
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2021

Surrogate Optimization Model for an Integrated Regenerative Surrogate Optimization Model for an Integrated Regenerative

Methanol Transcritical Cycle Methanol Transcritical Cycle

Yili Zhang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Zhang, Yili, "Surrogate Optimization Model for an Integrated Regenerative Methanol Transcritical Cycle"
(2021). All Graduate Theses and Dissertations. 8141.
https://digitalcommons.usu.edu/etd/8141

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8141?utm_source=digitalcommons.usu.edu%2Fetd%2F8141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SURROGATE OPTIMIZATION MODEL FOR AN INTEGRATED

REGENERATIVE METHANOL TRANSCRITICAL CYCLE

by

Yili Zhang

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Hailei Wang, Ph.D. Geordie Richards, Ph.D.
Major Professor Committee Member

Barton Smith, Ph.D. Jia Zhao, Ph.D.
Committee Member Committee Member

D. Richard Cutler, Ph.D.
Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2021

ii

Copyright c© Yili Zhang 2021

All Rights Reserved

iii

ABSTRACT

Surrogate Optimization Model for an Integrated

Regenerative Methanol Transcritical Cycle

by

Yili Zhang, Master of Science

Utah State University, 2021

Major Professor: Hailei Wang, Ph.D.
Department: Mechanical and Aerospace Engineering

To explore the potential levelized cost of energy (LCOE) improvements on a small mod-

ular reactor (SMR)-based power cycle, an integrated regenerative methanol transcritical

cycle with up to seven free design parameters was designed and simulated with the Python

& Coolprop software. The physics-based model is capable of simulating the cycle func-

tionalities by taking design parameters, and then producing corresponding performances,

such as: LCOE, first-law efficiency etc. This procedure takes a few minutes given a set of

viable design parameters. In order to compare the performances between different types of

cycles, the corresponding optimized results are needed. However, the global optimization

of the physics-based model is very time-consuming, given the high degree of freedoms and

the complexity of the system.

This thesis provides a research review on a machine learning-based surrogate model in

replacing the physics-based model, so that the global optimization can take place faster.

Candidate surrogate models based on different algorithms are built and analyzed by their

validation, test accuracy, r2 score and relative errors values of the model LCOE, first-law

efficiency and penalty (violation level of the system). The last chosen model is further

optimized in terms of its structure and node hyper-parameters. With the structurally and

parametric optimized surrogate model being incorporated, different global optimizers are

iv

used and analyzed. As the result, the optimized design parameters from the surrogate-

optimizer model are fed into the physics-based model, and their corresponding results are

compared with the baseline optimized results of the physics-based model.

In conclusion, the study reveals that the Multilayer Perceptron (MLP) networks with

two hidden layers gives the best prediction performance, and therefore they are chosen as

the surrogate model. In addition, four global optimizers, namely the basinhopping, the

differential evolution, the dual annealing and the fmin, are working well along with the

chosen surrogate model. They integrated surrogate-optimizer model is capable of finding

the optimized LCOE as well as the corresponding design parameters. In comparison with the

baseline optimized LCOE, the relative error is less than 3.5%, and this searching procedure

completed within 30 minutes.

(185 pages)

v

PUBLIC ABSTRACT

Surrogate Optimization Model for an Integrated

Regenerative Methanol Transcritical Cycle

Yili Zhang

In order to reduce the cost ($) per megawatts hour (MWh) of electrical energy gener-

ated by a nuclear power cycle with a novel small modular reactor (SMR), a new SMR-based

nuclear power cycle with Methanol as working fluid was designed. It was built virtually

with the Python & Coolprop software based on all components’ physical properties, and it

is therefore called the physics-based model. The physics-based model would require seven

user-defined values as input for the seven free design parameters, respectively. The physics-

based model outcomes include LCOE (the cost per megawatts hour of electrical energy

generated by the cycle), the first-law efficiency of the power cycle (the ratio between the

net power out of the power cycle and the net thermal energy into the power cycle), and

the penalty (severity of system violation with the given design parameters values). In order

to compare between different power cycles, the corresponding optimized LCOE are needed.

However, in order to find the design parameters that optimize the system LCOE, it can take

up to three days with the physics-based model, because the physics-based model is highly

complex and it takes thousands of iterations averagely to the optimize the power system.

In confronting the time complexity issue in optimization, the study in this paper ex-

plores the viability of replacing the physics-based model with a machine learning-based

surrogate model. During the optimization procedure, the machine learning-based surrogate

model is expected to accelerate process of finding the corresponding outcomes, and thus

to save time. Candidate surrogate models are built and analyzed in terms of their pre-

diction accuracy. The last chosen model is further optimized in terms of its structure and

hyper-parameters. With the structurally and parametric optimized surrogate model being

vi

incorporated, different global optimizers are used and analyzed. As the result, the opti-

mized design parameters from the surrogate-optimizer model are fed into the physics-based

model, and their corresponding results are compared with the baseline optimized results of

the physics-based model.

In conclusion, the study reveals that the Multilayer Perceptron (MLP) networks with

two hidden layers gives the best prediction performance, and therefore they are chosen as

the surrogate model. In addition, four global optimizers, namely the basinhopping, the

differential evolution, the dual annealing and the fmin, are working well along with the

chosen surrogate model. They integrated surrogate-optimizer model is capable of finding

the optimized LCOE as well as the corresponding design parameters. In comparison with the

baseline optimized LCOE, the relative error is less than 3.5%, and this searching procedure

completed within 30 minutes.

vii

DEDICATION

To my mother, Junling Pang. Thanks for your unconditional love and support in both my
life and career. I love you forever.

viii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Hailei Wang. Without the

recognition, instructions and financial support from him since the undergraduate years, I

would not have had chance to accumulate sufficient research experiences, which lead me to

this project. Both my knowledge and academic professionalism are strengthened from his

patient and professional trainings.

I would also like to thank Dr. Geordie Richards and Jacob Bryan. I am grateful for the

valuable contribution and suggestions provided by them in the cooperation. Without the

contribution from them, the project would not have been so fruitful. I want to particularly

thank rest of my thesis committee, Dr. Barton Smith for agreeing to be my committee

member during his sabbatical, Dr. Geordie Richards for the valuable teachings and advice

given to me, and Dr. Zhao for providing me valuable views from the perspective of other

fields.

Besides my advisor and committee members, I would like to thank NuScale Power and

the manager Derick Botha for the valuable advice and financial support provided for the

NuScale Project Phase II, which formed the foundation of my thesis project.

Last but not the least, I would also like to thank Nuclear Regulatory Commission

(NRC) for its financial support through the Award No. 31310019M0014.

Yili Zhang

ix

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

DEDICATION . vii

ACKNOWLEDGMENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xiii

ACRONYMS . xv

1 INTRODUCTION . 1
1.1 Background & Overview . 1
1.2 Thesis Problem . 3
1.3 Literature Review . 10

2 OBJECTIVES . 18

3 APPROACH . 19
3.1 Overview . 19
3.2 Optimizers . 21

3.2.1 Basin-Hopping . 22
3.2.2 Brute Force . 23
3.2.3 Differential Evolution . 24
3.2.4 SHGO . 25
3.2.5 Dual Annealing . 26
3.2.6 Fmin . 28

3.3 Converged/Diverged Classifier Model and Surrogate Model 29
3.3.1 Dataset Analysis & Data Pre-processing 29
3.3.2 Converged/Diverged Classifier Model 31

3.3.2.1 Multi-layer Feed-Forward (MLF) Neural Network 33
3.3.2.2 Random Forest . 38
3.3.2.3 Gaussian Näıve Bayes . 41
3.3.2.4 K Nearest Neighbor . 42
3.3.2.5 Logistic Regression . 44
3.3.2.6 Support Vector Machine 46

3.3.3 Surrogate Model . 48
3.3.3.1 Multi-layer Feed-Forward (MLF) Neural Network 48
3.3.3.2 Separate MLF Neural Network 49

x

3.3.3.3 Penalty Neural Networks 51
3.3.3.4 Deep MLF Residual Neural Network 54
3.3.3.5 1-D Convolutional Neural Network 57
3.3.3.6 1-D Convolutional Residual Neural Network 59

4 RESULTS . 62
4.1 Converged/Diverged Classifier Models & Surrogate Models Comparison . . 62

4.1.1 Converged/Diverged Classifier Model Comparison 62
4.1.2 Surrogate Model Comparison . 63

4.2 Optimizers Comparison . 66

5 DISCUSSION . 68

6 CONCLUSION . 75

REFERENCES . 78

APPENDICES . 85
A Coding Files Hierarchy Diagram . 86
B main.py . 87
C src . 94

C.1 integrated cycle.py . 94
C.2 lcoe.py . 107
C.3 primary cycle.py . 111
C.4 primary hx.py . 113
C.5 secondary cycle.py . 120
C.6 secondary hx.py . 132

D Optimization . 138
D.1 basinhopping.py . 138
D.2 dual annealing.py . 146
D.3 fmin.py . 154

E Modules . 164
E.1 Module FFN LCOE penalty.py . 164
E.2 Module FFN eta I.py . 165
E.3 Module BinaryClassifierFNN.py . 166

F Paths . 169

xi

LIST OF TABLES

Table Page

1.1 Regenerative Transcritical Methanol Cycle Baseline Design Points. 4

1.2 Regenerative Transcritical Methanol Cycle Baseline Results. 5

1.3 Seven Design Parameters. 9

1.4 Surrogate Model Outcome Parameters. 9

3.1 Hyper-parameters of the Classifier MLF Neural Network. 34

3.2 Hyper-parameters of the Classifier Random Forest. 40

3.3 Hyper-parameters of the Classifier K Nearest Neighbor. 44

3.4 Hyper-parameters of the Classifier Logistic Regression. 45

3.5 Hyper-parameters of the Classifier Support Vector Machine. 47

3.6 Hyper-parameters of the Surrogate MLF Neural Network. 48

3.7 Hyper-parameters of the Surrogate penalty + LCOE MLF Neural Network. 49

3.8 Hyper-parameters of the Surrogate etaI MLF Neural Network. 50

3.9 Hyper-parameters of the Surrogate Large penalty MLF Neural Network. . . 53

3.10 Hyper-parameters of the Surrogate Small penalty MLF Neural Network. . . 53

3.11 Hyper-parameters of the Surrogate etaI+LCOE Deep MLF Residual Neural
Network. 56

3.12 Hyper-parameters of the Surrogate etaI + LCOE 1-D Convolutional Neural
Network. 58

3.13 Hyper-parameters of the Surrogate etaI+LCOE 1-D Residual Convolutional
Neural Network. 61

4.1 Converged/Diverged Classifier Models Evaluation Results. 63

4.2 Surrogate Models Evaluation Results. 66

xii

4.3 Optimizer & Overall Results. 67

5.1 Optimized Design Parameters Comparison with the Baseline. 69

5.2 Results Comparison with the Baseline. 69

5.3 Direct Results with Dual-Annealing (DA) optimizer Compared with the
Baseline and DA Final Results. 70

5.4 Direct Results with Basin-Hopping (BH) optimize Compared with the Base-
line and BH Final Results. 71

xiii

LIST OF FIGURES

Figure Page

1.1 NuScale Power Module (NPM) System. [1]. 2

1.2 Diagram of Integrated Regenerative Methanol Transcritical Cycle with the
SMR. 3

1.3 T-S Diagram of the Integrated Regenerative Methanol Transcritical Cycle. . 4

1.4 High/Middle Pressure Mass Ratio of Regenerative Methanol Transcritical
Cycle. 6

1.5 Low Pressure Mass Ratio/High Pressure Ratio of Regenerative Methanol
Transcritical Cycle. 7

1.6 Middle/Low Pressure Ratio of Regenerative Methanol Transcritical Cycle. . 7

1.7 Maximum Temperature/Pressure Parametric Study. 8

3.1 Overall Algorithm of Cycle Optimization with Surrogate Model. 19

3.2 Surrogate-Optimizer model. 21

3.3 General Evolution Algorithm Procedure [2]. 24

3.4 Dual Annealing Algorithm Overview [3] . 27

3.5 Diverged and Converged Samples in Original Dataset. False: Diverged;
True: Converged . 29

3.6 Dataset Visualization . 30

3.7 Classifier Model Dataset Re-balancing . 32

3.8 Typical Feed-Forward Neural Network Composed of Three Layers [4]. . . . 34

3.9 Converged/Diverged Classifier Model Schematic. 35

3.10 Proof of the Vanishing Gradient Problem: Learning Speeds of Four Hidden
Layers of A Deep Network [5]. 36

xiv

3.11 Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout
to the network on the left. Crossed units have been dropped [6]. 37

