
Year*Date + Grazing + Season -1161.6 2351.1 104.8 12.9 14 <0.001 
       
Intertidal resin NH4

+-N       
Year + Grazing*Date + 
Season -404.7 837.5 84.6 0 14 0.923 
Year + Grazing*Date -408.2 842.5 81.1 5 13 0.077 
Year*Season + Grazing + Date -426.0 876.1 63.3 38.6 12 <0.001 
Year*Grazing + Season + Date -424.1 876.1 65.3 38.6 14 <0.001 
       
Microlysimeter NH4

+-N       
Year*Date + Grazing -1360.2 2746.5 24.9 0.0 13 0.323 
Year*Date + Grazing + 
Season -1359.7 2747.4 25.5 0.9 14 0.206 
Year*Date -1364.0 2748.0 21.2 1.5 10 0.152 
Year*Date + Season -1363.5 2749.1 21.6 2.6 11 0.088 
       
Cumulative resin NO3

--N       
Year*Date + Grazing -1239.7 2505.3 184.6 0.0 13 0.723 
Year*Date + Grazing + 
Season -1239.7 2507.3 184.6 2.0* 14 0.267 
Year*Date -1247.2 2514.5 177.0 9.2 10 0.007 
Year*Date + Season -1247.2 2516.5 177.0 11.2 11 0.003 
       
Intertidal resin NO3

--N       
Year + Grazing*Date  -390.1 806.1 56.6 0 13 0.369 
Year*Date + Grazing -392.6 807.3 54.1 1.1 11 0.211 
Year + Grazing*Date + 
Season -390.1 808.1 56.6 2.0* 14 0.136 
Year*Date + Grazing + Season -392.6 809.2 54.1 3.1 12 0.078 
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Microlysimeter NO3

--N       
Year*Date -1498.3 3016.6 50.2 0.0 10 0.380 
Year*Date + Season -1497.6 3017.3 50.8 0.7 11 0.270 
Year*Date + Grazing -1495.9 3017.9 52.5 1.3 13 0.200 
Year*Date + Grazing + 
Season -1495.3 3018.6 53.2 1.9 14 0.150 
       
N-mineralization NH4

+-N       
Season -13.6 37.3 1.6 0.0 5 0.543 
Null model -15.3 38.5 0.0 1.3 4 0.291 
Grazing + Season -12.2 40.4 3.1 3.1 8 0.114 
Grazing -14.2 42.4 1.0 5.2 7 0.041 
       
N-mineralization NO3

--N       
Null model 8.7 -9.3 0.0 0.0 4 0.638 
Season 8.7 -7.4 0.0 1.9 5 0.242 
Grazing 9.6 -5.1 0.9 4.2 7 0.079 
Grazing + Season 9.6 -3.2 0.9 6.2 8 0.029 
       
Microlysimeter amino acids       
Year*Date + Grazing -1290.6 2607.3 99.2 0.0 13 0.504 
Year*Date + Grazing + 
Season -1290.0 2608.0 99.8 0.7 14 0.349 
Year*Date -1295.4 2610.8 94.4 3.5 10 0.086 
Year*Date + Season -1294.8 2611.5 95.1 4.2 11 0.061 
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Table 3.2. Mean percent changes in soil N by treatment for each year. The reference 
level was the ambient growing season or typical grazing timing treatment, respectively. 
Abbreviations: Early = early grazing, Late = late grazing, None = no-grazing, Advanced 
= advanced growing season treatment. Bolding indicates treatment effect with p<0.05; (*) 
indicates sampling date interaction. 
 

  
Cumulative resin Intertidal resin Microlysimeter  

 NH4
+-N  NH4

+-N  NH4
+-N 

Effect 2014 2015 2016 2014 2015 2016 2014 2015 2016 
Early 128% 44% 62%* - 32% 21%* 112% 88% 110% 
Late -28% -32% -26% - -1% -16%* 39% 11% 1% 
None -44% -51% -43% - -57% -48% 75% -3% -22% 
Advanced 5% -7% -15% - -13% 2% 29% 19% 26% 

          

  
Cumulative resin Intertidal resin Microlysimeter  

NO3
--N NO3

--N NO3
--N 

Effect 2014 2015 2016 2014 2015 2016 2014 2015 2016 
Early 28% 11% -10% - 49% 139% 55% 3% 119% 
Late -28% -28% -17% - -21% 39% 33% 14% 39% 
None -2% -28% -41% - -21% 51%* 8% 14% 34% 
Advanced -17% -4% 32% - -4% 9% 22% -3% 7% 

          

  
N-mineralization N-mineralization Microlysimeter  

 NH4
+-N  NO3

--N amino acids 

Effect 2014 2015 2016 2014 2015 2016 2014 2015 2016 
Early - - -1706% - - 161% 23% 7% 7% 
Late - - 1387% - - 113% -28% -9% -4% 
None - - 1279% - - 8% -18% -31% -1% 
Advanced - - -176% - - -8% -17% -15% -6% 
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Figures 
 

 
 
Figure 3.1. Conceptual figure of experimental hypotheses (H1, H2, H3) regarding the 
influence of the timing of goose grazing and the start of the growing season and their 
interaction on soil N availability. Arrows indicate hypothesized influence on N pools; 
blue arrows indicate positive effects and red arrows indicate negative effects. Goose 
herbivory removes aboveground tissues and hence decreases plant N uptake, while 
trampling and fecal deposition increase N availability; an advanced spring with warmer 
soil temperatures stimulates earlier plant and microbial growth; the interaction increases 
N availability due to increase microbial activity with less aboveground biomass to 
increase N uptake. Sub-figures are the hypothesized directional response of treatments on 
soil N availability.  
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Figure 3.2. Mean cumulative resin NH4

+-N and NO3
-- N (µg d-1 cm-2) (± 1 SE) from 

experimental timing of grazing and season advancement treatments. Panels A, B, C, and 
D, E, F represent data collected from 2014, 2015, and 2016, respectively. Dotted lines 
represent high tide events that flooded plots and in situ resins (Julian dates 2014 (205), 
2015 (186), 2016 (186, 210)). 
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Figure 3.3. Mean intertidal resin NH4

+-N and NO3
-- N (µg d-1 cm-2) from experimental 

timing of grazing and season advancement treatments. Because cumulative resins 
experienced coastal flooding, intertidal resins collected soil inorganic N during periods in 
between monthly tidal inundation to avoid ionic loss of N from resins in situ. Panels A, B 
and C, D represent data collected from 2015 and 2016, respectively. Error bars are ± 1 SE 
(n=6 replicates). 
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Figure 3.4. Mean microlysimeter NH4

+-N and NO3
--N (µg L-1) and amino acids (AA) 

(µmol L-1) (± 1 SE) from soil pore water for treatment plots. Panels A, B, C, and D, E, F, 
and G, H, I represent data collected from 2014, 2015, and 2016, respectively. Leu* = 
Leucine equivalent. 
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Figure 3.5. Conceptual figure of experimental treatments (timing of grazing and season 
advancement) on soil N measurements (cumulative and intertidal resins, and 
microlysimeter pore water) compared to typical grazing and ambient season treatments 
after three years. Arrow thickness indicates relative treatment effect size. Blue arrows 
indicate a positive effect; red arrows indicate a negative effect. Measurements without 
arrows had no significant measured treatment effect. Depicted above- and belowground 
vegetation represent actual measurements from early grazing and season advancement 
treatments, respectively (Choi and others 2019).  
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CHAPTER 4 

CLIMATE-INDUCED CHANGES ALTER COASTAL  

WETLAND PLANT COMMUNITIES3 

 
Abstract 

Question: Warming temperatures are altering herbivore distributions and affecting plant 

communities throughout the Arctic. While grazing often increases species diversity and 

changes functional group composition, higher temperatures can have the opposite effect, 

and interaction between these factors complicate predictions about how communities will 

change in the future. How these forcings influence northern latitude wetland plant 

communities is particularly important because these systems are highly threatened by 

changes in grazing pressure and increasing temperature in the future.  

Location: Yukon-Kuskokwim Delta, Alaska. 

Methods: We conducted a two-year experiment where we applied goose grazing and 

warming treatments in three coastal wetland plant communities that were located along a 

6-km transect from the coast moving inland. We measured percent cover to determine 

how treatments influenced measures of community diversity, functional group and 

species composition, and if these effects change among communities.  

Results: Across all three coastal communities, both grazing and warming increased 

species richness, and warming caused a greater increase. Grazing also increased evenness 

and Shannon diversity across terraces, which when combined with warming, had non-

additive effects, resulting in no overall change or a synergistic increase, respectively. We 

                                                      
3 Co-authors: Karen H. Beard, A. Joshua Leffler, Katharine C. Kelsey, Jeffrey M. Welker 
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also found that of the three communities, the most coastal and most inland had the lowest 

levels of diversity and demonstrated the greatest responses to our treatments. Grazing 

changed functional group composition by increasing forbs and decreasing grasses in the 

two more coastal communities and decreasing sedges in the most inland community, 

while warming did not affect functional group composition. 

Conclusions: Our findings suggest that grazing and warming generally increase cross-

terrace community diversity. We also found that treatment effects varied at differing 

spatial scales, and suggest the importance of investigating climate-driven disturbance at 

both ecosystem- and site-level to better assess regional impacts.  

 
Introduction 

Climate change is rapidly altering high-latitude ecosystems. Over the past several 

decades, the Arctic has warmed nearly 2°C and about twice as rapidly as lower latitudes 

(IPCC 2014; Thoman et al. 2020). Warmer temperatures are influencing the spatial 

patterns and abundances of some herbivores (Post et al. 2009; Tape et al. 2016; Joly et al. 

2019), with consequences for plant community diversity and composition (Grimm et al. 

2013; Uher-Koch et al. 2019). Higher temperatures are also reorganizing plant 

communities by increasing stress and changing interspecific competition (Elmendorf et 

al. 2012; Bjorkman et al. 2020). Because grazing and warming often have opposing 

effects on vegetation (Olofsson & Post 2018; Post et al. 2021), it can be difficult to 

predict how changing grazing patterns and warming temperatures taken together will 

affect plant communities in the future. 

The abundance and distributions of migratory herbivores are changing across 

Arctic landscapes (Ward et al. 2016; Fox & Madsen 2017; Amundson et al. 2019). This is 
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important for plant communities because many migratory herbivores often control 

vegetation structure and community composition in these high-latitude ecosystems 

(Jefferies et al. 1994; Post & Pedersen 2008). Migratory herbivores often increase plant 

species diversity and change composition through selective herbivory and biomass 

removal (Mulder 1999; Olofsson et al. 2001). However, because grazing can stimulate 

compensatory growth in preferred species (Cargill & Jefferies 1984; Beaulieu et al. 

1996), herbivores can also maintain or stabilize community composition (Klein et al. 

2004; Zhang et al. 2017). Thus, as climate change alters migratory herbivore patterns or 

abundances, vegetation communities are likely to change. 

Warming can also change vegetation communities and alter plant productivity in 

Arctic systems (Walker et al. 2006; Elmendorf et al. 2012). Unlike grazing, warming has 

generally been found to reduce species diversity and evenness (Arft et al. 1999; Hollister 

et al. 2005). Warming often shifts species dominance and restructures communities (Post 

et al. 2009; Sistla et al. 2013; Løkken et al. 2019), because certain functional groups, for 

example woody shrubs, respond favorably to increases in temperature (Myers-Smith et 

al. 2011; Tape et al. 2016). While warming can drive community change, community 

functional composition and local abiotic conditions, such as soil moisture, can result in 

site-specific responses (Ackerman et al. 2017; Bjorkman et al. 2020). 

Although grazing and warming often have opposing responses on plant 

community diversity and composition (Post & Pedersen 2008; Olofsson et al. 2009), their 

interacting effects on plant communities can negate one another or result in non-additive 

responses (Klein et al. 2004; Kohli et al. 2020). For example, warming-induced 

expansion of Arctic shrubs can be limited by ungulate grazing (Christie et al. 2015). 
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Grazing can also reverse the negative effects of warming on species richness and primary 

productivity (Eskelinen et al. 2017; Kaarlejärvi et al. 2017). Grazing by goose herbivores 

can either decrease or increase graminoid abundance through compensatory growth 

(Jefferies & Rockwell 2002; Person et al. 2003), while warming often increases 

graminoid abundance at cold sites (Elmendorf et al. 2012). Depending on the specific 

plant communities and local conditions, interactions between grazing and warming could 

result in complex synergistic community effects.  

The Yukon-Kuskokwim (Y-K) Delta in western Alaska is an important coastal 

wetland and breeding area for millions of migratory waterfowl. The region is warming 

rapidly (SNAP 2020) and the abundance and distribution of the avian community are 

changing (Fischer et al. 2017; Sedinger et al. 2019). Geese play a critical role in 

structuring habitat in the Y-K Delta and shifts in their phenology and distribution can 

change plant traits and affect biogeochemical cycling (Choi et al. 2019; Leffler et al. 

2019; Choi et al. 2020). With sea-level rise (Jones et al. 2009; Tape et al. 2013), and 

increasing coastal erosion and storm surge frequency and intensity (Vermaire et al. 2013; 

Terenzi et al. 2014; Jorgenson et al. 2018), geese and coastal vegetation are predicted to 

shift inland in the future. A greater understanding of how grazing and warming affect 

these coastal plant communities may allow for better predictions of how these changes 

will influence plant communities in the future. 

We investigated the effects of goose grazing and increasing temperature on three 

wetland plant communities along a 6-km gradient from the coast inland. We addressed 

the following questions: 1) How do grazing, warming, and their interaction affect plant 

community diversity?; 2) How do grazing, warming, and their interaction affect plant 
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community composition of functional groups and species?; and 3) Do the relative effects 

of grazing and warming change among different coastal plant communities? We 

predicted that grazing would increase diversity metrics while warming may decrease 

diversity and perhaps mediate this effect. We also predicted that species and functional 

groups and plant communities that historically experience greater grazing intensity will 

be more resistant to grazing, while particular functional groups, such as woody species, 

may increase more with warming.  

 
Methods 

Study area  

The Yukon Delta National Wildlife Refuge encompasses over 75,000 km2 of sub-

arctic coastal wetlands and tundra between the Yukon and Kuskokwim Rivers in western 

Alaska along the coast of the Bering Sea. We conducted our experiment on the coast of 

the Y-K Delta near the mouth of the Kashunuk and Tutakoke Rivers (61°15’N, 

165°37’W). More specifically, we conducted the experiment on three coastal ‘terraces’, 

which are part of the estuarine chenier plain and are defined by parallel sets of deposited 

beach ridges with surficial deposits approximately 3,000-5,000 years old (Hoare & 

Condon 1968) (Figure 4.1).  

Each coastal terrace is 1-3 km wide and characterized by a low elevational profile 

rising from near sea level on the active coastal margin (terrace 1: T1) to approximately 2 

m on the inactive floodplain (T3) about 6 km inland (Jorgenson & Ely 2001). The three 

terraces comprise 44% of the terrestrial central coastal floodplain region of the Y-K Delta 

with T1, T2, and T3 occupying 2.0%, 16.6%, and 25.4%, respectively, with the 
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remaining area comprised of sloughs, ponds, and tundra uplands (Macander et al. 2012). 

Vegetation communities in these coastal terraces form distinct deltaic ecotypes: T1 is an 

active coastal floodplain dominated by brackish levee moist herb meadows (Argentina 

egedei, Leymus mollis) and tidal flat margins (Puccinellia phryganodes); T2 is an 

inactive floodplain dominated by saline wet meadows (Carex glareosa, C. ramenskii); 

and T3 is an inactive floodplain with thick organic deposits dominated by brackish wet 

sedge-shrub meadows (C. rariflora, Salix fuscescens) (Kincheloe and Stehn 1991, 

Jorgenson 2000) (Table C1 in the appendices).  

The coastal terraces also differ in local abiotic conditions. T1 and T2 are 

characterized by relatively lower gravimetric soil moisture (62% and 81%, respectively), 

and low total organic soil C (1.7% and 3.9%, respectively), compared to T3 with more 

saturated soils and higher gravimetric soil moisture (255%) and higher organic soil C 

(12.3%) (Foley 2020). T1 has higher rates of fine sediment deposited during storm surge 

flooding events (6.5-8 mm year-1) and is characterized by denser, more mineral soils, 

while T3 is colder, with thick organic layers and underlain by near-surface permafrost 

(Jorgenson 2000; Jorgenson & Ely 2001). During the experiment, mean summer 

temperature 10 cm aboveground for T1, T2, and T3 were 13.6°C, 14.4°C, and 14.3°C, 

respectively, while mean summer temperatures 5 cm belowground were 11.1°C, 11.1°C, 

and 10.1°C, respectively. 

The three coastal terraces are important nesting and brood-rearing habitat for 

several migratory goose herbivores. The dominant geese species are both grazers and 

forage primarily on Carex sedges; Pacific black brant (Branta bernicla nigricans) nest in 
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high densities on T1 and T2 (Lindberg & Sedinger 1998), while cackling geese (B. 

hutchinsii minima) nest further inland on T2 and T3 (Sedinger & Raveling 1986).  

 
Experimental design 

During the growing seasons of 2015 and 2016, we conducted a full-factorial, field 

experiment using two grazing treatments (grazed, ungrazed) crossed with two warming 

treatments (warmed, ambient). We replicated each of the four treatments in eight blocks 

on the three coastal terraces for a total of 96 plots. We placed blocks at 25-m intervals 

along a 175-m north-south oriented transect on each terrace. Transects were located a 

minimum of 0.5 km from the Tutakoke River channel to minimize the influence of 

seawater infiltration and riverbank flooding during high tide.  

Treatment plots were 0.85 m in diameter to match the size of the conical open-top 

chambers (OTCs; 0.30 m height x 0.85 m base dia. x 0.50 m top dia.) used for 

experimental warming (Marion et al. 1997). OTCs were placed on plots after snowmelt 

(ca. 20 May) and were removed at the end of the summer (mid-August). We measured air 

temperature (10 cm aboveground) hourly in one set of plots on each terrace using 

temperature dataloggers (models DS1921G/Z, Maxim Integrated, San Jose, CA). OTCs 

increased mean temperatures 10 cm aboveground by 1.0°C, 2.0°C, and 1.4°C on T1, T2, 

and T3, respectively, and simulated predicted future increases in temperature in the Y-K 

Delta by mid-century (2060-69; SNAP 2020). 

We based grazing treatments on rates of goose offtake in C. subspathacea grazing 

lawns from the literature (Person et al. 1998). We used the same level of grazing intensity 

across terraces so results would be comparable (0.6 g dwt m-2 day-1 over 42 days), the 

total of which was less than 25% of end-of-season aboveground biomass for all three 
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terraces. Futher, this is likely a higher grazing intensity from heavily-use grazing areas, 

and demonstrates what increased grazing intensity might do in different terrace 

communities. We clipped leaves and stems of all species in proportion to their relative 

presence in plots. We removed all clipped vegetation from the plots. We applied 

treatments on four occasions each season to reflect the seasonal shift in peak goose 

grazing intensity (Sedinger & Flint 1991) (8 June: 3.7 g dwt m-2, 22 June: 8.6 g dwt m-2; 

6 July: 8.6 g dwt m-2; 20 July: 3.7 g dwt m-2). To control for wild goose grazing, we 

fenced off each block using poultry netting starting ca. 20 May each year.  

 
Vegetation surveys 

We measured percent cover using the point-intercept method. We used a 9 x 9 

point grid (0.85 m x 0.85 m; total 81 points) to determine changes in vegetation percent 

cover at three intervals: early-growing season (early June), mid-growing season (early 

July), and late-growing season (early August). We identified vegetation beneath each of 

the overlapping grid points to species (Hultén 1968) and sorted taxa into functional 

groups (dead, forb, grass, moss, sedge, low-lying shrub) based on USDA NRCS Plant 

Database classifications (Table C1 in the appendices). From cover measurements, we 

calculated species richness, evenness, and the Shannon diversity index. 

 
Statistical analyses 

To investigate how grazing, warming, and their interaction influence plant 

community diversity (species richness, evenness, Shannon diversity), we conducted a 

two-way analysis of variance (ANOVA) using the ‘lme’ function in the nlme package 

(Pinheiro et al. 2019) in R statistical software (R Development Core Team 2020 version 
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4.0.2). We analyzed diversity (richness, evenness, Shannon diversity) in a cross-terrace 

analysis to determine treatment effects across all three communities and on each terrace 

separately. We treated experimental treatments (grazing, warming), terrace (T1, T2, T3), 

and collection date as fixed-effect predictor variables and plot nested within block as a 

random effect to isolate the effects of each treatment separately and combined. We 

applied an arcsine square root transformation to all percent cover data and log-

transformed biomass data before analysis to meet assumptions of normality. We used 

Tukey HSD pairwise comparisons to investigate differences in all four treatment 

combinations using the ‘cld’ function in the lsmeans package (Lenth 2016); from this, we 

were able to calculate the non-additive effects of treatments. Lastly, we calculated 

standardized effect size indices and 95% confidence intervals using the ‘cohens_d’ 

function in the effectsize package (Ben-Shachar et al. 2020). We determined significance 

as p < 0.05. We present percent change for each treatment in the text as the mean across 

the last year of the experiment unless otherwise specified. 

 To investigate how treatments and a grazing * warming interaction influence 

species and functional groups, we performed two separate permutational multivariate 

analysis of variances (PERMANOVAs) using the ‘adonis’ function in the vegan package 

(Oksanen et al. 2019). To determine how treatments differed across all three terraces, or 

cross-terrace, we used the Bray-Curtis dissimilarity measure and 999 permutations to 

calculate pairwise distances between treatments. Similar to the diversity analyses, we also 

ran a separate analysis for each terrace to determine treatment effects for all three 

communities. We conducted non-metric multidimensional scaling (NMDS) ordinations 

using the Bray-Curtis dissimilarity measure and 999 permutations using the ‘metaMDS’ 
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function. We identified significant species and functional groups in NMDS ordination 

using the ‘envfit’ function and assessed treatment effects using two-way ANOVAs and 

Tukey post-hoc comparisons (see above). We determined the percent change in 

composition cover for species and functional groups as the relative change in overall 

cover for each taxon across the last year of the experiment. For ease of interpretation, we 

only present ordinations for the end-of-season percent cover measurements from the last 

year of the experiment. In all analyses, sampling date was significant for most models, 

but we primarily focus our discussion on the main treatment effects because we expected 

to see accumulated treatment effects over the growing season.  

 
Results 

Cross-terrace community diversity and composition 

Both grazing and warming significantly increased cross-terrace species richness 

(+4.8% and +5.6%, respectively), with no significant interactions (Table C2 in the 

appendices; Figure 4.2). Grazing increased cross-terrace evenness (+4.5%), while 

warming alone did not affect evenness, but there was a significant three-way interaction 

between treatments and terrace. When combined with warming, grazing counteracted the 

decrease in evenness induced by warming alone, however this was primarily driven by 

significant responses on T1, while T2 and T3 demonstrated no interactive response. 