3.12 Classifier MLF Neural Network Training Process. 38

3.13 Random Forest Classifier Simplified Example [7] 39

3.14 Gini and Entropy Comparison [8]. 40

3.15 Example of K Nearest Neighbor Classifier [9]. 43

3.16 Logistic Regression Logic [10]. 45

3.17 Examples of SVM Hyperplanes. [11]. 47

3.18 Surrogate MLF Neural Network Training Process. 49

3.19 Surrogate penalty + LCOE MLF Neural Network Training Process. 50

3.20 Surrogate etaI MLF Neural Network Training Process. 51

3.21 Surrogate Large penalty MLF Neural Network Training Process. 52

3.22 Surrogate Small penalty MLF Neural Network Training Process. 52

3.23 Residual Learning: A Building Block. [12] 54

3.24 etaI + LCOE Deep MLF Residual Neural Network. 55

3.25 Surrogate etaI +LCOE Deep MLF Residual Neural Network Training Process. 55

3.26 Example of 2-D Convolutional Neural Network [13] 57

3.27 Surrogate etaI + LCOE 1-D Convolutional Neural Network. 59

3.28 Surrogate etaI + LCOE 1-D Convolutional Residua Neural Network. 60

3.29 Surrogate etaI + LCOE 1-D Convolutional Residual Neural Network. . . . 60

4.1 Integrated and Separate Models. 65

A.1 Coding Files Diagram. 86

xv

ACRONYMS

LCOE levelized cost of energy

SMR small modular reactor

MLP multilayer perceptron

MWh megawatts hour

GA genetic algorithms

ML Machine Learning

ANN artificial neural network

ORC organic Rankine cycle

LSTM long short term memory

MSE mean squared error

DNN deep neural network

PCA principle component analysis

CPU central processing unit

SHGO simplicial homology global optimisation

TGO topographical global optimisation

CSA classical simulated annealing

FSA fast simulated annealing

BLPP bilevel programming problems

DPP data pre-processing

SMOTE synthetic minority over-sampling technique

RUS random undersampling

MLF multi-layer feed-forward

ADAM adaptive moment estimation

BCE binary cross entropy

RF random forest

MAP maximum a posterior

xvi

KNN k nearest neighbor

LR logistic regression

SVM support vector machine

ResNets residual networks

CNN convolutional neural network

FN false negative

FP false positive

TP true positive

TN true negative

NB naive bayes

RAE relative absolute error

BH basin-hoppin

w/ with

LE linear error

DA dual annealing

CHAPTER 1

INTRODUCTION

1.1 Background & Overview

Optimization is important for thermodynamic and power system designs. Common

objective functions of power cycle optimizations include: net power out, first and second law

efficiencies and Levelized Cost of Energy (LCOE) [14–16]. The key on system optimization

is to find the design parameters of the system that either minimize or maximize the objective

functions. However, given the non-linearity of the equations of state for thermodynamic

modeling and temperature-dependent thermophysical properties of the working fluids, large

system optimization can be time-consuming and slow to converge.

From the optimizations of our simulation model, it has been observed that global/semi-

global optimization algorithms, such as Genetic Algorithms (GA) and Patternsearch [17],

can realize high accuracy within reasonable amount of time when the number of the design

parameters for a system is small (≤ 4). However, when the number is large, global/semi-

global optimization algorithms normally fail to converge.

Traditionally, the parametric study has been commonly used as an optimization method

for power systems. Specifically, each design parameter is explored within its design range

while keeping the other parameters unchanged at their baseline values. As the results, the

parametric study can provide insights into every individual design parameter’s impacts on

the system’s performance index; however, combination of the best free design parameters

for a system is not necessarily the one that optimizes the system.

During the past decade, with the prevalence of the Machine Learning (ML) technique,

more and more people has been incorporating ML into their domain field in solving some

previously unsolvable problems. Similarly, in optimizing thermodynamic and power sys-

tems, using surrogate models based on ML algorithms in supplementing the experimental

2

or simulation models became more and more popular, as appropriate surrogate models

can substantially reduce the computational power required while realizing high searching

accuracy [18].

Fig. 1.1: NuScale Power Module (NPM) System. [1].

This study explores using a ML-based surrogate model to replace the physics-based

simulation model of an Integrated Regenerative Methanol Transcritical Cycle with a small

modular reactor (SMR) using natural circulation of the coolant. The primary cycle is shown

in Fig. 1.1, while the integration of the primary cycle and the working cycle is shown in

Fig. 1.2, respectively. Once the surrogate model’s performances match closely with the

cycle simulation model developed using Python and REFPROP, the surrogate model will

be coupled with an optimizer to find the design parameters that minimizes the Levelized

Cost of Energy (LCOE) and the penalty of the Cycle.

3

Fig. 1.2: Diagram of Integrated Regenerative Methanol Transcritical Cycle with the SMR.

1.2 Thesis Problem

The integrated regenerative methanol transcritical cycle consists of the primary cycle

and the secondary cycle. The primary cycle, as shown in Fig. 1.1, consists of a small

reactor core housed with other primary system components in an integral reactor pressure

vessel and surrounded by a steel containment vessel, which is immersed in a large pool

of water. When it functions, the primary reactor coolant is circulated upward through

the reactor core and the heated water is transported upward through the hot riser tube.

The coolant flow is turned downward at the pressurizer plate and flows over the shell

side of the steam generator, where it is cooled by conduction of heat to the secondary

coolant (happens in the Primary Heat Exchanger) and continues to flow downward until

its direction is again reversed at the lower reactor vessel head and turned upward back into

the core. The coolant circulation is maintained entirely by natural buoyancy forces of the

lower density heated water exiting the reactor core and the higher density cooled water

exiting the steam generator [19]. The secondary cycle, as shown in Fig. 1.2 is a regenerative

methanol transcritical turbine–generator system. It consists of four expansion turbines, four

regenerators, one secondary heat exchanger, one condenser, four pumps and three splitting

valves. When it functions, as indicated in Fig. 1.3, the feedback methanol working fluid is

pumped into the high-pressure regenerator and the secondary heat exchanger, where it is

4

heated from the sub-cooled state to the transcritical state; then it is circulated to the entire

turbine–generator system to generate power.

Fig. 1.3: T-S Diagram of the Integrated Regenerative Methanol Transcritical Cycle.

Table 1.1: Regenerative Transcritical Methanol Cycle Baseline Design Points.

Symbol Name Value Unit

Pmax Power Cycle Maximum Pressure 8.2 MPa

Pr1 High-pressure Ratio 0.5327 -

Pr2 Middle-pressure Ratio 0.2823 -

Pr3 Low-pressure Ratio 0.2340 -

f 1 High-pressure Mass Fraction 0.2659 -

f 2 Middle-pressure Mass Fraction 0.1583 -

f 3 Low-pressure Mass Fraction 0.1301 -

For testing the performance of the Integrated Regenerative Methanol Transcritical

Cycle, a physics-based simulation model is built. In the model, seven design parameters

are required and the model’s baseline values of the design parameters are summarized in

Tab. 1.1. By referring to Fig. 1.2, it can be seen that the power cycle’s maximum pressure

5

Table 1.2: Regenerative Transcritical Methanol Cycle Baseline Results.

Symbol Name Value Unit

etaI First Law Efficiency 32.76 %

LCOE Levelized Cost of Energy 89 $
MWh

penalty penalty 0 -

(Pmax) is the pressure at position 1 in Fig. 1.2. In addition, the high-pressure ratio (Pr1) is

calculated from the ratio between the pressure at position 2 (turbine outlet pressure) and

the pressure at position 1 (turbine inlet pressure). Similarly, the middle-pressure ratio (Pr2)

is calculated from the ratio between the pressure at position 4 and the pressure at position 3,

and the low-pressure ratio (Pr3) is calculated from the ratio between the pressure at position

6 and the pressure at position 5, and the high-pressure mass fraction (f1) is calculated from

the fraction between the mass flow rate at position 22 (split mass flow rate) and the mass

flow rate at position 2 (turbine outlet mass flow rate). Similarly, the middle-pressure mass

fraction (f2) is calculated from the fraction between the mass flow rate at position 24 and

the mass flow rate at position 4, and the low-pressure mass fraction (f3) is calculated from

the fraction between the mass flow rate at position 26 and the mass flow rate at position

6. With the baseline design parameters as inputs, the physics-based model’s simulating

outputs are summarized in Tab. 1.2, which includes the first law efficiency, the levelized

cost of energy (LCOE) and the penalty, where the first law efficiency is calculated from:

ηI =
Wnet,out

Qin
(1.1)

and the LCOE is calculated from the ratio between the sum of costs ($) of the apparatus

over lifetime and the sum of electrical energy (MWh) the apparatus produced over lifetime.

Moreover, the model introduces the parameter of penalty in order to indicate the severity

of violations beyond the design constraints of the system given set of design parameters.

For a set of design parameters without inducing any violations, the system penalty becomes

zero. For those design parameters that induce small penalty but gives good performances

6

in general, some minor changes of the design parameters values can help reduce it to zero.

While it is helpful in assessing the design parameters, penalty is especially useful when

performing design optimization as it can be used as a criteria to steer the searching algorithm

away from high penalty regions. In the current physics-based model of the integrated cycles,

a total of 17 penalties summarized in four categories are defined as below: [20]:

1. When the pinch temperature in the primary heat exchanger or any regenerator is less

than 5 Kelvin (K); Particularly, the pinch point is the location in heat exchanger (or

regenerator) where the temperature difference between hot and cold fluid is minimum

at that location [21].

2. When the outlet temperature of the cold fluid in the regenerators is less than its inlet

temperature;

3. When the quality of the working fluid at pumps’ inlet is greater than 0;

4. When the vapor quality at turbines’ outlet becomes less than 0.87

Fig. 1.4: High/Middle Pressure Mass Ratio of Regenerative Methanol Transcritical Cycle.

7

Fig. 1.5: Low Pressure Mass Ratio/High Pressure Ratio of Regenerative Methanol Trans-
critical Cycle.

Fig. 1.6: Middle/Low Pressure Ratio of Regenerative Methanol Transcritical Cycle.

The initial approach to finding the Integrated Regenerative Methanol Transcritical Cy-

cle’s optimal design parameters is by conducting the parametric studies on each of the design

parameters based on the physics-based simulation model. Specifically, when conducting the

parametric study on a certain design parameter, the other dependent design parameters are

kept constant at their baseline values, and a series of values to the design parameter are

8

Fig. 1.7: Maximum Temperature/Pressure Parametric Study.

put into the physics-based simulation model one by one to get the corresponding results.

By repeating this procedure for each of the design parameters, the trending of the results’

variation in terms of each of the design parameter’s variation would be obtained. The para-

metric study results are shown in Fig. 1.4, Fig. 1.5, Fig. 1.6 and Fig. 1.7. It can be observed

that in general the net heat into and the net power out from the power cycle decrease with

the increase of the seven design parameters. The first and second law efficiencies increase

with the increase of the three mass fractions parameters, while decreasing with the increase

of the three pressure ratio parameters and the maximum pressure parameters. Especially,

peaks appears in the first and second law efficiencies parametric studies with the change of

high-pressure mass fraction and the low-pressure mass fraction.

Unfortunately, the physics-based simulation model of the Integrated Regenerative Methanol

Transcritical Cycle is a large program consisting of many sub-components, such as heat ex-

changer and turbines; as the results, it takes significant amount of computational time for

the physics-based simulation model to converge, and it takes from a couple of hours to days

for the system to complete a round of optimization. To solve the time complexity issue

of the optimization with physics-based model, a Machine Learning (ML)-based surrogate

model is built to replace the physics-based simulation model in the optimization process. In

9

Table 1.3: Seven Design Parameters.

Symbol Name Range Unit

Pmax Power Cycle Maximum Pressure [8.22e6, 9.22e6] Pa

Pr1 High-pressure Ratio [0, 1] -

Pr2 Middle-pressure Ratio [0, 1] -

Pr3 Low-pressure Ratio [0, 1] -

f1 High-pressure Mass Fraction [0, 1] -

f2 Middle-pressure Mass Fraction [0, 1] -

f3 Low-pressure Mass Fraction [0, 1] -

Table 1.4: Surrogate Model Outcome Parameters.