Grazing increased cross-terrace Shannon diversity (+11.2%), but there was a significant 

interaction with warming (Table C2 in the appendices; Figure 4.2). While warming had 

no effect on its own, grazing and warming together increased Shannon diversity above 

the effect of grazing alone (+10.9%).  
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Grazing, but not warming, influenced cross-terrace functional group and species 

composition (PERMANOVA and NMDS; Table C3 & Figure C1 in the appendices). In 

general, forbs increased and grasses decreased with grazing across terraces (Table C4 in 

the appendices; Figure 4.4), but specific functional group responses varied among 

terraces. 

 
Community differences by terrace 

Mean richness, evenness, and Shannon diversity varied among terraces, with the 

highest diversity found on T2 and the lowest on T1 (Table 4.1). Despite a significant 

cross-terrace effect, grazing and warming did not affect T1 or T2 richness. Grazing 

increased species richness on T3 (+9.8%) while warming had no effect; however, grazing 

and warming combined interacted synergistically to increase richness (+13.6%) (Table 

C5 in the appendices; Figure 4.2).  

Grazing and warming had opposing interacting effects on T1 evenness, such that 

when combined, grazing mediated the negative warming effect and resulted in no change 

(Table C5 in the appendices; Figure 4.2). Similarly, grazing increased T1 Shannon 

diversity and interacted with warming to mediate the decrease from warming alone 

(Figure 4.2).  

Grazing effects on community composition varied among terraces, while warming 

had no effect (Table C2 in the appendices; Figure 4.3). On T1, grazing changed the 

relative abundance of functional groups by increasing low-lying forbs (+69%) and 

decreasing grass cover (-23%) (Figures 4.3A-B & 4.4). Similarly, on T2, grazing 

increased forbs (+76%) and decreased grasses (-16%) (Figure 4.3C-D & 4.4). On T3, 
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grazing decreased sedges (-28%) and increased standing dead litter (+34%) (Figures 

4.3E-F & 4.4).  

Some coastal grasses responded positively to grazing (Deschampsia caespitosa, 

P. phryganodes), but grazing reduced the cover of dominant grasses (L. mollis, Poa 

eminens) (Table C6 in the appendices). Dominant T2 sedges, C. glareosa and C. 

ramenskii, had opposing responses to grazing (+24% and -18%, respectively).  

 
Discussion 

Grazing and warming effects on plant communities 

 We found in a two-year field experiment across three wetland plant communities 

in coastal western Alaska that both grazing and warming treatments generally increased 

plant diversity. More specifically, both grazing and warming increased species richness 

across the three plant communities and warming had an even greater effect on increasing 

richness than grazing did. While grazing also increased evenness and Shannon diversity 

across terraces, warming did not. But, when grazing was combined with warming, their 

interactions resulted in no overall change in evenness and a synergistic increase in 

Shannon diversity, respectively. We also found that of the three communities, the most 

coastal and most inland had the lowest levels of species richness and evenness, and 

demonstrated the greatest responses to our treatments (Table 4.1; Figures 4.2 & 4.4).  

Grazing increased plant community diversity and altered community composition, 

primarily through an increase in forbs and reduction in dominant grasses (Tables C5 & 

C6 in the appendices; Figure 4.4). Low-lying and less abundant species (i.e., on T2: 

Chrysanthemum arcticum, Stellaria humifusa) increased two-fold with grazing, likely 
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because of increased light availablility with the reduction of tall, dominant graminoid 

species. These findings are similar to other studies that have found grazing increases 

species diversity as result of biomass removal (Olofsson et al. 2001; Lu et al. 2017). 

While grazing increased species diversity and changed the relative proportions of 

different functional groups, not all species within functional groups had the same 

response to treatments. In addition, although grazing reduced the cover of Carex species, 

the primary forage of the goose herbivores in our system, grazing also increased 

secondary forage species (P. phryganodes, Triglochin palustris). While these species 

could partially offset this reduction in goose forage, specific species responses may play 

out differently under selective foraging (for example, T. palustris; Mulder 1999) that we 

did not simulate in this study.  

Similar to other Arctic and cold ecosystem studies, we found warming to have 

little to no significant effects on community diversity (Grime et al. 2000; Hudson & 

Henry 2010; Little et al. 2017). The only significant effect of warming on diversity that 

we detected was a signficiant cross-terrace increase in species richness, which 

surprisingly was even stronger than the grazing effect. With this exception, warming had 

a smaller effect on plant community diversity and structure than grazing. This smaller 

effect could be a result of the moderate degree of warming created by our treatments, but 

the change in temperature we created is expected in the coastal Y-K Delta by mid-century 

and therefore should represent impacts in the coming decades (2060-69; SNAP 2020). In 

most cases, while not significant, warming tended to decrease diversity metrics like 

evenness and Shannon diversity while grazing increased these metrics; warming also 

tended to decrease forbs and increase grasses while grazing had the opposite effects. 
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Further, while others often find that warming increases Arctic shrub growth (Myers-

Smith et al. 2011; Carlson et al. 2018), we found no change in low-lying dwarf shrub 

cover with warming in this experiment, which did not support our prediction. 

Though not common in our analysis, we found instances of grazing and warming 

interacting to mediate and synergistically influence treatment effects at differing scales. 

This is important because although grazing and warming both increased cross-terrace 

species richness, they did so through differing mechanisms. Grazing primarily increased 

richness through removal of taller biomass and indirectly increasing the abundance of 

less-conspicuous, low-lying forbs, which translated into greater cross-terrace evenness 

and Shannon diversity. Comparatively, warming increased cross-terrace species richness 

with non-significant increases in grasses which croweded out forbs (Figure 4.3A-B), and 

thereby decreased evenness (T1). When grazing and warming were combined, these 

mechanistic differences resulted in interactive effects that counteracted increases with 

grazing and reductions with warming and provided community-level resilience to 

disturbance (Klein et al. 2004; Post 2013; Zhang et al. 2017). Treatments also interacted 

synergistically to increase cross-terrace Shannon diversity and T3 richness. In these 

instances, grazing removed vegetation to expose low-lying species while warming 

positively influenced growth, and there by increased richness and diversity greater than 

either treatment alone.  

 
Differences in terrace responses  

The individual terraces had variable responses to grazing which were likely 

driven by differences in both abiotic and biotic conditions. The most coastal terrace, T1, 

had the strongest response to our grazing and warming treatments (Figures 4.2 & 4.4), 
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and this might have been due in part to the differences in soil moisture found across the 

terraces. T1 had lower soil moisture than the other terraces, which can make communities 

less resilient to disturbance (Speed et al. 2010) and more responsive to shifts in 

temperature because the soils respond more quickly to thermal changes (Oberbauer et al. 

2013).  

Comparatively, the middle terrace, T2, had no community diversity responses to 

grazing and warming (Figure 4.2). T2 also had the highest diversity measurements (Table 

4.1) and is the community that has historically experience greater grazing intensity. It is 

possible that the existing community heterogeneity of saline wet meadows and adapted 

response to goose herbivores may have provided ecological resilience to disturbance. For 

example, the dominant T2 sedge species (C. glareosa, C. ramenskii) had opposing 

responses to grazing and resulted in no overall change in sedges.  

On T3, the most inland terrace, we found that grazing but not warming increased 

community diversity and changed functional group composition. Grazing reduced T3 

sedge cover, and through the removal of taller, living vegetation exposed and increased 

cover of standing dead. T3 is also the terrace with the lowest density of geese (Fischer et 

al. 2017) and likely has fewer plant species adapted to grazing. In addition, we also 

observed significant increases in T3 evenness and Shannon diversity only at the end of 

the growing season (Table C5 in the appendices). Because T3 soils are the closest in 

proximity to permafrost, colder soil temperatures may have slowed the plant growth 

response to disturbance (Rustad et al. 2001).  

Species did not respond to treatments uniformly between different terraces. Some 

forb species (A. egedei, S. humifusa) are present on both T1 and T2, but are more 
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abundant on T1 (Table C1 in the appendices). Grazing significantly increased the 

abundance of these forbs on T2, greater than on T1, which suggests that increased 

grazing pressure may facilitate inland shifts of certain coastal plant species and increase 

disturbance-driven colonization. 

Finally, we also found that grazing and warming had varying impacts at different 

spatial scales. Grazing increased all metrics of cross-terrace diversity, but only had 

significant increases in evenness and Shannon diversity on T1. Similarly, warming 

increased cross-terrace richness, but did not significantly affect local species richness or 

plant community composition on individual terraces. These scaled differences in 

treatment effects suggest the importance of both cross-site and site-level measurements to 

better assess regional climate-driven impacts (Post et al. 2021).   

 
Conclusion 

The Y-K Delta is predicted to undergo dramatic changes in the coming decades 

with changing herbivore abundances and distributions and increasing temperatures. Our 

findings suggest that grazing is likely to increase community diversity and the abundance 

of low-lying secondary species which may offset the reduction in primary goose forage 

availability. Warmer temperatures are also predicted to interact with grazing, potentially 

resulting in additive and non-additive effects on community diversity. Thus, the strength 

and direction of these coastal community responses to grazing and warming have 

consequences for migratory geese and biogeochemical processes in a critically important 

and rapidly changing Arctic system.  

  



133 
 
References 
 
Ackerman, D., Griffin, D., Hobbie, S.E., & Finlay, J.C. 2017. Arctic shrub growth 

trajectories differ across soil moisture levels. Global Change Biology 23: 4294–

4302. 

Amundson, C.L., Flint, P.L., Stehn, R.A., Platte, R.M., Wilson, H.M., Larned, W.W., & 

Fischer, J.B. 2019. Spatio-temporal population change of Arctic-breeding waterbirds 

on the Arctic Coastal Plain of Alaska. Avian Conservation and Ecology 14: art18. 

Arft, A.M., Walker, M.D., Gurevitch, J., Alatalo, J.M., Bret-Harte, M.S., Dale, M., 

Diemer, M., Gugerli, F., Henry, G.H.R., Jones, M.H., Hollister, R.D., Jónsdóttir, 

I.S., Laine, K., Lévesque, E., Marion, G.M., Molau, U., MØlgaard, P., Nordenhäll, 

U., Raszhivin, V., Robinson, C.H., Starr, G., Stenström, A., Stenström, M., Totland, 

O., Turner, P.L., Walker, L.J., Webber, P.J., Welker, J.M., & Wookey, P.A. 1999. 

Responses of tundra plants to experimental warming: meta-analysis of the 

International Tundra Experiment. Ecological Monographs 69: 491–511. 

Beaulieu, J., Gauthier, G., & Rochefort, L. 1996. The growth response of graminoid 

plants to goose grazing in a high Arctic environment. Journal of Ecology 84: 905–

914. 

Ben-Shachar, M., Lüdecke, D., & Makowski, D. 2020. effectsize: Estimation of Effect 

Size Indices and Standardized Parameters. Journal of Open Source Software 5: 

2815. 

Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S., 

Westergaard, K.B., Lawler, J.P., Aronsson, M., Bennett, B., Gardfjell, H., 

Heiðmarsson, S., Stewart, L., & Normand, S. 2020. Status and trends in Arctic 



134 
 

vegetation: Evidence from experimental warming and long-term monitoring. Ambio 

49: 678–692. 

Cargill, S.M., & Jefferies, R.L. 1984. The effects of grazing by lesser Snow Geese on the 

vegetation of a sub-arctic salt marsh. Journal of Applied Ecology 21: 669–686. 

Carlson, L.G., Beard, K.H., & Adler, P.B. 2018. Direct effects of warming increase 

woody plant abundance in a subarctic wetland. Ecology and Evolution 8: 2868–

2879. 

Choi, R.T., Beard, K.H., Kelsey, K.C., Leffler, A.J., Schmutz, J.A., & Welker, J.M. 2020. 

Early goose arrival increases soil nitrogen availability more than an advancing 

spring in coastal western Alaska. Ecosystems 23: 1309–1324. 

Choi, R.T., Beard, K.H., Leffler, A.J., Kelsey, K.C., Schmutz, J.A., & Welker, J.M. 2019. 

Phenological mismatch between season advancement and migration timing alters 

Arctic plant traits. Journal of Ecology 107: 2503–2518. 

Christie, K.S., Bryant, J.P., Gough, L., Ravolainen, V.T., Ruess, R.W., & Tape, K.D. 

2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: 

A Synthesis. BioScience 65: 1123–1133. 

Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Bjorkman, A.D., 

Callaghan, T. V., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Day, T. a., Fosaa, 

A.M., Gould, W.A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D.S., Hofgaard, 

A., Jarrad, F., Jónsdóttir, I.S., Keuper, F., Klanderud, K., Klein, J.A., Koh, S., Kudo, 

G., Lang, S.I., Loewen, V., May, J.L., Mercado, J., Michelsen, A., Molau, U., 

Myers-Smith, I.H., Oberbauer, S.F., Pieper, S., Post, E., Rixen, C., Robinson, C.H., 

Schmidt, N.M., Shaver, G.R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., 



135 
 

Wahren, C.H., Webber, P.J., Welker, J.M., & Wookey, P.A. 2012. Global 

assessment of experimental climate warming on tundra vegetation: Heterogeneity 

over space and time. Ecology Letters 15: 164–175. 

Eskelinen, A., Kaarlejärvi, E., & Olofsson, J. 2017. Herbivory and nutrient limitation 

protect warming tundra from lowland species’ invasion and diversity loss. Global 

Change Biology 23: 245–255. 

Fischer, J.B., Williams, A.R., & Stehn, R.A. 2017. Nest population size and potential 

production of geese and spectacled eiders on the Yukon-Kuskokwim Delta, Alaska, 

1985-2016. U.S. Fish and Wildlife Service, Migratory Bird Management, 

Anchorage, AK. 

Foley, K.M. 2020. Herbivory changes soil microbial communities and greenhouse gas 

fluxes in high-latitude wetlands. MS Thesis, Utah State University 

Fox, A.D., & Madsen, J. 2017. Threatened species to super-abundance: The unexpected 

international implications of successful goose conservation. Ambio 46: 179–187. 

Grime, J.P., Brown, V.K., Thompson, K., Masters, G.J., Hillier, S.H., Clarke, I.P., 

Askew, A.P., Corker, D., & Kielty, J.P. 2000. The response of two contrasting 

limestone grasslands to simulated climate change. Science 289: 762–766. 

Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., 

Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P.A., Schimel, J., & Williamson, 

C.E. 2013. The impacts of climate change on ecosystem structure and function. 

Frontiers in Ecology and the Environment 11: 474–482. 

Hoare, J.M., & Condon, W.H. 1968. Geologic map of the Hooper Bay Quadrangle, 

Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map 523.  



136 
 
Hollister, R.D., Webber, P.J., & Tweedie, C.E. 2005. The response of Alaskan Arctic 

tundra to experimental warming: differences between short- and long-term 

responses. Global Change Biology 11: 525–536. 

Hudson, J.M.G., & Henry, G.H.R. 2010. High Arctic plant community resists 15 years of 

experimental warming. Journal of Ecology 98: 1035–1041. 

Hultén, E. 1968. Flora of Alaska and Neighboring Territories: A Manual of the Vascular 

Plants. Stanford University Press. 

IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: 

Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change (K. L. E. 

Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. 

Chatterjee &  and L. L. W. Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. 

Levy, S. MacCracken, P.R. Mastrandrea, Eds.). Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA. 

Jefferies, R.L., Klein, D.R., & Shaver, G.R. 1994. Vertebrate herbivores and northern 

plant communities: reciprocal influences and responses. Oikos 71: 193–206. 

Jefferies, R.L., & Rockwell, R.F. 2002. Foraging geese, vegetation loss and soil 

degradation in an Arctic salt marsh. Applied Vegetation Science 5: 7–16. 

Joly, K., Gurarie, E., Sorum, M.S., Kaczensky, P., Cameron, M.D., Jakes, A.F., Borg, 

B.L., Nandintsetseg, D., Hopcraft, J.G.C., Buuveibaatar, B., Jones, P.F., Mueller, T., 

Walzer, C., Olson, K.A., Payne, J.C., Yadamsuren, A., & Hebblewhite, M. 2019. 

Longest terrestrial migrations and movements around the world. Scientific Reports 

9:. 



137 
 
Jones, B.M., Arp, C.D., Jorgenson, M.T., Hinkel, K.M., Schmutz, J.A., & Flint, P.L. 

2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. 

Geophysical Research Letters 36: 1–5. 

Jorgenson, M.T. 2000. Hierarchical organization of ecosystems at multiple spatial scales 

on the Yukon-Kuskokwim Delta, Alaska, U.S.A. Arctic, Antarctic, and Alpine 

Research 32: 221–239. 

Jorgenson, T., & Ely, C. 2001. Topography and flooding of coastal ecosystems on the 

Yukon-Kuskokwim Delta, Alaska: implications for sea-level rise. Journal of 

Coastal Research 17: 124–136. 

Jorgenson, M., Frost, G., Dissing, D., Jorgenson, M.T., Frost, G. V., & Dissing, D. 2018. 

Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim 

Delta, Alaska. Remote Sensing 10: 1280. 

Kaarlejärvi, E., Eskelinen, A., & Olofsson, J. 2017. Herbivores rescue diversity in 

warming tundra by modulating trait-dependent species losses and gains. Nature 

Communications 8: 419. 

Kincheloe, K.L., & Stehn, R.A. 1991. Vegetation patterns and environmental gradients in 

coastal meadows on the Yukon-Kuskokwim Delta, Alaska. Canadian Journal of 

Botany 69: 1616–1627. 

Klein, J.A., Harte, J., & Zhao, X.-Q. 2004. Experimental warming causes large and rapid 

species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology 

Letters 7: 1170–1179. 

Kohli, M., Mijiddorj, T.N., Suryawanshi, K.R., Mishra, C., Boldgiv, B., & Sankaran, M. 

2020. Grazing and climate change have site‐dependent interactive effects on 



138 
 

vegetation in Asian montane rangelands. Journal of Applied Ecology 1365-

2664.13781. 

Leffler, A.J., Beard, K.H., Kelsey, K.C., Choi, R.T., Schmutz, J.A., & Welker, J.M. 2019. 

Cloud cover and delayed herbivory relative to timing of spring onset interact to 

dampen climate change impacts on net ecosystem exchange in a coastal Alaskan 

wetland. Environmental Research Letters 14: 084030. 

Lenth, R. V. 2016. Least-squares means: The R package lsmeans. Journal of Statistical 

Software. doi: 10.18637/jss.v069.i01 

Lindberg, M.S., & Sedinger, J.S. 1998. Ecological significance of broodsite fidelity in 

Black Brant: spatial, annual, and age-related variation. The Auk 115: 436–446. 

Little, C.J., Cutting, H., Alatalo, J., & Cooper, E.J. 2017. Short-term herbivory has long-

term consequences in warmed and ambient high Arctic tundra. Environmental 

Research Letters 12: 025001. 

Løkken, J.O., Hofgaard, A., Dalen, L., & Hytteborn, H. 2019. Grazing and warming 

effects on shrub growth and plant species composition in subalpine dry tundra: An 

experimental approach. Journal of Vegetation Science 30: 698–708. 

Lu, X., Kelsey, K.C., Yan, Y., Sun, J., Wang, X., Cheng, G., & Neff, J.C. 2017. Effects 

of grazing on ecosystem structure and function of alpine grasslands in Qinghai-

Tibetan Plateau: a synthesis. Ecosphere 8: e01656. 

Macander, M., Jorgenson, M.T., Miller, P., Dissing, D., & Kidd, J. 2012. Ecosystem 

mapping and topographic modeling for the central coast of the Yukon-Kuskokwim 

Delta. United States Fish & Wildlife Service, Anchorage, AK. 

Marion, G.M., Henry, G.H.R., Freckman, D.W., Johnstone, J., Jones, G., Jones, M.H., 



139 
 

Lévesque, E., Molau, U., Mølgaard, P., Parsons, A.N., & Virginia, R.A. 1997. 

Open-top designs for manipulating field temperature in high-latitude ecosystems. 

Global Change Biology 3: 20–32. 

Mulder, C.P.H. 1999. Vertebrate herbivores and plants in the Arctic and subarctic: effects 

on individuals, populations, communities and ecosystems. Perspectives in Plant 

Ecology, Evolution and Systematics 2: 29–55. 

Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, 

K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., 

Hermanutz, L., Trant, A., Collier, L.S., Weijers, S., Rozema, J., Rayback, S. a, 

Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., 

Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., 

Epstein, H.E., & Hik, D.S. 2011. Shrub expansion in tundra ecosystems: dynamics, 

impacts and research priorities. Environmental Research Letters 6: 045509. 

Oberbauer, S.F., Elmendorf, S.C., Troxler, T.G., Hollister, R.D., Rocha, A. V., Bret-

Harte, M.S., Dawes, M.A., Fosaa, A.M., Henry, G.H.R., Høye, T.T., Jarrad, F.C., 

Jónsdóttir, I.S., Klanderud, K., Klein, J.A., Molau, U., Rixen, C., Schmidt, N.M., 

Shaver, G.R., Slider, R.T., Totland, Ø., Wahren, C.-H., & Welker, J.M. 2013. 

Phenological response of tundra plants to background climate variation tested using 

the International Tundra Experiment. Philosophical Transactions of the Royal 

Society B: Biological Sciences 368: 20120481. 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, 

P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., 

& Maintainer, H.W. 2019. vegan: Community Ecology Package. R package version 



140 
 

2.5-5. https://CRAN.R-project.org/package=vegan. R-project. 

Olofsson, J., Kitti, H., Rautiainen, P., Stark, S., & Oksanen, L. 2001. Effects of summer 

grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. 

Ecography 24: 13–24. 

Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P.E., Oksanen, T., & Suominen, O. 

2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global 

Change Biology 15: 2681–2693. 

Olofsson, J., & Post, E. 2018. Effects of large herbivores on tundra vegetation in a 

changing climate, and implications for rewilding. Philosophical Transactions of the 

Royal Society B: Biological Sciences 373: 20170437. 

Person, B.T., Babcock, C.A., & Ruess, R.W. 1998. Forage variation in brood-rearing 

areas used by Pacific black brant geese on the Yukon-Kuskokwim Delta, Alaska. 

Journal of Ecology 86: 243–259. 

Person, B.T., Herzog, M.P., Ruess, R.W., Sedinger, J.S., Anthony, R.M., & Babcock, 

C.A. 2003. Feedback dynamics of grazing lawns: coupling vegetation change with 

animal growth. Oecologia 135: 583–92. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. 2019. nlme: Linear and 

nonlinear mixed effects models. https://cran.r-project.org/package=nlme. R-project. 

Post, E. 2013. Erosion of community diversity and stability by herbivore removal under 

warming. Proceedings of the Royal Society B: Biological Sciences 280: 20122722. 