Symbol Name Range Bef. DPP Range Aft. DPP Unit

etaI First Law Efficiency [0.00, 33.90] [20, 40] %

LCOE Levelized Cost of Energy [78.11, 1672.41] - $
MWh

penalty penalty [0.00, 300.18] - -

f target [78.31, 1806.77] - -

building the ML-based surrogate model, some preliminary dataset are collected first from

the physics-based simulation model. In the dataset, each sample consists of seven design

parameters and their corresponding outputs. The ranges of the seven design parameters

and the outputs are summarized in Tab. 1.3 and Tab. 1.4, respectively. Particularly, the

target, f , is the sum of LCOE and penalty values, and it is used as the minimization

target in the optimization process. Secondly, structure of the ML-based surrogate model

will be established, and the dataset collected from the physics-based model will be used

to train the preliminary surrogate model, so that the weight parameters in the model are

correctly defined. The trained surrogate model carries optimized weight parameters so

that it is capable of accurately predicting the outputs of a new set of design parameters.

Lastly, the ML-based surrogate model and the last-chosen optimizer will be used together

as an surrogate-optimizer model, with which the system’s optimal design parameters can

be eventually found.

10

1.3 Literature Review

A large number of scientific and engineering fields are confronted with the need for

computer simulations to study complex, real world phenomena or solve challenging design

problems, but the state-of-the art computer codes for simulating real physical systems are

often characterized by vast number of input parameters. Performing high accuracy opti-

mization on such systems is not always feasible because of the need to perform hundreds

of thousands or even millions of forward model evaluations in order to obtain convergent

statistics [18,22]. One of the ways to reduce this computational burden is to build a surro-

gate model of the computationally costly simulation code [23]. Surrogate models, such as

the use of neural networks, kernel methods, and other surrogate modeling techniques, are

compact and cheap to evaluate, and have proven very useful for tasks such as optimization,

design space exploration, prototyping, and sensitivity analysis [18]. For instances, in 2011,

Rashidi et al. presented a parametric study for and optimization of a transcritical power cy-

cle, where three distinct multi-layer perceptron artificial neural networks (ANNs) are built

as surrogate models with the inlet turbine pressure, inlet turbine temperature and fraction

of the maximum power as inputs, and with the thermal efficiency, exergy efficiency and

specific network as objective functions, respectively [24]. The procedure comprises three

steps. Step 1 is to find thermal efficiency, exergy efficiency, and specific network for different

values of inlet turbine pressure, inlet turbine temperature, and fraction of the maximum

power using the robust numerical code, engineering equation solver. In step 2, three distinct

multi-layer perceptron ANNs based on the data obtained from step 1 are trained. In step

3, three distinct GAs are used to optimize the thermal efficiency, exergy efficiency, and spe-

cific network. The results were compared with a previously reported case and were found

to be in good agreement. In the same year, Zhao et al. proposed an optimization scheme

combing the ANN models and the generic algorithm to optimize the design and operat-

ing parameters of the Atkinson cycle engine [25]. Firstly, computation-efficient nonlinear

models for the baseline engine were built based on the Artificial Neural Network (ANN)

technique. The network has six inputs that are engine speed (N), spark angle (SA), intake

11

valve closure (IVC), exhaust valve opening (EVO), geometrical compression ratio (GCR)

and air-to-fuel ratio (AFR), and each network has one output, which is brake specific fuel

consumption (BSFC), torque, knock intensity (KI), and exhaust temperature, respectively.

The ANN models were trained and tested using the data computed by a precisely calibrated

GT-Power engine simulation model; and experimental results obtained from the actual en-

gine tests have validated the excellent prediction accuracy of the ANN models. Secondly,

based on the ANN models, the optimization of geometrical compression ratio (GCR) and

operating parameters was performed using a genetic algorithm (GA), which is more suitable

for the optimization of highly nonlinear systems [26]. As the results, due to higher peak

pressure and larger air-to-fuel ratio (AFR) found from the proposed scheme, the brake

thermal efficiency for the Atkinson cycle engine improves 3.95%, and the corresponding

fuel economy improves 11.76%. In 2020, Zhang et al. designed a novel dynamic surrogate

model based optimization (DSMO) for centralized thermoelectric generation (TEG) system

affected by heterogeneous temperature difference (HeTD) to achieve maximum power point

tracking (MPPT) [27]. Since heterogeneous temperature difference HeTD usually results

in multiple local maximum power points (LMPPs), dynamic surrogate model based opti-

mization (DSMO) needs to rapidly approximate the global maximum power point (GMPP)

instead of being trapped at a low quality local maximum power point (LMPP). To avoid a

blind search, a radial basis functionn (RBF) network is adopted to construct the dynamic

surrogate model of input/output feature according to the real-time data of centralized ther-

moelectric generation (TEG) system. The proposed surrogate model aims to discover the

mapping relationship between the power output and the duty cycle. Since it is a single

input single output mapping, a radial basis function (RBF) meshwork [28] is adopted be-

cause its excellent nonlinear mapping ability and fast convergence. Furthermore, a greedy

search is adopted to accelerate the convergence based on dynamic surrogate model. As the

results, the proposed dynamic surrogate model based optimization (DSMO) is proved to

be able to rapidly converge to an optimum with a small power fluctuation. In 2018, Ali et

al. presented a surrogate-assisted modeling and optimization of the single mixed refrigerant

12

process of natural-gas liquefaction [29]. To address the computational-burden issue and

obtain the results in a reasonable time for the complex single mixed refrigerant process, an

approximate surrogate model was developed using a radial basis function combined with

a thin-plate spline (TPS) approach. In this study, the radial basis function (RBF) with

piecewise smooth RBF kernel was adopted. The six decision variables of the surrogate RBF

model are four refrigerants mass flow rates, the condenser pressure and the temperature of

vapor/mixed refrigerant (MR) after expansion; while the objective outputs are the compres-

sion energy and the penalty of the system. As the results, the optimal performance obtained

using the surrogate-assisted modeling methodology was reasonably close to that from the

rigorous model-based approach, and the surrogate-assisted modeling can reduce the compu-

tational burden in optimization, which was two orders of magnitude lower than for any other

reported approach. Besides the power and generator systems mentioned above, there is also

great interest in constructing such models in many other fields, serving for the purpose of

minimizing the computational cost and maximizing model accuracy [18]. To name just a

few, surrogate models are used in grey-box or black-box modeling of a wide variety of sys-

tems including electromagnetic modeling of complex structures, geological distributions of

minerals, interaction of airflows with airfoils, chemical processes and etc. [30]. For instance,

ANN has been implemented efficiently to interpolate the aerodynamic pressure loads for

one way unmanned aerial vehicle fluid structure interaction [31]. The result shows good

agreement with the actual pressure profile on aircraft compared against two-dimensional

curve fitting with higher order polynomials [32]. In addition, in 2018, Kim et al. devel-

oped a surrogate model for storm surge prediction using an artificial neural network with

the measured tidal level in Korea peninsula [33]. In their scheme, the 59 historical storms

during 1978 to 2014 years are used in this modelling. Tidal data recorded for 15 years was

applied. The neural network between seven input parameters (i.e., latitude, longitude, mov-

ing speed, heading direction, central pressure, radius of strong wind speed, maximum wind

speed) and the storm surge is trained by Levenberg-Marquardt backpropagation algorithm.

As the results, the developed surrogate model satisfies high-accuracy and high-speed for

13

predicting he storm surge based on an artificial intelligence method and a grid-free system.

Solving the complex optimization problems in limited time is an indispensable issue in

the field of engineering optimization [34]. In general, optimization can be divided into the

linear optimization and nonlinear optimization. Within nonlinear optimization, two types

of optimization methods can be distinguished: local (around a baseline) and global (over

the entire input variable domain of variation) [23]. In addition, there are also optimization

methods between local and global, such as Patternsearch [17]. In solving complex, real-

world optimization problems, the global optimization method is the most commonly used,

such as the Genetic Algorithm [35].

In terms of optimizing thermodynamic systems using surrogate models, the combi-

nation of Artificial Neural Network (ANN) and Genetic Algorithm (GA) are commonly

methods. In 2011, Suresh et al. studied dealing with the coupled ANN and GA based

(neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian

climatic condition to determine the maximum possible plant efficiency [36]. In the study,

the power plant simulation data obtained from ‘Cycle-Tempo’ (‘Cycle-Tempo’ is a well-

structured package for the steady state thermodynamic modeling and analysis of systems

for the production of electricity, heat and refrigeration [37]) is used to train the ANN to

predict the energy input through fuel (coal). The optimum set of various operating pa-

rameters that result in the minimum energy input to the power plant is then determined

by using the trained ANN model as a fitness function with the GA. The maximum plant

efficiency is then finally obtained from the power plant simulation in ‘Cycle-Tempo’ using

the set of optimum parameters. As the results, the neuro-genetic optimization methodol-

ogy significantly reduces the computational effort without compromising the accuracy of

the results along with the major advantage of on-line optimization. In 2012, Hajabdol-

lahi et al. modeled and optimized a steam turbine power plant thermo-economically using

Artificial Neural Network (ANN) and the fast and elitist Non-dominated Sorting Genetic

Algorithm (NSGA-II) [38]. In the study, the ANNs surrogate model was trained with the

turbine inlet temperature, boiler pressure, turbines extraction pressures, turbines, pumps

14

isentropic efficiency, reheat pressure as well as condenser pressure as inputs, and with the

efficiency and total cost rate as outputs, repsectively. Then, the Non-dominated Sorting

Genetic Algorithm (NSGA-II) is applied to maximize the thermal efficiency and minimize

the total cost rate (sum of investment cost, fuel cost, and maintenance cost) simultane-

ously. As the results, 3.76% increase in efficiency and 3.84% decrease in total cost rate

were obtained simultaneously, compared with the actual data of the running power plant.

In 2014, Jamali et al. proposed a combined cycle based on the Brayton power cycle and

the ejector expansion refrigeration cycle, and optimzied the surface area of the heat ex-

changers of the system to meet the load requirement with the combined artificial neural

network (ANN) and multi-objective genetic algorithm (GA) methods [39]. In the study,

the surrogate ANN model was trained with eleven input parameters including some key

exergy, pressures, temperatures, heat exchanger diameters and motor agular velocity; and

with exergy efficiency and total length of heat exchangers as outputs. The two outputs from

ANN are objective functions in multi-objective generic algorithm (GA) optimization. As

the results, the solutions approximate the Pareto frontier [40], which means the ANN-GA

combined optimization methods results valid outcomes in this study.

As the ANN-GA optimization approach gaining more and more interests, the complex-

ity of the surrogate model applications has also been increasing. For instances, in 2010, the

thermodynamic parameters of a supercritical CO2 power cycle is optimized using exergy

efficiency as the objective function. The genetic algorithm (GA) was used under a given

waste heat condition. Only four components are included in the cycle: heat recovery vapor

generator, turbine, condenser and pump. An artificial neural network (ANN) model with

the multi-layer feed-forward network type and back-propagation training is used to achieve

design optimization rapidly [14]. Specifically, one hidden layer is used, as it has been proved

that one hidden layer is enough to approximate any continuous function as long as it has a

sufficient number of neurons [41]. In addition, the sigmoid function is used as the transfer

function for the neurons; a back-propagation momentum learning method with a learning

rate of 0.2 and a momentum factor of 0.95 is adopted; and the training epoch is set to

15

1000. As a result, the error for back-propogation training is 1 × 10−5. It is shown that

the optimum thermodynamic parameters of supercritical CO2 power cycle can be predicted

with good accuracy using artificial neural network under variable waste heat conditions.

In 2017, a study concerning a thermodynamic and technical optimization of a small scale

Organic Rankine Cycle system for waste heat recovery applications was conducted. In the

study, it includes seven components: pump, pre-heater, evaporator, super-heater, turbine,

regenerator and condenser. An Artificial Neural Network (ANN) model has been devel-

oped to maximize the power out (thermodynamic optimization) while keeping the size of

the heat exchangers and hence the cost of the plant at its minimum (technical optimiza-

tion) [15]. Specifically, a multilayer perceptron (MLP) structure has been used and it has

been trained and validated using 10-fold cross-validation to improve performance of the

network [42]. In addition, one hidden layer was used and the sigmoid function was used

as the activation function; the number of neurons of the hidden layer was fixed to 20. A

local optimization algorithm was chosen to find the global optimization. The active set

algorithm [43] implemented in the fmincon function within the MATLAB Optimization

Toolbox [44] was chosen to perform the optimization. As fmincon is a local optimization

method, to realize the global optimization with fmincon, a simple multi-start algorithm

with 200 random starting points uniformly distributed in Ω has been considered, where Ω

is the region defined by the bound constraints which limit the components of the decision

variables. The results show that the maximum power output that can be extracted from

the heat source is 35.19 kW while the minimum values obtained for the rotational speed

and the UA parameter are respectively 24,298 rpm and 44.15 kW/K, with a relative abso-

lute validation error of 0.7981%. The results indicate that the use of ANN is promising in

solving complex nonlinear optimization problems in the field of thermodynamics. In 2018,

Yang et al. conducted performance prediction and optimization of an organic Rankine cycle

(ORC) for diesel engine waste heat recovery based on artificial neural network (ANN) [45].

A test bench of combined diesel engine and ORC waste heat recovery system was developed,

and the experimental data used to train and test the proposed ANN model were collected.

16

Finally, a total of 2,100 typical experimental data samples were obtained and 100 of which

were used to test the ANN model. The ANN model was evaluated with different learning

rates, training functions and parameter settings, and finally one hidden layer was adopted,

and two common metrics to evaluate the network prediction accuracy were used in this

work: the mean squared error (MSE) and the correlation coefficient between the prediction

value and experimental data. In addition, to improve the prediction precision, the genetic

algorithm (GA) is used to optimize the weights of the ANN model by optimizing the hy-

perparameters, as well as to the prediction accuracy. As the result, the prediction errors of

ANN model coupled with the GA are lower than those without using the GA. Specifically,

without using GA, the maximum prediction absolute error (AE) can reach up to 0.94 kW,

and most of the prediction absolute errors are between –0.4 and 0.4 kW, and the prediction

relative errors (RE) are in the range of –14.17% to 17.45%. In comparison, most of the

prediction absolute errors (AE) of the ANN model coupled with the GA are between –0.2

and 0.2 kW while the prediction relative errors range from –12.37% to 9.35%. In conclusion,

with applying the best parameters, the proposed ANN model shows a strong learning ability

and good generalization performance. Compared to the experimental data, the maximum

relative error is less than 5%. In 2019, Palagi et al. compared Feedforward, Recurrent and

Long-Short-Term-Memory (LSTM) networks in the prediction of the dynamics of a 20 kW

ORC system for waste heat recovery. In the study, a training set and a test set have been

constructed, which are obtained by collecting measurements from the sensors installed on

the ORC test rig. The test rig is composed with four parts: heat transfer loop, ORC loop,

cooling loop and transducers. The evaluation metric of all three types of networks used is

the mean squared error (MSE). As the result, the Long-Short-Term-Memory architecture

achieved the highest performance, in that it correctly predicts the dynamics of the system,

showing an error prediction less than 5% and 10% respectively for what concern the predic-

tions of 10 and 60 seconds ahead [46]. In 2020, Dave et al. established an neural networks

to provide an accurate and precise multi-dimensional regression of a nuclear reactor’s power

distribution [47]. The results indicate that neural networks are an appropriate choice for

17

surrogate models to implement in an autonomous reactor control framework.

The purpose of the thesis study is to build a static surrogate model that replaces the

simulation model of the integrated regenerative methanol transcritical cycle with the reactor

coolant loop, and then to combine the surrogate model with the optimization method to

find the best values of seven design parameters. Compared to previous works in the field,

the system to be solved is more complex with more design variables. In developing the

surrogate model, both the neural-network based Machine Learning (ML) methods including

Deep Neural Network (DNN), 1-D Convolutional Neural Network and ResNet, and the

non neural-network based ML methods including Random Forest and Principle Compoent

Analysis (PCA) are explored. In addition, to the commonly used GA method for global

optimization, other practical optimization methods are also be explored, such as the Pattern

Search and the Direct Search. In the end, the optimal combination of surrogate model and

the optimization method will be chosen to be incorporated into the final model.

18

CHAPTER 2

OBJECTIVES

In general, the thesis proposal or dissertation proposal has the following objectives:

1. Develop a baseline surrogate model by experimenting on both the non-neural networks

and neural network algorithms that precisely mimic the physical-based model of the

integrated regenerative transcritical methanol cycle with the small modular reactor

(SMR).

2. Develop an systematic optimization model and incorporate chosen surrogate model

into the system. Compare the optimization results from different optimizers with the

baseline optimization results.

3. Conduct data analysis on the training dataset in order to further improve the surrogate

model-based optimization system.

19

CHAPTER 3

APPROACH

3.1 Overview

The overall approach of finding the design parameters that optimize the levelized cost

of energy (LCOE) and penalty of the integrated regenerative Methanol transcritical cycle

is summarized in an algorithm as shown in Fig. 3.1.

Fig. 3.1: Overall Algorithm of Cycle Optimization with Surrogate Model.

20

The algorithm starts by having the user choose one of the optimizers, most of which are

stochastic in nature. Then, the user chooses the ”Total Iteration Time”, and one iteration

time refers to a complete search with the surrogate-optimizer model, as shown in Fig. 3.2.

The surrogate-optimizer model applies the chosen optimizer to find the design parameters

that optimize the outcome of ML-based surrogate model, and the details will be illustrated

in Sec. 3.2 and 3.3. The reason for executing the surrogate-optimizer model more than once

is because the searched design parameters are not guaranteed to converge in the physics-

based simulation model. By running the surrogate-optimizer model more than once, it can

significantly improve the probability of finding a set of converged design parameters. As

shown in Fig. 3.1, after the user chooses the ”Total Iteration Times”, the multiprocessing

programming starts. The design of the multiprocessing programming serves for saving the

algorithm execution time by distributing the total iteration into parallel logic cores of the

Central Processing Unit (CPU) in the computer. That’s being said, the ”Total Iteration

Times” defined by the user is suggested to not exceed the total number of the logic cores

in the computer to guarantee a short execution time. Next, the surrogate-optimizer model

would execute the global optimization with the chosen surrogate model and optimizer, then

it would output the optimized objective value (or target), fsurrogate, the corresponding

design parameters, ~xopt, and the corresponding first law efficiency, etaFL surrogate, where:

fsurrogate = min
~x

(LCOE + penalty) (3.1)

xopt = arg min
~x

(LCOE + penalty) (3.2)

Then, the searched design parameters, ~xopt, are fed into the physics-based model. If the

~xopt is physically viable, it is considered as converged, and the corresponding physics-based

results would be output; otherwise, the ~xopt are considered as non-converging, and a string

”Not Converged” would be output. After all the iterations are executed, the multiprocessing

programming ends, and then both the converged and non-converged results are joined into

21

a final matrix called ”new result”. Lastly, from the matrix, the final optimized result with

the least objective value, ftrue, is chosen.

3.2 Optimizers

The optimization algorithm used in the surrogate-optimizer model mentioned in Sec. 3.1

is shown in Fig. 3.2.

Fig. 3.2: Surrogate-Optimizer model.

To start, the initially guessed design parameters, ~x0, are generated and passed to

a ”Converged/Diverged Model”, which is a machine learning (ML)-based model used to

22

judge if the incoming design parameters would converge in the surrogate model or not. If

the design parameters is classified into ”diverge”, a large objective value will be fed into the

optimizer, otherwise a set of converged design parameters will be passed to the ML-based

surrogate model. Next, the target output, f , is passed into the objective function:

f = LCOE + penalty (3.3)

Then, the corresponding objective value is passed to the optimizer. If the stop criteria

in the optimizer are not met, a new set of design parameters, ~x, will be updated by the

optimizer and fed back to the ”Converged/Diverged Classifier Model”, and then repeat the

process from there until the stop criteria are all met. Finally, the optimized objective value,

fsurrogate, and the corresponding design parameters, ~xopt, will be output as the results.

As illustrated, the key of the success of this algorithm would require an accurate ML-

based surrogate models and an effective global optimizer. The ML-based surrogate models

will be discussed in details in Sec. 3.3, but now the optimizers used to be considered in this

project will be described.

3.2.1 Basin-Hopping

The Basin-hopping method stems from the interest in chemical physics for efficiently

finding the lowest energy configuration of a (macro)molecular system [48]. These tasks

typically have lots of local minima which makes is hard for standard optimization methods

because there is a very strong dependency on the initial conditions [49]. Basin-hopping is a

stochastic algorithm which attempts to find the global minimum of a smooth scalar function

of one or more variables [48,50–52]. The algorithm is iterative with each cycle composed of

the following features [53]:

1. random perturbation of the coordinates

2. local minimization

3. accept or reject the new coordinates based on the minimized function value

23

Specifically, the algorithm works as follow [49]:

1. Choose a start point.

2. Compute a local minimum.

3. Apply a random perturbation the coordinates of the local minimum.

4. Compute the next local minimum.

5. Compare the local minima and keep the best.

In the original paper that proposed the Basin-hopping method, all coordinates were

displaced by a random number in the range [1, 1] times the step size, which was adjusted

to give an acceptance ratio of 0.5 at each step [48]. The acceptance test used in the most

popular computational package [53] is the Metropolis criterion of standard Monte Carlo

algorithms, although there are many other possibilities [51].

3.2.2 Brute Force

The brute-force method was originally proposed for solving the ”RECONFIGURA-

TION problem” for radial power distribution networks: given a load profile for a distribu-

tion network with a number of tie lines and switching points, find a radial configuration for

the network which minimizes the network losses [54]. Brute-force is an exhaustive search al-

gorithm [54] by computing the objective function’s value at each point of a multidimensional

grid of points, to find the global minimum of the function [55]. The brute force approach

is inefficient because the number of grid points increases exponentially - the number of grid

points to evaluate is [55]:

Nslen(x) (3.4)

Where the Ns is the number of grid points along the axes, len(x) is the total number

of the axes.

24

Consequently, even with coarse grid spacing, even moderately sized problems can take

a long time to run, and/or run into memory limitations [55].

3.2.3 Differential Evolution

In 1997, Rainer Storn and Kenneth Price presented a new heuristic approach for mini-

mizing possibly nonlinear and non-differentiable continuous space functions [56], called the

Differential Evolution.

The general problem formulation is: For an objective function f : X ⊆ RD −→ R

where the feasible region X 6= 0, the minimisation problem is to find x∗ ∈ X such that

f(x∗) ≤ f(x)∀x ∈ X, where: f(x∗) 6= −∞ [2].

Global optimization is necessary in fields such as engineering, statistics and finance,

but many practical problems have objective functions that are non-differentiable, non-

continuous, non-linear, noisy, flat, multi-dimensional or have many local minima, constraints

or stochasticity. Such problems are difficult if not impossible to solve analytically, while

differential evolution can be used to find approximate solution to such problems [2].

Fig. 3.3: General Evolution Algorithm Procedure [2].

As indicated in Fig 3.3, the differential evolution is an evolutionary algorithm [2]. The

differential evolution algorithm includes four steps:

1. Initialization: Define upper and lower bounds for each parameter, and randomly

select the initial parameter values uniformly on the constrained intervals [2].

25

2. Mutation: For each trial, randomly replace portion of the parent parameter with

newly generated parameters.

3. Recombination/Crossover: For each trial, recombine portion of the best-elected

parent parameters. The crossover increases the diversity of the perturbed parameter

vectors [56].

4. Selection:The ones with the lowest function value is admitted to the next generation

[2].

5. Iteration: Mutation, recombination and selection continue until some stopping cri-

terion is reached [2].

3.2.4 SHGO

The simplicial homology global optimisation (SHGO) algorithm is a general purpose

global optimisation algorithm based on applications of simplicial integral homology and

combinatorial topology. SHGO approximates the homology groups of a complex built on

a hypersurface homeomorphic to a complex on the objective function. This provides both

approximations of locally convex subdomains in the search space through Sperner’s lemma

and a useful visual tool for characterising and efficiently solving higher dimensional black

and grey box optimisation problems. This complex is built up using sampling points within

the feasible search space as vertices. The algorithm is specialised in finding all the local

minima of an objective function with expensive function evaluations efficiently which is

especially suitable to applications such as energy landscape exploration [57].

SHGO was initially developed as an improvement on the topographical global optimi-

sation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO

on function evaluations if the objective function is Lipschitz smooth. While most of the

theoretical advantages of SHGO are only proven for when the objective function f(x) is a

Lipschitz smooth function, the algorithm is also proven to converge to the global optimum

for the more general case where f(x) is non-continuous, non-convex and non-smooth, if the

default sampling method is used [57].