Post, E., Cahoon, S.M.P., Kerby, J.T., Pedersen, C., & Sullivan, P.F. 2021. Herbivory and 

warming interact in opposing patterns of covariation between arctic shrub species at 

large and local scales. Proceedings of the National Academy of Sciences 118: 



141 
 

e2015158118. 

Post, E., Forchhammer, M.C., Bret-Harte, M.S., Callaghan, T. V, Christensen, T.R., 

Elberling, B., Fox, A.D., Gilg, O., Hik, D.S., Høye, T.T., Ims, R.A., Jeppesen, E., 

Klein, D.R., Madsen, J., McGuire, A.D., Rysgaard, S., Schindler, D.E., Stirling, I., 

Tamstorf, M.P., Tyler, N.J.C., van der Wal, R., Welker, J., Wookey, P.A., Schmidt, 

N.M., & Aastrup, P. 2009. Ecological dynamics across the Arctic associated with 

recent climate change. Science 325: 1355–1358. 

Post, E., & Pedersen, C. 2008. Opposing plant community responses to warming with 

and without herbivores. Proceedings of the National Academy of Sciences of the 

United States of America 105: 12353–8. 

R Development Core Team. 2020. R: A language and environment for statistical 

computing.  

Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., 

Cornelissen, J.H.C., & Gurevitch, J. 2001. A meta-analysis of the response of soil 

respiration, net nitrogen mineralization, and aboveground plant growth to 

experimental ecosystem warming. Oecologia 126: 543–562. 

Sedinger, J.S., & Flint, P.L. 1991. Growth rate is negatively correlated with hatch date in 

black brant. Ecology 72: 496–502. 

Sedinger, J.S., & Raveling, D.G. 1986. Timing of nesting by Canada geese in relation to 

the phenology and availability of their food plants. Journal of Animal Ecology 55: 

1083–1102. 

Sedinger, J.S., Riecke, T. V., Leach, A.G., & Ward, D.H. 2019. The black brant 

population is declining based on mark recapture. The Journal of Wildlife 



142 
 

Management 83: 627–637. 

Sistla, S.A., Moore, J.C., Simpson, R.T., Gough, L., Shaver, G.R., & Schimel, J.P. 2013. 

Long-term warming restructures Arctic tundra without changing net soil carbon 

storage. Nature 497: 615–8. 

SNAP. 2020. Scenarios Network for Alaska + Arctic Planning University of Alaska, 

Fairbanks, CMIP5 model, RCP6.0 scenario comparison of 2010-19 to 2090-99.  

Speed, J.D.M., Cooper, E.J., Jónsdóttir, I.S., Van Der Wal, R., & Woodin, S.J. 2010. 

Plant community properties predict vegetation resilience to herbivore disturbance in 

the Arctic. Journal of Ecology 98: 1002–1013. 

Tape, K.D., Flint, P.L., Meixell, B.W., & Gaglioti, B. V. 2013. Inundation, 

sedimentation, and subsidence creates goose habitat along the Arctic coast of 

Alaska. Environmental Research Letters 8: 045031. 

Tape, K.D., Gustine, D.D., Ruess, R.W., Adams, L.G., & Clark, J.A. 2016. Range 

expansion of moose in Arctic Alaska linked to warming and increased shrub habitat 

(M. S. Crowther, Ed.). PLOS ONE 11: e0152636. 

Terenzi, J., Jorgenson, M.T., & Ely, C.R. 2014. Storm-surge flooding on the Yukon-

Kuskokwim Delta, Alaska. ARCTIC 67: 360–374. 

Thoman, R.L., Richter-Menge, J., & Druckenmiller, M.L. 2020. NOAA Arctic Report 

Card 2020. National Oceanic and Atmospheric Administration. 

Uher‐Koch, B.D., Schmutz, J.A., Wilson, H.M., Anthony, R.M., Day, T.L., Fondell, T.F., 

Person, B.T., & Sedinger, J.S. 2019. Ecosystem‐scale loss of grazing habitat 

impacted by abundance of dominant herbivores. Ecosphere 10: e02767. 

Vermaire, J.C., Pisaric, M.F.J., Thienpont, J.R., Courtney Mustaphi, C.J., Kokelj, S. V., 



143 
 

& Smol, J.P. 2013. Arctic climate warming and sea ice declines lead to increased 

storm surge activity. Geophysical Research Letters 40: 1386–1390. 

Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, 

J.M., Bret-Harte, M.S., Calef, M.P., Callaghan, T. V, Carroll, A.B., Epstein, H.E., 

Jónsdóttir, I.S., Klein, J.A., Magnússon, B., Molau, U., Oberbauer, S.F., Rewa, S.P., 

Robinson, C.H., Shaver, G.R., Suding, K.N., Thompson, C.C., Tolvanen, A., 

Totland, Ø., Turner, P.L., Tweedie, C.E., Webber, P.J., & Wookey, P.A. 2006. Plant 

community responses to experimental warming across the tundra biome. 

Proceedings of the National Academy of Sciences of the United States of America 

103: 1342–6. 

Ward, D.H., Helmericks, J., Hupp, J.W., McManus, L., Budde, M., Douglas, D.C., & 

Tape, K.D. 2016. Multi-decadal trends in spring arrival of avian migrants to the 

central Arctic coast of Alaska: effects of environmental and ecological factors. 

Journal of Avian Biology 47: 197–207. 

Zhang, C., Willis, C.G., Klein, J.A., Ma, Z., Li, J., Zhou, H., & Zhao, X. 2017. Recovery 

of plant species diversity during long-term experimental warming of a species-rich 

alpine meadow community on the Qinghai-Tibet plateau. Biological Conservation 

213: 218–224. 

 
  



144 
 
Tables 
 
Table 4.1. Mean plant community diversity values per plot (± 1 SE)  averaged across all 
treatments for the three coastal terraces from end-of-season cover measurements. Plots 
were 0.85 m x 0.85 m. Letters indicate Tukey significant differences between means.  
 
 
 Richness Evenness Shannon diversity 
  Mean (SE) Mean (SE) Mean (SE) 
Terrace 1 5.47 (0.12)a 0.70 (0.01)a 1.32 (0.04)a 
Terrace 2 5.98 (0.12)b 0.80 (0.01)b 1.52 (0.02)b 
Terrace 3 5.28 (0.11)a 0.79 (0.01)b 1.46 (0.02)b 
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Figures 
 
A) Yukon-Kuskokwim Delta coastal terraces 

 
 
B) Coastal communities 

 
C) Experimental block  D) Elevational composition

 
 
Figure 4.1 (A) Coastal terrace communities near the mouth of the Tutakoke River, 
Yukon-Kuskokwim Delta, AK. Yellow polygon = NWR boundary; yellow star = study 
site. Satellite imagery from Google Earth. (B-C) Hierarchical study design. (D) 
Schematic of dominant functional group composition (forbs, grasses, sedges, shrubs; 
Table C1 in appendices).  
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Figure 4.2. Standardized effect sizes of main treatment effects (grazing, warming) and 
interactions (G*W) on species percent cover community diversity measurements 
(richness, evenness, Shannon diversity; A-C). Solid colors indicate significant ANOVA 
results (Tables C2 & C5 in the appendices) across all and on individual terraces (T1, T2, 
T3). Error bars 95% confidence intervals. Green = grazing; brown = warming; black = 
interaction; gray = non-significance.  
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Figure 4.3. T1 percent cover composition by (A) functional group and (B) species; T2 
percent cover by (C) functional group and (D) species; T3 percent cover by (E) functional 
group and (F) species. Ellipses indicate 95% confidence values (SE). 
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Figure 4.4. Standardized effect sizes of main treatment effects (grazing, warming) on 
percent cover of plant community functional groups (A-E). There were no significant 
treatment interactions or warming effects. Solid color indicates significant ANOVA 
results (Tables C4 & C6 in the appendices) across all and on individual terraces (T1, T2, 
T3). Error bars 95% confidence intervals. Green = grazing; gray = non-significance.   
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CHAPTER 5 

CONCLUSIONS 

Climate-induced phenological mismatch and shifts in spatial patterns between 

plants and migratory herbivores has the potential to alter forage availability, impact 

biogeochemical processes, and change plant communities (Kelsey et al. 2018, Choi et al. 

2019, 2020, Leffler et al. 2019, Beard et al. 2019). Generally, shifts in the timing or 

presence of herbivore grazing had greater effects than similar changes in season 

advancement or warming. Our findings suggest that factors influencing timing of long-

distance migration in the wintering grounds can have ecosystem consequences in the 

Arctic.  

 In chapter 2, we found that timing of grazing by migratory herbivores has a 

greater impact on forage biomass in Carex grazing lawns than a similar shift in the timing 

of the growing season. The phenological mismatch prediction for this site of earlier 

springs and later goose arrival will likely increase above- and belowground biomass and 

initiate sexual reproduction of the often-clonally reproducing C. subspathacea. Late 

goose grazing had a similar shift in timing and response as season advancement. While 

some impacts of phenological mismatch are immediate, other variables may be difficult 

to predict because some responses can take years of mismatch to respond. Although we 

investigated the effects of three consecutive years of mismatch, it is unknown whether 

alternating years of intermittent mismatch conditions could reverse or counteract the 

effects of asynchrony.  

 In chapter 3, we investigated how phenological mismatch between goose 

herbivores and their forage can influence biogeochemical processes and soil nitrogen (N) 
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availability. We found that early grazing increases inorganic and organic soil N, while 

late grazing decreases N availability. Earlier springs increased inorganic N, but less than 

the effect of grazing. Because N is often limiting in Arctic systems (Sistla et al. 2012), 

temporal changes in soil N pools can regulate microbes and plant uptake at times of 

greatest demand (Bilbrough et al. 2000, Edwards and Jefferies 2010). Further, while 

geese can increase N pools with grazing, it is still unclear how goose feces might 

contribute as potential N sources. Kelsey et al. (2018) found no gaseous loss of N2O from 

experimental plots, while we detected δ15N foliar enrichment with early grazing, which 

suggests that there may be some N recycling between geese and plants (Beard and Choi 

2017). While there is some evidence of direct goose influence on soil N process, the 

exact mechanisms are unclear and further investigation into the specific N cycling 

pathways is recommended in these coastal N-limited systems. 

 The timing of grazing had strong influence on both forage resources and nutrient 

availability, where early and late grazing had often opposing effects. Early grazing 

reduced forage availability but maintained higher forage quality, while late grazing 

resulted in greater forage but lower forage quality. Early grazing also increased N pools 

but also resulted in shifting the system from a sink to a source (Kelsey et al. 2018). 

Comparatively, late grazing reduced N pools, but resulted in greater carbon uptake and 

storage. Depending on either timing of relative arrival and grazing, geese have the 

potential to alter ecosystem processes with phenological mismatch, which suggests the 

importance of timing of migratory herbivores in this system.  

 In chapter 4, we examined the community-level consequences of climate change 

for migratory goose populations in different coastal habitats. Both grazing and warming 
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increased diversity across communities. Maintaining or increasing community diversity 

could help buffer ecosystems through the portfolio effect, whereby diversification of 

species with varying phenology and life-history traits can provide ecological resiliency to 

climate-driven disturbance (Schindler et al. 2015, Anderson et al. 2015). Grazing had a 

stronger influence on community composition compared to warming, increasing forbs 

and decreasing grasses in the most coastal communities and decreasing sedges on the 

most inland community. Because coastal processes are predicted to shift plant 

communities and goose herbivores further inland, it is possible that increased grazing can 

reduce the extent of sedge forage on the landscape. Lastly, because these community-

level responses can vary at both site- and ecosystem-levels, our findings highlight the 

importance of using manipulative field experiments to investigate climate-driven impacts 

at multiple spatial scales (Post et al. 2021).  