26

3.2.5 Dual Annealing

The Dual Annealing optimization is a stochastic approach derived from [58] com-

bines the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated

Annealing) [59] [60] coupled to a strategy for applying a local search on accepted loca-

tions [61] [62].

The simulated annealing [63] mentioned above is a stochastic optimization method that

is based on an analogy with physical annealing. The procedure is used to bring the atoms

that make up the material to their lowest energy configuration. In simulated annealing, the

objective of an optimization problem is analogous to the energy of a physical system, the

variables are analogous to the position of the atoms, and the feasible region is analogous

to the phase space. Introducing a temperature scale to an optimization problem makes the

analogy complete [3].

There are in general five steps in realizing the simulated annealing algorithm [64]:

1. We first start with an initial solution s = S0. This can be any solution that fits the

criteria for an acceptable solution. We also start with an initial temperature t = t0.

2. Setup a temperature reduction function α.

3. Starting at the initial temperature, loop through n iterations of Step 4 and then

decrease the temperature according to alpha. Stop this loop until the termination

conditions are reached. The mapping of time to temperature and how fast the tem-

perature decreases is called the Annealing Schedule.

4. Given the neighbourhood of solutions N(s), pick one of the solutions and calculate

the difference in cost between the old solution and the new neighbour solution.

5. If the difference in cost between the old and new solution is greater than 0 (the new

solution is better), then accept the new solution. If the difference in cost is less than

0 (the old solution is better), then generate a random number between 0 and 1 and

accept it if it’s under the value calculated from the Energy Magnitude equation from

before.

27

Fig. 3.4: Dual Annealing Algorithm Overview [3]

The outline of the dual annealing algorithm is shown in Fig. 3.4, and there are in

general seven steps in realizing the dual annealing algorithm [3]:

1. Generating an initial starting point satisfying the equality and inequality constraints

of both the inner and outer problems.

2. Generating new trial points that satisfy the equality and inequality constraints of

either the inner or the outer problem.

3. Generating points in the inner searches around the fuzzy region.

4. Generating points in a fuzzy feasible region of the overall bilevel programming prob-

lems (BLPP).

5. Generating initial values of Tout and Tin by generating a sufficiently large Markov

chain of trial points.

28

6. Annealing Schedule: The inner and outer temperatures are annealed with certain

cooling schedule.

7. The algorithm stops when both of the following criteria are met:

• The Euclidean norm between the point obtained after an outer search and the

point obtained from the previous outer search is less than ε.

• The following inner optimization does not change the inner objective function

value or the the inner optimization variables stay within a range ε.

3.2.6 Fmin

Fmin search algorithm uses the Nelder-Mead simplex algorithm as described in Lagarias

et al. [65] [66], and the algorithm is not guaranteed to converge to a local minimum [67] (not

to mention the global minimum); however, since the fmin is a derivative-free method [67],

it can be a very fast solver.

In order to compensate for fmin search algorithm’s shortcoming of not capable of global

optimization, the method used in [68] is borrowed. In the paper, the function fmincon of

the MATLAB Optimization Toolbox has been chosen to perform the optimization, and the

global optimization was realized by a simple multi-start algorithm with 200 random starting

points uniformly distributed in search domain [68].

Thus, in this project, the global optimization with the fmin search algorithm is realized

by applying the following steps:

1. Generating N (sufficiently big enough to cover the whole search domain) initial values

over the entire search domain.

2. Doing the N fmin searches simultaneously with the initial values generated in step.

1.

3. Comparing the N search results and pick the optimal one as the global optimization

result.

29

3.3 Converged/Diverged Classifier Model and Surrogate Model

As shown in Fig. 3.2, besides the optimizer, there are two other important components

in the surrogate-optimizer model: the Converged/Diverged Classifier Model and the Surro-

gate Model. Both models are ML-based models, and they share the same dataset in training

and evaluating their models. In this section, the dataset used by both models is analyzed,

and the converged/diverged classifier model and the surrogate model are described.

3.3.1 Dataset Analysis & Data Pre-processing

The original dataset contains 4, 161, 536 samples of design parameters set, which are

generated during several days from the physics-based simulation model.

Since the dataset was random-generated, some samples correspond to converging out-

comes, while the others do not. The former type of samples is called converged dataset,

and the latter type is called diverged dataset. As shown in Fig. 3.5, within the 4, 161, 536

oroginal dataset, around 75.11% samples are diverged, and around 24.89% samples are

converged.

Fig. 3.5: Diverged and Converged Samples in Original Dataset. False: Diverged; True:
Converged

Similarly, as indicated in Fig. 3.2, during the optimization process, some newly gen-

erated design parameters x may be diverged samples as well. In order to guarantee the

uninterrupted execution of the algorithm, the converged/diverged classifier model that is

30

capable of filtering out diverged incoming samples would be eagerly needed.

The 1, 035, 757 converged samples will be used to train and evaluate the surrogate

model, and they are visually illustrated in the Fig. 3.6, in which the corresponding outputs

of each sample of design parameters are indicated, including the LCOE percentage change,

penalty and the 1st law efficiency. Since the optimal cycle is expected to produce the LCOE

as low as possible (and thus LCOE percentage change as low as possible as well) and to

produce penalty near 0, the optimal samples of design parameters are ones blackly circled

at the lower-left corner in the figure. Those optimal samples are of a very small portion.

Thus, in order to help the model to figure out the corresponding outcomes more quickly

and accurately, some data pre-processing (DPP) steps are carried out in training both the

classifier and the surrogate models.

Fig. 3.6: Dataset Visualization

Firstly, the seven design parameters and their corresponding ranges are summarized in

the Tab. 1.3. It can be seen that all the design parameters range from zero to one, except

the Power Cycle Maximum Pressure, which ranges from 8.22e6 Pa to 9.22e6 Pa. In the

training process, if some input features’ value are significantly larger than the other ones,

the model may ignore the features with small values and thus would end up being a biased

model. In order to address this issue, the values of the Power Cycle Maximum Pressure,

31

Pmax, are normalized between zero and one by:

Pmax new = (Pmax − 8.22e6)/1e6

Additionally, for the surrogate model, the desired outcomes and their corresponding

ranges are listed in Tab. 1.4. It is obvious that ranges of the three parameters are very

different from each other. For the similar reason of the input dataset, if some outputs’

value are significantly larger than the rest ones, the model may not train the outcomes with

small values so that the model would still end up being biased. To address these issues,

different methods are applied for different outcomes. For the surrogate model, due to the

following reasons, etaI is trained alone in one neural network, while the penalty and LCOE

are trained together in another one:

1. The target value f is the combination of LCOE and penalty values.

2. Lower values are expected in a optimal model for both the LCOE and the penalty.

3. The design range of both the LCOE and the penalty are much wider than that of

etaI .

4. The training dataset of both the LCOE and the penalty are noisier than ones of the

etaI as indicated in Fig. 3.6.

In addition, based on preliminary studies, it is found that the viable first law efficiency

value, etaI , of the system lies between 20% to 40%, thus, samples with etaI < 20% and

etaI > 40% are eliminated. In the mean time, the LCOE and penalty values in the dataset

are untouched. In summary, the training dataset after being pre-processed by the etaI is

used as the training dataset for both the etaI and the LCOE-penalty models.

3.3.2 Converged/Diverged Classifier Model

The purpose of the converged/diverged classifier model in the surrogate-optimizer

model is to make sure the whole algorithm does not break if it runs into any unreason-

able input samples, x. As shown in Fig. 3.2, during each iteration, the optimizer would

32

(a) Dataset Before Re-balancing. (b) Dataset After Re-balancing.

Fig. 3.7: Classifier Model Dataset Re-balancing

update a new set of design parameters which is supposed to produce more optimal results

and to be fed into the surrogate model to obtain the corresponding objective value; however,

since the new set of design parameters is not guaranteed to converge or result in reasonable

objective values, the optimizer may risk running into unexpected errors and break. In order

to compensate for the shortcoming, the converged/diverged classifier model is developed

and put before the surrogate model, so that when the new set of design parameters could

results in diverged results, the algorithm would detour around the surrogate model and

directly assign a significantly large objective value in order to keep the optimizer running

and not breaking in the middle of execution; otherwise, the new set of design parameters

would be fed into the surrogate model in order to obtain the corresponding objective value.

The original dataset of the converged/diverged classifier model is shown in Fig. 3.7a,

in which the diverged (False) samples are about triple of the converged (True) samples.

This is an so-called class-imbalanced dataset, which could result in biased training model.

In the past decade, many machine learning approaches have been developed to cope with

imbalanced data classification, most of which have been based on re-sample techniques, cost

sensitive learning and ensemble methods [69–71]. Within those methods, the resampling

methods are more versatile because they are independent of the selected classifier [72]. In

general, the resampling techniques fall into three groups depending on the method used to

balance the class distribution [73]:

33

• Over-sampling methods: eliminating the harms of skewed distribution by creating

new minority class samples. Two widely-used methods to create the synthetic minority

samples are randomly duplicating the minority samples and the Synthetic Minority

Over-sampling TEchnique (SMOTE) [74].

• Under-sampling methods: eliminating the harms of skewed distribution by dis-

carding the intrinsic samples in the majority class. The simplest yet most effective

method is Random UnderSampling (RUS), which involved the random elimination of

majority class examples [75].

• Hybrid methods: these are a combination of the over-sampling method and the

under-sampling method.

For the convenience and effectiveness, the method adopted for re-balancing the dataset of the

converged/diverged classifier model is the Over-sampling method by randomly duplicating

the minority samples to create the synthetic minority samples. The re-balanced dataset is

shown in Fig. 3.7b.

With the training and evaluation dataset ready, another important task for building

a successful model is to choose the best Machine Learning Method. In this project, six

different Machine Learning classifier methods are built and optimized, respectively, and

the one with the best performance will be adopted as the final classifier to be used in the

surrogate-optimizer model.

3.3.2.1 Multi-layer Feed-Forward (MLF) Neural Network

Multi-layer Feed-Forward (MLF) neural networks, trained with a back-propagation

learning algorithm, are the most popular neural networks. As shown in Fig. 3.8, MLF

neural network consists of neurons, that are ordered into layers. The first layer is called

the input layer, the last layer is called the output layer, and the layers between are hidden

layers. The training mode begins with arbitrary values of the weights - they might be

random numbers - and proceeds iteratively. Each iteration of the complete training set

is called an epoch. In each epoch the net- work adjusts the weights in the direction that

34

reduces the error. As the iterative process of incremental adjustment continues, the weights

gradually converge to the locally optimal set of values. Many epochs are usually required

before training is completed [4].

Fig. 3.8: Typical Feed-Forward Neural Network Composed of Three Layers [4].

The schematic of the converged/diverged classifier model is shown in Fig. 3.9, and the

corresponding optimized hyper-parameters of the MLF neural network is summarized in

Tab. 3.1 based on the parametric studies.

Table 3.1: Hyper-parameters of the Classifier MLF Neural Network.

Hyper-parameters Value

batch size 16,384

epoch 150

input size 7

hidden size 1 1,024

hidden size 2 512

dropout rate 0.5

learning rate 0.001

weight decay 0.0001

35

Fig. 3.9: Converged/Diverged Classifier Model Schematic.

Where the batch size is a hyper-parameter that defines the number of samples to

work through before updating the internal model parameters. The size of a batch must

be more than or equal to one and less than or equal to the number of samples in the

training dataset [76], and based on the parametric results, batchsize = 16, 384 in the give

schematics would effectively reduce the oscillation in training process, while avoiding losing

any significant information. The number of epochs is the number of complete passes through

the training dataset. The number of epochs can be set to an integer value between one and

infinity [76], but there exists an optimal value, because too small of the epoch number may

cause under-fitting of the model, while too big of the epoch number could cause over-fitting

of the model. Under the given schematic, epoch = 150 gives the optimal performance.

Additionally, the input size is set to be 7 because there are in total seven design

parameters in each input sample, as shown in Fig. 3.9; for the similar reason, the output

of the MLF neural network consists only one neuron because the network is expected to

output one of two classifications each time: the input sample is either diverged (False) or

converged (true).

36

Fig. 3.10: Proof of the Vanishing Gradient Problem: Learning Speeds of Four Hidden Layers
of A Deep Network [5].

One of the most important schematics of this classifier MLF neural network is that

there are two hidden layers, with the hidden layer 1 of the size 1,024 and the hidden layer

2 of the size 512. It is believed that networks with many more hidden layers to be more

powerful, because such networks could use the intermediate layers to build up multiple layers

of abstraction. However, the deep networks with too many hidden layers may cause the

vanishing gradient problem, which is the phenomenon shown in Fig. 3.10. In an example

of deep network with four hidden layers, it is obvious that early hidden layers learn much

more slowly than later hidden layers [5]. Therefore, by applying the model hyper-parameter

optimization technique, the Grid Search [77], the optimal schematics of the classifier MLF

network has been determined as summarized in Tab. 3.1.

Moreover, the dropout is a technique that addresses issues of overfitting and provides a

way of approximately combining exponentially many different neural network architectures

efficiently. The term “dropout” refers to dropping out units (hidden and visible) in a neural

network. By dropping a unit out, we mean temporarily removing it from the network, along

with all its incoming and outgoing connections, as shown in Fig. 3.11 [6]. In this project,

37

(a) Standard Neural Net [6]. (b) After applying dropout [6]

Fig. 3.11: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers.
Right: An example of a thinned net produced by applying dropout to the network on the
left. Crossed units have been dropped [6].

after the parametric study, the optimal dropout rate is found to be 0.5, meaning temporar-

ily dropping 50% of the hidden neurons during the training process. Another important

technique used in the classifier MLF neural network in order to enable faster and more sta-

ble training of deep neural networks is called the Batch Normalization (BatchNorm). It is

a widely adopted technique achieved by introducing additional network layers that control

the first two moments (mean and variance) of these distributions [78], and it is used in both

the hidden layers of the classifier MLF neural network. The corresponding training process

is shown in Fig. 3.12

The learning rate and weight decay are key hyper-parameters used to define the op-

timizer of the neural networks. Gradient descent is the preferred way to optimize neural

networks and many other machine learning algorithms but is often used as a black box,

called the optimizer. The most popular optimizers include: Momentum, Adagrad, RM-

Sprop and Adam [79]. During the last years the Adam (Adaptive Moment Estimation)

Optimizer has become one of the most used optimization methods for training neural net-

works [80], which is designed by Kingma and Ba [81] by combining the advantages of two

38

Fig. 3.12: Classifier MLF Neural Network Training Process.

recently popular methods: AdaGrad [82], which works well with sparse gradients, and RM-

SProp [83], which works well in on-line and non-stationary settings. The method computes

individual adaptive learning rates for different parameters from estimates of first and second

moments of the gradients [81]. In the classifier MLF neural network, with the parametric

studies, learning rate = 0.001 and weight decay = 0.0001 prove to result in the optimal

balance between the training effectiveness and the training smoothness during the training

process, as shown in Fig. 3.12.

Lastly, the loss function used is the Binary Cross Entropy (BCE) function, for it is the

most suitable for the classification problems with only two types of categories. Convention-

ally, ReLU is used as an activation function in deep neural networks (DNNs), with Softmax

function as their classification function [84], which is also what is used in the classifier MLF

neural network.

3.3.2.2 Random Forest

In general, a random forest (RF) classifier is an ensemble classifier that produces mul-

tiple decision trees, using a randomly selected subset of training samples and variables [85].

As shown in Fig. 3.13, random forest is an ensemble of unpruned classification or regression

39

Fig. 3.13: Random Forest Classifier Simplified Example [7]

trees created by using bootstrap samples of the training data and random feature selec-

tion in tree induction. Prediction is made by aggregating (majority vote or averaging) the

predictions of the ensemble [86].

Thus, the algorithm works four steps [87]:

1. Select random samples from a given dataset.

2. Construct a decision tree for each sample and get a prediction result from each decision

tree.

3. Perform a vote for each predicted result.

4. Select the prediction result with the most votes as the final prediction.

The most important hyper-parameters of the classifier random forest model of the

project are listed in Tab. 3.2. The tree numbers means the number of trees to be assigned

in the forest, where too small of the value could result in inaccurate outcomes, while too large

of the value could cause much longer time in training process thus reducing the training

efficiency. With parametric studies, tree numbers = 200 in the model would result in

optimal results.

40

Table 3.2: Hyper-parameters of the Classifier Random Forest.

Hyper-parameters Value

tree numbers 200

criterion Gini

max. depth None

min. samples split 2

min. samples leaf 1

Fig. 3.14: Gini and Entropy Comparison [8].

Entropy and Gini are two mostly used criteria for measuring the purity of the sub

split in the decision trees. The internal working of both methods is very similar, but if

we compare both the methods then Gini Impurity is more efficient than entropy in terms

of computing power. As you can see in the Fig. 3.14 for entropy, it first increases up to

1 and then starts decreasing, but in the case of Gini impurity it only goes up to 0.5 and

then it starts decreasing, hence it requires less computational power. The range of Entropy

lies in between 0 to 1 and the range of Gini Impurity lies in between 0 to 0.5. Hence we

can conclude that Gini Impurity is better as compared to entropy for selecting the best

features [8]. Thus, Gini is chosen as the criteria used in the classifier random forest model.

41

The maximum depth of the tree implies its meaning. When None is chosen, it means

nodes are expanded until all leaves are pure or until all leaves contain less than minimum

split samples [88], which is two in our case. In addition, the minimum sample leaf means the

minimum number of samples required to be at a leaf node. In this case, a split point at any

depth will only be considered if it leaves at least the one training samples in each of the left

and right branches. This may have the effect of smoothing the model, especially in regres-

sion. Apparently, max. depth = None, min. sample split = 2 and min. sample leaf = 1

would result in the most accurate outcomes with minor sacrifices of computational time.

3.3.2.3 Gaussian Näıve Bayes

Näıve Bayes is one of the most efficient and effective inductive learning algorithms

for machine learning and data mining. Its competitive performance in classification is

surprising, because the conditional independence assumption on which it is based is rarely

true in real-world applications [89].

Näıve Bayes methods are a set of supervised learning algorithms based on applying

Bayes’ theorem with the “naive” assumption of conditional independence between every

pair of features given the value of the class variable. Bayes’ theorem states the following

relationship, given class variable y and dependent feature vector x1 through xn [90]:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)

Using the naive conditional independence assumption that

P (xi|y, x1, ..., xi−1, xi+1, ..., xn) = P (xi|y)

for all i, this relationship is simplified to:

P (y|x1, ..., xn) =
P (y)Πn

i=1P (xi|y)

P (x1, ..., xn)

42

Since P (x1, ..., xn) is constant given the input, we can use the following classification rule:

P (y|x1, ..., xn) ∝ P (y)Πn
i=1P (xi|y) =⇒ ŷ = arg max

y
P (y)Πn

i=1P (xi|y)

and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and P (xi|y);

the former is then the relative frequency of class y in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they make re-

garding the distribution of P (xi|y). For example, for Gaussian Näıve Bayes classification,

the likelihood of the features is assumed to be Gaussian:

P (xi|y) =
1√

2πσ2y

exp

(
−(xi − µy)2

2σ2y

)

where the parameters σy and µy are estimated using maximum likelihood.

Similarly, the Benroulli Näıve Bayes classifier models features using the Benroulli dis-

tribution, and Multinomial Näıve Bayes classifier models features using the Multinomial

distribution. In the project, the Gaussian Näıve Bayes classifier is applifed, for it is the

most suitable for binary classification tasks.

3.3.2.4 K Nearest Neighbor

K Nearest Neighbor (KNN) is a unsupervised machine learning algorithm that classifies

data points based on the points that are most similar to it [9], as shown in Fig. 3.15. The

key idea of a standard KNN method is to predict the label of a test data point by the

majority rule, that is, the label of the test data point is predicted with the major class of

its k most similar training data points in the feature space [91]. The overall algorithm of

the K Nearest Neighbor is shown in Alg. 3.1 [92].

The most important hyper-parameters applied in the project are listed in Tab.3.3,

where the number of neighbors is K in KNN, and it refers to the number of nearest neigh-

bours to include in the majority of the voting process. In practice, choosing the value of k

43

Fig. 3.15: Example of K Nearest Neighbor Classifier [9].

Algorithm 3.1 Overall Algorithm of K Nearest Neighbor [92].

Input:
The training dataset
Initialized the value of k

Output:
The predicted class

Begin
for 1 to total number of training dataset samples
Do

Begin
Calculate the distance between test data and each row of training data.
Sort the calculated distances in ascending order based on distance values
Get top k rows from the sorted array
Get the most frequent class of these rows
Return the predicted class

End
End

44

is [93]:

k =
√
N

where N stands for the number of samples in your training dataset [93]. In this project,

since the total dataset after re-balancing is 3, 075, 218, and 80% of them is used as training

dataset, the corresponding K value is calculated from:

k =
√

3, 075, 218× 80% ≈ 1, 568

Table 3.3: Hyper-parameters of the Classifier K Nearest Neighbor.

Hyper-parameters Value

number of neighbors 1568

weights distance

Weights are functions used to calculate the importance of the neighbor points to the

new sample point. There are many different methods to represent the functions, but the

most popular twos are [94]:

1. uniform: uniform weights. All points in each neighborhood are weighted equally.

2. distance: weight points by the inverse of their distance. in this case, closer neighbors

of a query point will have a greater influence than neighbors which are further away.

In this project, the distance method is applied in order to gain more accurate outcomes.

3.3.2.5 Logistic Regression

Logistic regression (LR) is a standard probabilistic statistical classification model that

has been extensively used across many disciplines. Different from linear regression, the

outcome of LR on one sample is the probability that it is positive or negative, where the

probability depends on a linear measure of the sample [95], as shown in Fig. 3.16. Therefore,

LR is actually widely used for classification.

45

Fig. 3.16: Logistic Regression Logic [10].

More formally, for a sample xi ∈ RP whose label is denoted as yi, the probability of yi

being positive is predicted to be [95]:

P{yi = +1} =
1

1 + e−βT xi

given the LR model parameter β. In order to obtain a parameter that performs well, often

a set of labeled samples {(x1, y1), ..., (xn, yn)} are collected to learn the LR parameter β

which maximizes the induced likelihood function over the training samples.

In the classifier logistic regression model of this project, the key parameters used are

listed in Tab. 3.4.

Table 3.4: Hyper-parameters of the Classifier Logistic Regression.

Hyper-parameters Value

penalty L2

multi-class ovr

where penalty, or so-called regularization techniques are used to address over-fitting

issues. Specifically, the logistic regression with L2 penalty adds “squared magnitude” of

46

coefficient, λ
∑p

j=1 β
2
j , as penalty term to the loss function, as shown below [96]:

cost =
n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2j

In comparison with the L2 penalty, the L1 penalty replaces the “squared magnitude” of

coefficient from λ
∑p

j=1 β
2
j to λ

∑p
j=1 |βj |. There are many other types of penalties, but

L1 and L2 are mostly used ones. The key difference between these techniques is that

L1penalty shrinks the less important feature’s coefficient to zero thus, removing some feature

altogether. So, this works well for feature selection in case we have a huge number of

features [96]. To avoid such extreme cases, the L2 penalty is adopted for mitigating the

over-fitting issues in the logistic regression classification algorithm.

The multi-class is an important functor in the logistic regression solver software [97],

in which if the option chosen is ‘ovr’, then a binary problem is fit for each label. For

‘multinomial’ the loss minimised is the multinomial loss fit across the entire probability

distribution, even when the data is binary; ‘auto’ selects ‘ovr’ if the data is binary, and

otherwise selects ‘multinomial’. In this project, since the classification is either converged

or diverged, ‘ovr’ is the most suitable functor option.

3.3.2.6 Support Vector Machine

Support vector machines (SVMs) form an important part of learning theory. They are

very efficient for many applications in science and engineering, especially for classification

problems (pattern recognition) [98]. The support vector machines were introduced by Boser,

Guyon and Vapnik [99] with polynomials kernels, and by Cortes and Vapnik [100] with

general kernels.

The classification of SVMs into respective categories is done by finding the optimal

hyperplane that differentiates the two classes in the best possible manner, as shown in Fig.

3.17 [11].

The mathematics behind the SVM binary classifier is illustrated as following. Firstly,

the hypothesis function h is defined as:

47

(a) Hyperplane in two dimensions [11]. (b) Hyperplane in three dimensions [11].

Fig. 3.17: Examples of SVM Hyperplanes. [11].

h(xi) =

+1, if w · x+ b ≥ 0

−1, if w · x+ b < 0

The point above or on the hyperplane will be classified as class +1, and the point

below the hyperplane will be classified as class −1. Secondly, compute the (soft-margin)

SVM classifier amounts to minimizing an expression of the form:

[
1

n

n∑
i=1

max(0, 1− yi · (w · xi − b))

]
+ λ‖ω‖2

We focus on the soft-margin classifier since choosing a sufficiently small value for lambda

yields the hard-margin classifier for linearly-classifiable input data [11].