Community responses to climate-driven warming are likely going to be site-

specific and highly dependent on local species composition (Gruner et al. 2017). For 

example, abiotic conditions, like soil moisture and salinity, and local soil microbial 

communities vary between the different terraces and likely play a strong role in driving 

community responses to warming and grazing (Jorgenson 2000, Jorgenson and Ely 2001, 

Foley 2020). Further, future climate drivers may reshuffle communities resulting in new 

species associations and interactions (Post et al. 2009, Alexander et al. 2015). For 

example, grazing marginally increased low-lying dwarf shrub cover (Salix ovalifolia) in 

wet sedge meadows. Moose (Alces alces) are increasing in abundance in the coastal Y-K 

Delta (Wald and Nielson 2014). Increases in shrub abundance could potentially facilitate 
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on-going range expansion, which could result in novel trophic interactions and herbivore 

pressures. 

 How species interact with climate to affect coastal ecosystems and process will be 

dependent on the strength of both biotic and abiotic factors. Recent work suggests that 

phenological mismatch and interactive effects between plants and herbivores are not 

likely to have straight-forward or predictable outcomes on ecosystem processes and 

community diversity. Our findings highlight the complexity of these effects and the 

importance of using novel experimental field approaches to improve our understanding of 

climate-driven influences on trophic interactions in a rapidly warming future.  

 
With warmer winters 

Geese graze their grasses early 

Timing matters most 
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Appendix A – Supplementary Information for Chapter 2 
 
Table A1. Linear-mixed model results comparing Ambient goose grazing treatments to 
Ambient control plots on log-transformed aboveground biomass. DOY = day of year. 
Bolding indicates p > 0.05. 

Year 1 – 2014 
Parameter Value SE DF t p 

Intercept 2.41 0.34 119 7.10 0.00 
Early Grazing -0.10 0.14 20 -0.71 0.49 
Typical Grazing 0.10 0.14 20 0.70 0.49 
Late Grazing 0.30 0.14 20 2.13 0.05 

No Grazing 0.91 0.14 20 6.49 0.00 
DOY 0.01 0.00 119 5.67 0.00 

 
Year 2 – 2015 
Parameter Value SE DF t p 

Intercept 4.02 0.38 119 10.60 0.00 
Early Grazing 0.10 0.22 20 0.45 0.66 
Typical Grazing 0.38 0.22 20 1.70 0.11 
Late Grazing 0.78 0.22 20 3.51 0.00 
No Grazing 1.58 0.22 20 7.06 0.00 
DOY 0.00 0.00 119 0.04 0.97 
      

Year 3 – 2016 
Parameter Value SE DF t p 

Intercept 4.33 0.29 117 14.75 0.00 
Early Grazing 0.28 0.20 20 1.36 0.19 
Typical Grazing 0.80 0.20 20 3.98 0.00 
Late Grazing 1.12 0.20 20 5.55 0.00 
No Grazing 1.54 0.20 20 7.66 0.00 
DOY 0.00 0.00 117 0.08 0.93 
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Table A2. Fixed effects of the top-performing model on plant traits for experimental 
treatments. Missing parameter estimates (-) indicate the top model did not include those 
effects. The reference level for the model (i.e., the intercept) was 2014, Typical goose 
grazing, and Ambient growing season. Abbreviations: Advanced = advanced growing 
season, Early = early grazing, Late = late grazing, None = no-grazing, DOY = day of 
year. Bolding indicates p < 0.05. 
  Aboveground biomass Stem height  Standing dead 
Effect Value SE P Value SE P Value SE P 
Intercept 5.57 0.35 0.00 1.74 0.27 0.00 -0.13 0.22 0.56 
2015 0.05 0.06 0.41 0.64 0.06 0.00 - - - 
2016 0.58 0.06 0.00 1.07 0.06 0.00 0.38 0.27 0.15 
Early  -2.70 0.48 0.00 -0.95 0.34 0.01 -0.07 0.28 0.81 
Late  -0.45 0.48 0.34 0.21 0.33 0.54 -0.07 0.28 0.81 
None -1.21 0.48 0.02 -1.07 0.34 0.00 2.57 0.28 0.00 
DOY -0.00 0.00 0.00 0.00 0.00 0.02 - - - 
Advanced - - - 0.42 0.09 0.00 0.40 0.15 0.01 
Early*DOY 0.01 0.00 0.00 0.00 0.00 0.20 - - - 
Late*DOY 0.00 0.00 0.08 0.00 0.00 0.92 - - - 
None*DOY 0.01 0.00 0.00 0.01 0.00 0.00 - - - 
Early*2015 - - - - - - - - - 
Early*2016 - - - - - - -0.29 0.38 0.45 
Late*2015 - - - - - - - - - 
Late*2016 - - - - - - 1.53 0.38 0.01 
None*2015 - - - - - - - - - 
None*2016 - - - - - - 2.31 0.38 0.00 

 
 Root biomass Tiller number Inflorescence number 
Effect Value SE P Value SE P Value SE P 
Intercept 5.13 0.24 0.00 5.09 0.17 0.00 -0.00 0.03 0.00 
2015 -0.46 0.22 0.04 -0.13 0.09 0.16 - - - 
2016 0.12 0.26 0.65 -0.06 0.09 0.52 1.81 0.16 0.00 
Early  -0.86 0.29 0.00 -0.44 0.16 0.01 -2.95 5.67 0.60 
Late  0.45 0.29 0.12 0.07 0.16 0.65 -4.18 1.52 0.01 
None 0.95 0.29 0.00 0.37 0.16 0.02 -5.66 1.45 0.00 
DOY - - - -0.00 0.00 0.00 -0.01 0.00 0.00 
Advanced - - - - - - 0.12 0.06 0.03 
Early*DOY - - - - - - -0.00 0.06 0.90 
Late*DOY - - - - - - 0.03 0.01 0.00 
None*DOY - - - - - - 0.05 0.01 0.00 
Early*2015 0.03 0.31 0.92 0.31 0.13 0.02 - - - 
Early*2016 0.10 0.39 0.80 -0.03 0.13 0.81 - - - 
Late*2015 0.10 0.31 0.74 0.02 0.13 0.89 - - - 
Late*2016 -0.04 0.37 0.90 -0.05 0.13 0.69 - - - 
None*2015 -0.37 0.31 0.24 -0.30 0.13 0.02 - - - 
None*2016 -1.16 0.37 0.00 -0.81 0.13 0.00 - - - 
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Table A3.  Fixed effects of the top-performing model on vegetation traits for treatment 
comparisons. Missing parameter estimates (-) indicate the top model did not include 
those effects. The reference level for the model (i.e., the intercept) was 2014, Typical 
goose grazing, and Ambient growing season (treatment 4). Abbreviations: 1-3; 5-8 = 
treatment; DOY = day of year. Bolding indicates p < 0.05. 
  Aboveground 

biomass 
Stem height Standing dead 

Effect Value SE P Value SE P Value SE P 
Intercept 2.30 0.31 0.00 1.31 0.22 0.00 0.13 0.28 0.63 
1 -0.52 0.20 0.01 -0.35 0.24 0.15 -0.13 0.37 0.72 
2 -0.32 0.20 0.11 -0.32 0.24 0.19 -0.13 0.37 0.72 
3 0.32 0.20 0.11 0.27 0.24 0.26 -0.13 0.37 0.72 
5 0.67 0.20 0.00 0.46 0.24 0.06 -0.13 0.37 0.72 
6 0.30 0.20 0.13 0.01 0.24 0.95 -0.13 0.37 0.72 
7 1.09 0.20 0.00 0.99 0.24 0.00 3.16 0.37 0.00 
8 0.91 0.20 0.00 0.66 0.24 0.01 1.85 0.37 0.00 
2015 2.00 0.39 0.00 0.30 0.17 0.08 - - - 
2016 2.57 0.37 0.00 0.71 0.16 0.00 0.07 0.37 0.84 
DOY 0.01 0.00 0.00 0.01 0.00 0.00 - - - 
1*2015 - - - 0.18 0.24 0.44 - - - 
2*2015 - - - 0.20 0.24 0.40 - - - 
3*2015 - - - 0.35 0.24 0.14 - - - 
5*2015 - - - 0.41 0.24 0.08 - - - 
6*2015 - - - 0.11 0.24 0.63 - - - 
7*2015 - - - 0.82 0.24 0.00 - - - 
8*2015 - - - 0.68 0.24 0.00 - - - 
1*2016 - - - 0.02 0.23 0.92 -0.08 0.52 0.89 
2*2016 - - - -0.03 0.23 0.91 0.08 0.52 0.88 
3*2016 - - - 0.44 0.23 0.05 0.62 0.52 0.23 
5*2016 - - - 0.66 0.23 0.00 2.35 0.52 0.00 
6*2016 - - - 0.28 0.23 0.23 1.33 0.52 0.01 
7*2016 - - - 0.73 0.23 0.00 2.25 0.52 0.00 
8*2016 - - - 0.77 0.23 0.00 2.98 0.52 0.00 
2015*DOY -0.01 0.00 0.00 - - - - - - 
2016*DOY -0.01 0.00 0.00 - - - - - - 
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  Root biomass Tiller number Inflorescence 

number 
Effect Value SE P Value SE P Value SE P 
Intercept 5.26 0.26 0.00 5.08 0.21 0.00 2.18 0.67 0.00 
1 -1.06 0.31 0.00 -0.56 0.22 0.01 -1.99 1.08 0.06 
2 -0.65 0.31 0.04 -0.32 0.22 0.14 -1.98 1.08 0.07 
3 -0.01 0.31 0.96 0.00 0.22 0.99 0.52 0.50 0.30 
5 0.55 0.31 0.08 0.05 0.22 0.81 2.24 0.47 0.00 
6 0.36 0.31 0.24 0.09 0.22 0.66 1.37 0.46 0.00 
7 0.38 0.31 0.22 0.36 0.22 0.11 3.18 0.41 0.00 
8 0.44 0.31 0.16 0.39 0.22 0.08 3.22 0.41 0.00 
2015 -0.52 0.12 0.00 -0.12 0.13 0.34 - - - 
2016 -0.18 0.14 0.21 0.00 0.13 0.97 - - - 
DOY - - - -0.00 0.00 0.00 -0.02 0.00 0.00 
1*2015 - - - 0.31 0.19 0.10 - - - 
2*2015 - - - 0.31 0.19 0.10 - - - 
3*2015 - - - -0.01 0.19 0.97 - - - 
5*2015 - - - 0.01 0.19 0.97 - - - 
6*2015 - - - 0.02 0.19 0.91 - - - 
7*2015 - - - -0.37 0.19 0.05 - - - 
8*2015 - - - -0.24 0.19 0.19 - - - 
1*2016 - - - -0.18 0.19 0.35 - - - 
2*2016 - - - -0.03 0.19 0.89 - - - 
3*2016 - - - -0.13 0.19 0.49 - - - 
5*2016 - - - -0.13 0.19 0.52 - - - 
6*2016 - - - -0.11 0.19 0.54 - - - 
7*2016 - - - -0.86 0.19 0.00 - - - 
8*2016 - - - -0.90 0.19 0.00 - - - 
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Figure A1. Map of the coastal region in the Yukon-Kuskokwim Delta, Alaska. Star 
indicates location of Tutakoke River field site.  
 
 

 
Figure A2. Modeled effect of OTC advancement of the growing season on aboveground 
stem height in plots not receiving early season grazing from 2014-2016. Solid regression 
lines are for advanced growing season plots; dashed regression lines are for ambient 
plots.  
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Appendix B – Supplementary Information for Chapter 3 
 
Table B1. Fixed effects of the top-performing models with ∆AIC<2 on soil N for 
experimental treatments. Missing parameter estimates indicate the top model did not 
include those effects. The reference level for the model (i.e., the intercept) was 2014 
(2015 for intertidal resins), Typical goose arrival, and Ambient growing season. 
Abbreviations: Advanced = advanced growing season, Early = early grazing, Late = late 
grazing, None = no-grazing, Date = sampling date. Bolding indicates p<0.05. 
 Cumulative resin 

NH4
+-N model 1 

Cumulative resin 
NH4

+-N model 2 
Intertidal resin 

NH4
+-N model 1 

 Year + 
Grazing*Date 

Year + Grazing*Date + 
Season 

Year + Grazing*Date + 
Season 

Effect Value SE P Value SE P Value SE P 
Intercept -9.14 0.49 0.00 -9.11 0.49 0.00 -8.73 0.44 0.00 
2015 0.93 0.08 0.00 0.94 0.08 0.00 - - - 
2016 0.02 0.08 0.83 0.02 0.08 0.82 -0.43 0.05 0.00 
Early 3.24 0.67 0.00 3.24 0.67 0.00 1.59 0.58 0.01 
Late -1.03 0.67 0.13 -1.03 0.67 0.13 -2.52 0.58 0.00 
None -0.36 0.67 0.59 -0.37 0.67 0.59 0.13 0.58 0.82 
Date 0.00 0.00 0.26 0.00 0.00 0.26 0.00 0.00 0.40 
Advanced - - - -0.08 0.06 0.23 -0.14 0.05 0.01 
Early*Date -0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.02 
Late*Date 0.00 0.00 0.24 0.00 0.00 0.24 0.01 0.00 0.00 
None*Date 0.00 0.00 0.78 0.00 0.00 0.78 0.00 0.00 0.12 
2015*Date - - - - - - - - - 
2016*Date - - - - - - - - - 
 
 Microlysimeter  

NH4
+-N model 1 

Microlysimeter  
NH4

+-N model 2 
Microlysimeter  

NH4
+-N model 3 

 Year*Date + Grazing Year*Date + Season + 
Grazing 

Year*Date 

Effect Value SE P Value SE P Value SE P 
Intercept 4.39 0.32 0.00 4.33 0.32 0.00 4.53 0.31 0.00 
2015 2.14 0.55 0.00 2.13 0.55 0.00 2.14 0.55 0.00 
2016 0.91 0.42 0.03 0.91 0.42 0.03 0.91 0.42 0.03 
Early 0.39 0.15 0.01 0.39 0.15 0.01 - - - 
Late 0.11 0.15 0.46 0.11 0.15 0.46 - - - 
None 0.07 0.15 0.64 0.07 0.15 0.64 - - - 
Date 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 
Advanced - - - 0.39 0.15 0.01 - - - 
Early*Date - - - - - - - - - 
Late*Date - - - - - - - - - 
None*Date - - - - - - - - - 
2015*Date -0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 
2016*Date 0.00 0.00 0.12 0.00 0.00 0.12 0.00 0.00 0.12 
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 Cumulative resin 

NO3
--N model 1 

Cumulative resin 
NO3

--N model 2 
Intertidal resin 

NO3
--N model 1 

 Year*Date + Grazing Year*Date + Season + 
Grazing  

Year + Grazing*Date 

Effect Value SE P Value SE P Value SE P 
Intercept -2.85 0.74 0.00 -2.85 0.74 0.00 -11.23 0.48 0.00 
2015 1.57 1.04 0.13 1.57 1.04 0.13 - - - 
2016 -6.78 0.86 0.00 -6.78 0.86 0.00 -0.85 0.07 0.00 
Early 0.20 0.13 0.13 0.20 0.13 0.13 0.51 0.66 0.45 
Late -0.28 0.13 0.03 -0.28 0.13 0.03 0.05 0.67 0.95 
None -0.22 0.13 0.08 -0.22 0.13 0.08 2.01 0.67 0.00 
Date -0.05 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.60 
Advanced - - - -0.01 0.09 0.94 - - - 
Early*Date - - - - - - 0.00 0.00 0.75 
Late*Date - - - - - - 0.00 0.00 1.00 
None*Date - - - - - - -0.01 0.00 0.00 
2015*Date -0.01 0.01 0.05 -0.01 0.01 0.05 - - - 
2016*Date 0.03 0.00 0.00 0.03 0.00 0.00 - - - 
 
 Intertidal resin 

NO3
--N model 2 

Intertidal resin 
NO3

--N model 3 
Microlysimeter  
NO3

--N model 1 
 Year*Date + Grazing Year + Grazing*Date + 

Season 
Year*Date 

Effect Value SE P Value SE P Value SE P 
Intercept -9.96 0.37 0.00 -11.23 0.48 0.00 3.07 0.40 0.00 
2015 - - - - - - 5.17 0.72 0.00 
2016 -2.15 0.48 0.00 -0.85 0.07 0.00 2.30 0.55 0.00 
Early 0.30 0.11 0.01 0.50 0.66 0.45 - - - 
Late 0.04 0.11 0.71 0.05 0.67 0.95 - - - 
None 0.01 0.11 0.95 2.01 0.67 0.01 - - - 
Date -0.01 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.67 
Advanced - - - 0.00 0.08 0.96 - - - 
Early*Date - - - 0.00 0.00 0.75 - - - 
Late*Date - - - 0.00 0.00 1.00 - - - 
None*Date - - - -0.01 0.00 0.00 - - - 
2015*Date - - - - - - -0.02 0.00 0.00 
2016*Date 0.01 0.00 0.01 - - - -0.01 0.00 0.00 
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 Microlysimeter  

NO3
--N model 2 

Microlysimeter  
NO3

--N model 3 
Microlysimeter  
NO3

--N model 4 
 Year*Date + Season Year*Date + Grazing Year*Date + Season + 

Grazing 
Effect Value SE P Value SE P Value SE P 
Intercept 3.02 0.40 0.00 2.92 0.41 0.00 2.87 0.41 0.00 
2015 5.17 0.72 0.00 5.15 0.72 0.00 5.15 0.72 0.00 
2016 2.31 0.55 0.00 2.31 0.55 0.00 2.31 0.55 0.00 
Early - - - 0.26 0.13 0.04 0.26 0.13 0.04 
Late - - - 0.19 0.12 0.14 0.19 0.12 0.14 
None - - - 0.12 0.12 0.35 0.12 0.12 0.36 
Date 0.00 0.00 0.66 0.00 0.00 0.65 0.00 0.00 0.64 
Advanced 0.10 0.09 0.26 - - - 0.10 0.09 0.26 
Early*Date - - - - - - - - - 
Late*Date - - - - - - - - - 
None*Date - - - - - - - - - 
2015*Date -0.02 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 
2016*Date -0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 
 
 N-mineralization 

NH4
+-N model 1 

N-mineralization 
NH4

+-N model 2 
N-mineralization 
NO3

--N model 1 
 Season Null model Null model 
Effect Value SE P Value SE P Value SE P 
Intercept 1.66 0.07 0.00 - - - - - - 
2015 - - - - - - - - - 
2016 - - - - - - - - - 
Early - - - - - - - - - 
Late - - - - - - - - - 
None - - - - - - - - - 
Date - - - - - - - - - 
Advanced -0.19 0.10 0.08 - - - - - - 
Early*Date - - - - - - - - - 
Late*Date - - - - - - - - - 
None*Date - - - - - - - - - 
2015*Date - - - - - - - - - 
2016*Date - - - - - - - - - 
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 N-mineralization 

NO3
--N model 2 

Microlysimeter  
amino acid model 1 

Microlysimeter  
amino acid model 2 

 Season Year*Date + Grazing Year*Date + Season + 
Grazing 

Effect Value SE P Value SE P Value SE P 
Intercept 0.80 0.06 0.00 1.72 0.31 0.00 1.75 0.31 0.00 
2015 - - - 3.26 0.58 0.00 3.26 0.58 0.00 
2016 - - - -3.62 0.45 0.00 -3.61 0.45 0.00 
Early - - - 0.20 0.09 0.04 0.20 0.09 0.04 
Late - - - -0.05 0.09 0.63 -0.04 0.09 0.64 
None - - - -0.04 0.09 0.64 -0.04 0.09 0.65 
Date - - - -0.01 0.00 0.00 -0.01 0.00 0.00 
Advanced -0.01 0.06 0.82 - - - -0.07 0.07 0.27 
Early*Date - - - - - - - - - 
Late*Date - - - - - - - - - 
None*Date - - - - - - - - - 
2015*Date - - - -0.01 0.00 0.00 -0.01 0.00 0.00 
2016*Date - - - 0.02 0.00 0.00 0.02 0.00 0.00 
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Figure B1. Map of Tutakoke River field site in the coastal Yukon-Kuskokwim Delta, 
Alaska. (A) Alaska; (B) Yukon Delta National Wildlife Refuge; (C) Tutakoke River field 
site. Yellow line = refuge boundary; yellow stars = field camp location. Imagery from 
Google Earth.  
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Figure B2. Experimental treatment plots. Open-top chambers were used for season 
advancement treatments. Fenced exclosures were used for goose grazing treatments.  
 

 
Figure B3. Flooded experimental treatment plots during a high spring tide. Plots were 
inundated by brackish seawater for several hours at peak flood.   
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Appendix C – Supplementary Information for Chapter 4 
 
Table C1. Coastal terrace vegetation percent cover averaged across all treatments. 
Functional group classifications from the USDA NRCS Plant Database 
(https://plants.sc.egov.usda.gov). 
 

Species Functional 
Group 

Percent Cover 
T1 T2 T3 

Dead biomass  14.54% 16.09% 33.83% 
Argentina egedei Forb 19.20% 10.51%  
Calamagrostis deschampsioides Grass 5.57% 0.98%  
Carex aquatilis Sedge   1.98% 
Carex glareosa Sedge 5.83% 13.13% 0.14% 
Carex lyngbyaei Sedge   0.09% 
Carex ramenskii Sedge 14.94% 26.77% 8.82% 
Carex rariflora Sedge  0.12% 27.29% 
Chrysanthemum arcticum Forb 0.59% 0.73% 2.22% 
Conioselinum chinense Forb   0.05% 
Deschampsia caespitosa Grass 5.85% 9.21% 7.07% 
Empetrum nigrum Shrub   2.57% 
Festuca rubra Grass 0.26% 7.61% 7.36% 
Leymus mollis Grass 16.77% 1.04% 0.80% 
Ligusticum scoticum Forb 0.03% 1.18% 0.03% 
Moss sp. Moss   0.36% 
Parnassia palustris Forb  0.00%  
Poa eminens Grass 7.15% 8.20% 0.50% 
Primula borealis Forb  0.01% 0.04% 
Puccinellia phryganodes Grass 3.64% 0.00%  
Rhodiola rosea Forb   0.19% 
Rumex arcticus Forb   0.00% 
Salix fuscescens Shrub   4.81% 
Salix ovalifolia Shrub  1.23%  
Stellaria humifusa Forb 1.90% 0.63%  
Triglochin palustris Grass 3.73% 2.55% 1.84% 
TOTAL   100.00% 100.00% 100.00% 

 
  

https://plants.sc.egov.usda.gov/
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Table C2. ANOVA results for species percent cover community diversity measurements 
(richness, evenness, Shannon diversity) across all terraces (T1, T2, T3). Bolding indicates 
P < 0.05; DF = degrees of freedom.  
 