Table 3.5: Hyper-parameters of the Classifier Support Vector Machine.

Hyper-parameters Value

penalty L2

multi-class ovr

48

The key hyper-parameters of the classifier SVM of the project are listed in Tab. 3.5,

which are exactly same as the logistic regression, and they also share the same reasons of

the same choices.

3.3.3 Surrogate Model

As shown in Fig. 3.2, the machine-learning based surrogate model is used as a replace-

ment for a practically-based simulation model for the integrated regenerative methanol

transcritical cycle. After the converged/diverged classifier model filtered out the diverged

input samples, the surrogate model would take in the converged samples and output the

corresponding objective values, which can be then fed into the optimizer. The main reason

for the replacement is to accelerate the system optimization speed. For that, the accuracy

of the surrogate model is of top importance.

3.3.3.1 Multi-layer Feed-Forward (MLF) Neural Network

The multi-layer feed-forward neural network, as described in Sec. 3.3.2.1, is used to

build the surrogate model with the network’s optimized hyper-parameters summarized in

Tab. 3.6.

Table 3.6: Hyper-parameters of the Surrogate MLF Neural Network.

Hyper-parameters Value

batch size 16,384

epoch 1,000

input size 7

hidden size 1 1,024

hidden size 2 512

dropout rate 0

learning rate 0.01

weight decay 0.0001

49

The definition of the terminologies are described in detail in Sec. 3.3.2.1. The corre-

sponding training process is shown in Fig. 3.18.

Fig. 3.18: Surrogate MLF Neural Network Training Process.

3.3.3.2 Separate MLF Neural Network

As discussed in Sec. 3.3.1, due to a series of reasons, the penalty and the levelized cost

of energy, LCOE, are trained together, while the first law efficiency, etaI , is trained alone

in another neural network.

Table 3.7: Hyper-parameters of the Surrogate penalty + LCOE MLF Neural Network.

Hyper-parameters Value

batch size 8,192

epoch 500

input size 7

hidden size 1 256

hidden size 2 128

dropout rate 0

learning rate 0.01

weight decay 0.0001

50

Fig. 3.19: Surrogate penalty + LCOE MLF Neural Network Training Process.

The optimized hyper-parameters for the penalty + LCOE network is summarized in

Tab. 3.7, and the corresponding training process is shown in Fig. 3.19.

In addition, the optimized hyper-parameters for the etaI network is summarized in

Tab. 3.8, and the corresponding training process is shown in Fig. 3.20.

Table 3.8: Hyper-parameters of the Surrogate etaI MLF Neural Network.

Hyper-parameters Value

batch size 16,384

epoch 1000

input size 7

hidden size 1 256

hidden size 2 128

dropout rate 0

learning rate 0.1

weight decay 0.0001

51

Fig. 3.20: Surrogate etaI MLF Neural Network Training Process.

3.3.3.3 Penalty Neural Networks

From this point on, all the rest surrogate models are etaI + LCOE neural networks,

and they share the penalty surrogate model, which is to be presented in this section.

The reason for training the penalty surrogate model individually is because the penalty

dataset is highly noisy and random, which causes that it is extremely hard for any surro-

gate models to find the internal patterns of the penalty dataset. When the penalty is

trained along with the etaI and LCOE, the average prediction accuracy for all targets is

deteriorated.

Specifically, since the design parameters corresponding to penalty values smaller than

1 are expected, the penalty dataset is divided into two groups: One with penalty values

smaller or equal to 1, and one with penalty values greater than 1. The two types of penalty

dataset are used to build the large penalty MLF neural network and the small penalty MLF

neural network, respectively.

The hyper-parameters of the surrogate large penalty MLF neural network model are

summarized in Tab. 3.9 and the corresponding training process is shown in Fig. 3.21.

The hyper-parameters of the surrogate small penalty MLF neural network model are

summarized in Tab. 3.10 and the corresponding training process is shown in Fig. 3.22.

52

Fig. 3.21: Surrogate Large penalty MLF Neural Network Training Process.

Fig. 3.22: Surrogate Small penalty MLF Neural Network Training Process.

53

Table 3.9: Hyper-parameters of the Surrogate Large penalty MLF Neural Network.

Hyper-parameters Value

batch size 16,384

epoch 100

input size 7

hidden size 1 1024

hidden size 2 512

dropout rate 0

learning rate 0.1

weight decay 0.0001

Table 3.10: Hyper-parameters of the Surrogate Small penalty MLF Neural Network.

Hyper-parameters Value

batch size 1,500

epoch 1000

input size 7

hidden size 1 1024

hidden size 2 512

dropout rate 0

learning rate 0.001

weight decay 0.0001

It is worth noticing that the batch size of the small penalty MLF network is around

one tenth of the large penalty MLF network. This is because the dataset with penalty value

smaller than 1 is of a very small portion, as indicated in Fig. 3.6. In addition, the training

process of the small penalty model is more volatile than that of the large penalty model.

This happens because the dataset with small penalty values are even more noisier than that

with large penalty values. Nevertheless, the prediction accuracy of the penalty model can

be significantly improved by training them separately.

54

3.3.3.4 Deep MLF Residual Neural Network

The residual networks (ResNets) alleviated problems of training very deep networks

[12]. It had gotten state-of-the-art performance on the ILSVRC 2015 classification task [101]

and allow training of extremely deep networks up to more than 1000 layers [102]. As shown

in Fig. 3.23 [12], residual networks make use of identity shortcut connections that enable

flow of information across layers without attenuation that would be caused by multiple

stacked non-linear transformations, resulting in improved optimization [103].

Fig. 3.23: Residual Learning: A Building Block. [12]

In this project, the surrogate model of deep MLF residual neural network is built for

the etaI + LCOE model only, for the penalty model is better to be trained alone due to

its randomness. Fig. 3.24 illustrates the etaI + LCOE deep MLF residual neural network,

which includes four building blocks. Each block connect the initial information to the end

of the building block so that the earlier information in the deep neural network could be

reserved.

The hyper-parameters of the surrogate etaI+LCOE deep MLF residual neural network

model are summarized in Tab. 3.11 and the corresponding training process is shown in Fig.

3.25.

It is worth noticing that the input size is 8 instead of 7 as summarized in Tab. 1.3.

55

Fig. 3.24: etaI + LCOE Deep MLF Residual Neural Network.

Fig. 3.25: Surrogate etaI + LCOE Deep MLF Residual Neural Network Training Process.

56

Table 3.11: Hyper-parameters of the Surrogate etaI + LCOE Deep MLF Residual Neural
Network.

Hyper-parameters Value

batch size 8,192

epoch 1,500

input size 8

hidden size 1 1,024

hidden size 2 8

hidden size 3 256

hidden size 4 8

hidden size 5 64

hidden size 6 8

hidden size 7 16

hidden size 8 8

dropout rate 0

learning rate 0.01

weight decay 0.001

This is because an additional feature, pressure after the high-pressure turbine P1, is added

by feature engineering. Feature engineering is an important but labor-intensive component

of machine learning applications [104]. Most machine learning performance is heavily de-

pendent on the representation of the feature vector. As a result, much of the actual effort in

deploying machine learning algorithms goes into the design of pre-processing pipelines and

data transformations [104,105]. To make use of feature engineering a model’s feature vector

is expanded by adding new features that are calculations based on the other features [106].

In our model, the pressure after the high-pressure turbine, P1, is calculated from the power

cycle maximum pressure, Pmax, and the high-pressure ratio, Pr1:

P1 = Pmax × Pr1

P1 is an important feature and it is proved to helping the etaI +LCOE deep MLF residual

neural network model be more predictably accurate. Importantly, before inputing into the

57

neural network, the range of P1 is normalized into the range [0, 1] by Min-Max normalization

as described in Sec. 3.3.1. Moreover, the last layer of each building block of the residual

network should be in the same size as the the input layer for the convenience of addition.

In this case, end layer size of each building block is 8, which is the input layer size.

3.3.3.5 1-D Convolutional Neural Network

Convolutional neural networks (CNNs), as shown in Fig. 3.26 [13], are hierarchical

neural networks whose convolutional layers alternate with subsampling layers, reminiscent

of simple and complex cells in the human visual cortex [107], following with a fully con-

nected layers, which are identical to multilayer perceptrons (MLP). They primarily mimic

the human visual system, which can efficiently recognize the patterns and structures (e.g.,

objects) in a visual scenery. CNNs are now commonly used for the “deep learning” tasks,

such as object recognition in large image achieves while achieving the state-of-the-art per-

formances [108–110].

Fig. 3.26: Example of 2-D Convolutional Neural Network [13]

To my knowledge, the 1-d CNN is rarely used; however, in order to test the power

of the CNN in the surrogate model, the surrogate etaI + LCOE 1-d convolutional neural

network is built. The 1-d CNN share the exactly the same working mechanism as 2-d CNN,

except the input is 1-d features instead of 2-d.

As indicated in Fig. 3.26, the convolution + relu + pooling is one building block of

58

the feature learning process in the CNN networks. In the surrogate etaI + LCOE 1-d

convolutional neural network model, there are two building blocks followed with the MLP

consisting of two hidden layers and one output layer. The hyper-parameters of the surrogate

etaI + LCOE 1-d convolutional neural network model is summarized in Tab. 3.12 and the

corresponding training process is shown in Fig. 3.27. As indicated in Tab 3.12, there are

lots of terminologies of the convolutional neural network (CNN). Due to the complexity of

the CNNs, specific explanations of those terminologies are save to be referred at [111].

Table 3.12: Hyper-parameters of the Surrogate etaI + LCOE 1-D Convolutional Neural
Network.

Hyper-parameters Value

batch size 8,192

epoch 500

first convolution input channel 1

first convolution output channel 32

first convolution kernel size 4

first convolution stride size 1

first convolution padding size 0

first maxpooling kernel size 1

first maxpooling stride size 1

second convolution input channel 32

second convolution output channel 64

second convolution kernel size 2

second convolution stride size 1

second convolution padding size 0

second maxpooling kernel size 2

second maxpooling stride size 1

MLP input size 64 ×3

MLP hidden size 1 1024

MLP hidden size 2 512

MLP dropout rate 0

learning rate 0.01

weight decay 0.001

59

Fig. 3.27: Surrogate etaI + LCOE 1-D Convolutional Neural Network.

3.3.3.6 1-D Convolutional Residual Neural Network

As the name implies, the 1-d convolutional residual neural network is the combination

of the deep MLF residual neural network and the 1-d convolutional neural network. This

type of surrogate model is proposed because a deep 1-d convolutional neural network is to

be built, and the ResNET is used for alleviating the problem of training the deep network.

Fig. 3.28 illustrates the surrogate etaI + LCOE 1-d convolutional residua neural net-

work model. It consists two convolutional building blocks without maxpooling, followed

with a MLP network with two hidden layers and one output layer. The MLP input layer

with 64∗5 neurons is the flattened layer from the convolutional neural network. Importantly,

the information of the input neurons are directly connected to the end of the convolutional

neural network. The corresponding hyper-parameters of the model is summarized in Tab.

3.13, and the training process is shown in Fig. 3.29.

60

Fig. 3.28: Surrogate etaI + LCOE 1-D Convolutional Residua Neural Network.

Fig. 3.29: Surrogate etaI + LCOE 1-D Convolutional Residual Neural Network.

61

Table 3.13: Hyper-parameters of the Surrogate etaI + LCOE 1-D Residual Convolutional
Neural Network.

Hyper-parameters Value

batch size 8,192

epoch 1,500

first convolution input channel 1

first convolution output channel 256

first convolution kernel size 3

first convolution stride size 1

first convolution padding size 1

second convolution input channel 256

second convolution output channel 64

second convolution kernel size 3

second convolution stride size 1

second convolution padding size 1

MLP input size 64 ×5

MLP hidden size 1 1024

MLP hidden size 2 512

MLP dropout rate 0

learning rate 0.1

weight decay 0.0001

62

CHAPTER 4

RESULTS

4.1 Converged/Diverged Classifier Models & Surrogate Models Comparison

In this section, the best converged/diverged classifier model and the best surrogate

model will be selected through metrics-based comparison.