  Cross-terrace diversity 
 DF Richness Evenness Shannon 
Warming 1 0.020 0.121 0.971 
Grazing 1 0.045 <0.001 <0.001 
Terrace 2 <0.001 <0.001 <0.001 
Date 2 <0.001 0.022 <0.001 
Warming * Grazing 1 0.398 0.122 0.040 
Warming * Terrace 2 0.872 0.015 0.175 
Grazing * Terrace 2 0.646 0.002 0.122 
Warming * Grazing * Terrace 2 0.266 0.021 0.138 
Residuals 274    
Total 287    
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Table C3. PERMANOVA results for vegetation community percent cover composition 
by functional group and species across on individual terraces (T1, T2, T3). Bolding 
indicates p < 0.05; DF = degrees of freedom; SS = sum of squares; MS = mean of 
squares.  
 
  DF SS MS F-model R2     p 
Cross-terrace functional cover       
Warming 1 0.052 0.052 0.926 0.002 0.403 
Grazing 1 0.598 0.598 10.623 0.018 0.001 
Terrace 2 8.974 4.487 79.661 0.276 0.001 
Date 2 6.671 3.336 59.219 0.205 0.001 
Warming * Grazing 1 0.061 0.061 1.083 0.002 0.334 
Warming * Terrace 2 0.063 0.031 0.555 0.002 0.731 
Grazing * Terrace 2 0.633 0.317 5.622 0.019 0.001 
Warming * Grazing * Terrace 2 0.078 0.039 0.693 0.002 0.617 
Residuals 274 15.433 0.056  0.474  
Total 287 32.563     1   
Cross-terrace species cover       
Warming 1 0.078 0.078 0.706 0.001 0.618 
Grazing 1 1.045 1.045 9.411 0.016 0.001 
Terrace 2 25.792 12.896 116.119 0.389 0.001 
Date 2 7.226 3.613 32.532 0.109 0.001 
Warming * Grazing 1 0.113 0.113 1.014 0.002 0.374 
Warming * Terrace 2 0.128 0.064 0.578 0.002 0.848 
Grazing * Terrace 2 1.341 0.670 6.037 0.020 0.001 
Warming * Grazing * Terrace 2 0.144 0.072 0.648 0.002 0.788 
Residuals 274 30.430 0.111  0.459  
Total 287 66.297     1   
T1 functional cover       
Warming 1 0.049 0.049 0.550 0.005 0.590 
Grazing 1 0.517 0.517 5.803 0.052 0.009 
Date 2 1.546 0.773 8.674 0.156 0.001 
Warming * Grazing 1 0.070 0.070 0.785 0.007 0.455 
Warming * Date 2 0.031 0.015 0.171 0.003 0.949 
Grazing * Date 2 0.231 0.116 1.298 0.023 0.256 
Warming * Grazing * Date 2 0.012 0.006 0.068 0.001 0.981 
Residuals 84 7.485 0.089  0.753  
Total 95 9.940     1   
T1 species cover       
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Warming 1 0.093 0.093 0.523 0.005 0.779 
Grazing 1 1.166 1.166 6.556 0.062 0.001 
Date 2 2.067 1.033 5.810 0.109 0.001 
Warming * Grazing 1 0.165 0.165 0.925 0.009 0.445 
Warming * Date 2 0.111 0.055 0.311 0.006 0.994 
Grazing * Date 2 0.353 0.177 0.993 0.019 0.458 
Warming * Grazing * Date 2 0.042 0.021 0.117 0.002 0.999 
Residuals 84 14.940 0.178  0.789  
Total 95 18.936     1   
T2 functional cover       
Warming 1 0.044 0.044 0.762 0.006 0.486 
Grazing 1 0.204 0.204 3.519 0.026 0.027 
Date 2 2.529 1.264 21.853 0.318 0.001 
Warming * Grazing 1 0.003 0.003 0.059 0.000 0.955 
Warming * Date 2 0.052 0.026 0.451 0.007 0.819 
Grazing * Date 2 0.254 0.127 2.195 0.032 0.073 
Warming * Grazing * Date 2 0.006 0.003 0.052 0.001 0.998 
Residuals 84 4.860 0.058  0.611  
Total 95 7.953     1   
T2 species cover       
Warming 1 0.051 0.051 0.540 0.004 0.694 
Grazing 1 0.666 0.666 7.044 0.053 0.001 
Date 2 3.341 1.671 17.680 0.266 0.001 
Warming * Grazing 1 0.014 0.014 0.148 0.001 0.966 
Warming * Date 2 0.074 0.037 0.391 0.006 0.943 
Grazing * Date 2 0.441 0.221 2.336 0.035 0.028 
Warming * Grazing * Date 2 0.023 0.012 0.123 0.002 0.993 
Residuals 84 7.937 0.094  0.633  
Total 95 12.547     1   
T3 functional cover       
Warming 1 0.010 0.010 0.522 0.002 0.586 
Grazing 1 0.479 0.478 24.159 0.083 0.002 
Date 2 2.869 1.435 72.435 0.496 0.002 
Warming * Grazing 1 0.072 0.072 3.635 0.012 0.046 
Warming * Date 2 0.029 0.015 0.742 0.005 0.584 
Grazing * Date 2 0.628 0.314 15.848 0.109 0.002 
Warming * Grazing * Date 2 0.034 0.017 0.868 0.006 0.480 
Residuals 84 1.664 0.020  0.288  
Total 95 5.785     1   
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T3 species cover       
Warming 1 0.063 0.063 1.113 0.007 0.358 
Grazing 1 0.554 0.554 9.824 0.061 0.001 
Date 2 2.796 1.398 24.773 0.310 0.001 
Warming * Grazing 1 0.078 0.078 1.383 0.009 0.234 
Warming * Date 2 0.040 0.020 0.356 0.004 0.954 
Grazing * Date 2 0.712 0.356 6.306 0.079 0.001 
Warming * Grazing * Date 2 0.038 0.019 0.338 0.004 0.958 
Residuals 84 4.741 0.056  0.525  
Total 95 9.022     1   

 
 
Table C4. ANOVA p-values for vegetation percent cover by functional groups (FG) 
across all terraces. Bolding indicates p < 0.05 
 

  Warming Grazing Terrace Warm*Graz Warm*Terr Graz*Terr W*G*T 
Cross-
terrace 
FG p p p p p p p 

Dead 0.304 0.092 <0.001 0.289 0.996 0.011 0.672 

Forb 0.255 <0.001 <0.001 0.355 0.523 0.001 0.357 

Grass 0.366 0.020 <0.001 0.408 0.383 0.060 0.705 

Sedge 0.873 0.343 <0.001 0.356 0.494 0.003 0.489 

Shrub 0.465 0.089 <0.001 0.235 0.742 0.129 0.052 
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Table C6. ANOVA p-values for vegetation percent cover by species and functional 
group selected as significant by NMDS ordination on individual terraces (T1, T2, T3). 
Bold indicates p < 0.05. Warm = warming treatment; Gr 
 

 Warm Graz Date 
Warm* 

Graz 
Warm* 

Date 
Graz* 
Date W*G*D 

T1 functional 
cover p p p p p p p 
Dead 0.520 0.298 <0.001 0.110 0.737 <0.001 0.738 
Forb 0.205 0.000 0.049 0.118 0.085 0.035 0.447 
Grass 0.203 0.001 <0.001 0.559 0.018 <0.001 0.287 
Sedge 0.443 0.080 0.005 0.132 0.327 0.762 0.099 
T1 species cover        
A. egedei 0.530 <0.001 0.024 0.103 0.065 0.023 0.382 
C. 
deschampsioides 0.185 0.742 <0.001 0.417 0.142 0.531 0.363 
C. glareosa 0.457 0.070 0.052 0.485 0.269 0.281 0.793 
C. ramenskii 0.113 0.684 0.009 0.064 0.049 0.816 0.071 
D. caespitosa 0.218 <0.001 <0.001 0.112 0.960 0.962 0.635 
L. mollis 0.687 <0.001 0.316 0.169 0.881 0.057 0.291 
P. eminens 0.434 0.019 <0.001 0.941 0.575 0.016 0.373 
P. phryganodes 0.880 0.014 <0.001 0.382 0.821 0.008 0.631 
T. palustris 0.873 0.052 <0.001 0.291 0.518 0.397 0.633 
T2 functional 
cover        
Dead 0.111 0.108 <0.001 0.841 0.102 <0.001 0.470 
Forb 0.743 <0.001 <0.001 0.759 0.957 0.026 0.555 
Grass 0.126 0.004 <0.001 0.914 0.158 0.024 0.597 
Sedge 0.099 0.258 0.008 0.890 0.263 <0.001 0.906 
Shrub 0.236 0.100 0.303 0.868 0.221 0.480 0.325 
T2 species cover        
A. egedei 0.381 0.002 0.323 0.862 0.429 0.063 0.854 
C. 
deschampsioides 0.725 0.819 0.002 0.666 0.913 0.856 0.967 
C. glareosa 0.250 0.004 0.421 0.530 0.592 0.531 0.967 
C. ramenskii 0.176 0.001 0.003 0.908 0.134 <0.001 0.971 
C. arcticum 0.137 0.002 <0.001 0.346 0.026 0.011 0.460 
D. caespitosa 0.760 0.004 <0.001 0.719 0.045 0.871 0.502 
F. rubra 0.597 0.181 0.976 0.394 0.421 0.665 0.553 
L. mollis 0.996 0.006 <0.001 0.666 0.829 0.567 0.759 
L. scoticum 0.332 0.759 0.002 0.833 0.801 0.872 0.493 
P. eminens 0.053 <0.001 <0.001 0.972 0.185 <0.001 0.699 
S. ovalifolia 0.236 0.100 0.303 0.868 0.221 0.480 0.325 
S. humifusa 0.478 0.009 0.302 0.954 0.056 0.649 0.183 
T. palustris 0.710 0.120 <0.001 0.714 0.759 0.782 0.463 
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T3 functional 
cover        
Dead 0.197 <0.001 <0.001 0.124 0.240 <0.001 0.016 
Forb 0.520 0.101 <0.001 0.591 0.816 0.139 0.868 
Grass 0.712 0.995 <0.001 0.060 0.126 0.074 0.038 
Sedge 0.472 <0.001 <0.001 0.414 0.411 <0.001 0.683 
Shrub 0.799 0.241 <0.001 0.134 0.340 0.005 0.464 
T3 species cover        
C. aquatilis 0.413 0.674 0.074 0.303 0.815 0.946 0.037 
C. ramenskii 0.778 0.325 <0.001 0.092 0.359 0.001 0.189 
C. rariflora 0.360 <0.001 <0.001 0.671 0.110 <0.001 0.530 
C. arcticum 0.563 0.075 <0.001 0.537 0.615 0.229 0.790 
D. caespitosa 0.976 0.604 <0.001 0.851 0.806 0.893 0.496 
F. rubra 0.462 0.886 <0.001 0.338 0.033 0.188 0.603 
L. mollis 0.620 0.316 0.226 0.364 0.942 0.488 0.732 
R. rosea - - - - - - - 
S. fuscescens 0.110 0.338 <0.001 0.138 0.589 0.013 0.551 
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Figure C1. Percent cover composition across all coastal terraces by (A) functional group 
and (B) species. Ellipses indicate 95% confidence values (SE). 
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