4.1.1 Converged/Diverged Classifier Model Comparison

As described in Sec. 3.3.2, six classifier models are built, and the best-performed one

will be selected according to the commonly used evaluation metrics for binary classification

models: accuracy, precision, recall (also called sensitivity) and f1 score [112]. The classifier

model with the highest score wins the corresponding metric, and the one that wins the most

of metrics is going to be selected.

Accuracy is the fraction of predictions that are true. Although this metric is easy to

interpret, high accuracy does not necessarily characterize a good classifier. For instance,

it tells us nothing about whether False Negatives (FNs) or False Positives (FPs) are more

common. Similarly, both True Positives (TPs) and False Positives (FPs) are captured by

precision (also called the positive predictive value), which is the proportion of predicted pos-

itives that are correct. However, precision captures neither True Negatives (TNs) nor False

Negatives (FNs). A useful measure for understanding FNs is recall (also called sensitivity

or the true positive rate), which is the proportion of known positives that are predicted

correctly. However, neither TNs nor FPs affect this metric, and a classifier that simply

predicts that all data points are positive has high recall [112]. F1 Score might be a better

measure to use if we need to seek a balance between Precision and Recall AND there is an

uneven class distribution (large number of TNs). F1 Score is calculated from [113]:

f1 = 2× Precision ∗Recall
Precision+Recall

63

In this study, the four metrics are used all together for the converged/diverged classifier

models. The corresponding results are summarized in Tab. 4.1.

Table 4.1: Converged/Diverged Classifier Models Evaluation Results.

Classifier Model Name Accuracy Precision Recall F1 Score

[-] [-] [-] [-]

MLF Neural Network 0.991 0.995 0.983 0.992

Random Forest (RF) 0.988 0.996 0.980 0.988

Gaussian Näıve Bayes (NB) 0.819 0.835 0.808 0.821

K Nearest Neighbor (KNN) 0.869 0.999 0.804 0.891

Logistic Regression (LR) 0.732 0.752 0.723 0.737

Support Vector Machine (SVM) 0.732 0.758 0.719 0.738

As indicated in Tab. 4.1, The MLF Neural Network wins the accuracy, recall and the

f1 score metrics, and got just a tiny behind of the Random Forest model in the precision

metric. Thus, the MLF Neural Network with the schematics summarized in Tab. 3.1 is

selected as the best classifier model.

4.1.2 Surrogate Model Comparison

As described in Sec. 3.3.3, five surrogate models are built and the best-performed one is

selected according to the commonly-used evaluation metrics for neural networks: r-squared

(r2) score, relative absolute error (RAE) and L1 loss. The surrogate model with the highest

value of r2 score wins the r2 metric, while the one with the lowest value of relative absolute

error (RAE) wins the RAE metric and the one with the lowest value of L1 loss wins the L1

metrics. Finally, the surrogate model that wins the most of the three metrics is going to be

selected.

r2 score is a measurement that provides information about the goodness of fit of a

model [114]:

R2 = 1− sum squared regression (SSR)

total sum of squares (SST)
= 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

(4.1)

64

Where y is the actual value; ŷ is the predicted value; and ȳ is the mean of the actual y

value. As indicated in Eq. 4.1, r2 score is the proportion of the variance in the dependent

variable that is predictable from the independent variable(s) [115]. Best possible r2 score is

1.0 and it can be negative (because the model can be arbitrarily worse). A constant model

that always predicts the expected value of y, disregarding the input features, would get a

R2 score of 0.0 [116].

Relative absolute error (RAE) is a way to measure the performance of a predictive

model. It’s primarily used in machine learning, data mining, and operations management.

The Relative Absolute Error is expressed as a ratio, comparing a mean error (residual)

to errors produced by a trivial or naive model. A reasonable model (one which produces

results that are better than a trivial model) will result in a ratio of less than one [117]. RAE

is calculated from [68]:

RAE =

(
1

n

n∑
i=1

| ŷi − yi
yi
|

)
· 100% (4.2)

L1 loss is a type of loss evaluation of the neural network calculated from the absolute

error of the outputs. It is shown that the quality of the results improves significantly with

better loss functions, even when the network architecture is left unchanged [118]. There are

in general two types of loss functions, L1 and L2. Typically, L2 loss function penalizes large

errors, but is more tolerant to small errors; while L1 loss function does not over-penalize

larger errors, and it is calculated from [118]:

L1 =
1

n

n∑
i=1

|ŷi − yi| (4.3)

For the completeness, the L2 loss function is calculated from [119]:

L2 =
1

n

n∑
i=1

(ŷi − yi)2 (4.4)

In general, R-squared (r2) score measures the strength of the relationship between the

model and the dependent variable, and it is normally used as a goodness-of-fit measure for

regression models [120]. Relative Absolute Error (RAE) is a way to measure the performance

65

(a) Integrated Model. (b) Separate Model

Fig. 4.1: Integrated and Separate Models.

of a predictive model, and it is primarily used in fields of machine learning, data mining and

operation management [121]. Particularly, in the field of machine learning, RAE is used in

models where the minimal of relative errors between the predicted value and the true true

is primarily wanted. L1 loss function is used to minimize the error which is the sum of all

the absolute differences between the true value and the predicted value in a model [119].

Particularly, when the differences in the model are not supposed to be over-penalized, the

L1 loss function is used.

In this study, the five surrogate models are evaluated on all three metrics for complete-

ness. Specifically, the separate model is evaluated slightly differently from the integrated

model. The separated model was built to explore if the model’s prediction capabilities can

be improved by training each predicted targets separately with their own optimum network

architectures. As shown in Fig. 4.1, the separate model has only one output, which can

be either etaI or LCOE + penalty; while in the integrated models, all the outputs are

trained together. In this project, there are two networks in the separate model for etaI ,

LCOE+ penalty, respectively. Thus, in order to compare the metric values of the separate

models with ones of the other integrated models in a fair way, the values of each metrics in

r2 score, relative absolute error (RAE) and L1 loss for the model are calculated from the

66

average value of each output, as indicated in Eq. 4.5:

Mavg =
1

2
(Meat I +MLCOE+penalty) (4.5)

where M refers to the type of metrics to be calculated in the separate model. For example,

if the relative absolute error (RAE) of the separate model is to be calculated, it would be

calculated from the average RAE scores of the two networks of etaI and LCOE + penalty:

RAEavg =
1

2
(RAEeat I +RAELCOE+penalty) (4.6)

It is worth noting that similar equations apply to the surrogate models with the separate

penalty models.

Finally, the results of the surrogate models obtained from their corresponding testing

and validation dataset are summarized in Tab. 4.2. As indicated in the table, since the

Separate MLF Neural Network wins all the metrics, it is selected as the best surrogate

model along with the schematics summarized in Tab. 3.7 and Tab. 3.8

Table 4.2: Surrogate Models Evaluation Results.

Surrogate Model Name R2 Score [-] RAE [%] L1 Loss [-]

MLF Neural Network 0.966 6.77 10.418

Separate MLF Neural Network 0.987 2.37 1.903

Deep MLF Residual Neural Network 0.956 6.10 3.448

1-D Convolutional Neural Network 0.984 3.68 3.154

1-D Convolutional Residual Neural Network 0.970 5.82 5.071

4.2 Optimizers Comparison

In this section, based on the best converged/diverged classifier model and surrogate

model selected, the six optimizers described in Sec. 3.2 are compared by executing each

of them with the final-chosen surrogate model as shown in Fig. 3.2. Due to the stochas-

67

tic nature of most optimizers, the surrogate model is run as the core component in the

surrogate-optimizer model as shown in Fig. 3.1. As the results, the optimizer capable of

finding the set of design parameters that could produce the lowest LCOE and penalty values

in the physics-based model wins. The corresponding results are summarized in Tab. 4.3.

Table 4.3: Optimizer & Overall Results.

Optimizer Name LCOE [$/MWh] Penalty [-] etaI [%] Run Time [s]

Basin-Hopping 78.876 0.006 30.54 49

Brute Force 78.108 0.4639 31.68 70

Differential Evolution - - - -

Shgo 88.455 4.051 32.40 95

Dual Annealing 77.912 0.190 31.01 23

Fmin 81.320 0.774 32.21 41

As shown in Tab. 4.3, for some unknown reason, the overall algorithm has a hard time

converging at all with the differential evolution optimizer. Other than that, it is obvious

that the Dual Annealing optimizer wins the LCOE and run time, while Basin-Hopping

optimizer wins the penalty with the LCOE value just a little behind the LCOE value of

the Dual Annealing optimizer. Meanwhile, the Shgo optimizer wins the first law efficient,

etaI , with unacceptable LCOE value, penalty value and the run time. Since the lowest

LCOE and penalty values are expected for the overall system, the Dual Annealing optimizer

and the Basin-Hopping optimizer are both selected as the optimal optimizers.

68

CHAPTER 5

DISCUSSION

In this chapter, the final results from the physics-based model with the optimized

design parameters from the surrogate-optimizer model as input are compared with the

baseline results from the physics-based model, and the results directly from the surrogate

model are compared with the baseline results and the final results.

Specifically, the Tab. 5.1 summarizes the baseline design parameters from the physics-

based model, and the optimized design parameters from the surrogate model with the

dual-annealing (w/ DA) optimizer and with the basin-hopping (w/ BH) optimizer, respec-

tively. The lower section of the table shows the relative errors between the optimized

design parameters from surrogate model (w/ DA) and the baseline design parameters from

the physics-based model, and the relative errors between the optimized design parameters

from surrogate model (w/ BH) and the baseline design parameters from the physics-based

model, respectively. Furthermore, In Tab. 5.2, with the optimized design parameters from

the surrogate (w/ DA) and from the surrogate model (w/ BH) as input to the physics-based

model, the corresponding outputs of LCOE, penalty and the first-law efficiency values are

summarized along with the baseline output results from the physics-based model. The lower

section of the table shows the relative errors between the outputs with the DA-optimized

design parameters and the baseline outputs from the physics-based model, and the relative

errors between outputs with the BH-optimized design parameters and the baseline design

parameters from the physics-based model, respectively.

As shown in Tab. 5.2, the LCOE relative error (RE) with design parameters from

surrogate (w/ DA) is 0.94%, and the RE with design parameters from surrogate (w/ BH) is

2.18%, which are both relatively small. In addition, the penalty value absolute error (AE)

with design parameters from surrogate (w/ DA) is 0.0936, and the AE with design parame-

ters from surrogate (w/ BH) is −0.0904, which are both small. It is worth noticing that the

69

Table 5.1: Optimized Design Parameters Comparison with the Baseline.

Design Parameters baseline surrogate model (w/ DA) surrogate model (w/ BH)

Prmax [MPa] 8.22 8.31 8.36

Pr1 [-] 0.0505 0.0540 0.0491

Pr2 [-] 0.5246 0.4999 0.4667

Pr3 [-] 0.3595 0.2763 0.7744

f1 [-] 0.0140 0.0100 0.0410

f2 [-] 0.0665 0.0941 0.0167

f3 [-] 0.0788 0.0699 0.1001

Pmax RE [%] - 1.09 1.70

Pr1 RE [%] - 6.93 -2.77

Pr2 RE [%] - -4.71 -11.04

Pr3 RE [%] - -23.14 115.41

f1 RE [%] - -28.57 192.86

f2 RE [%] - 41.50 -74.89

f3 RE [%] - -11.29 27.03

Table 5.2: Results Comparison with the Baseline.

Results baseline surrogate model (w/ DA) surrogate model (w/ BH)

LCOE [$/MWh] 77.190 77.912 78.876

Penalty [-] 0.0964 0.1900 0.0060

eta I [%] 30.77 31.01 30.54

LCOE RE [%] - 0.94 2.18

Penalty AE [-] - 0.0936 -0.0904

eta I RE [%] - 0.78 -0.75

absolute error (AE) instead of the relative error (RE) is used for penalty comparison. This

is because the training dataset of the penalty is more like random noise and it is trained

with the AE cost function instead of RE. In addition, since a near 0 value is expected for

penalty and the baseline penalty value is already small enough, if the relative error were

calculated with the baseline value as the denominator, even the actual difference between

the optimized penalty and the baseline penalty were very small, the RE value would be

70

very huge, which doesn’t reflect the actual performances of the surrogate-optimizer model.

Lastly the eta I relative error (RE) with design parameters from surrogate (w/ DA) is

0.78%, and the RE with design parameters from surrogate (w/ BH) is −0.75%, which are

both very small. In summary, the surrogate model with the Dual Annealing optimizer

(w/ DA) outperforms the physics-based simulation model in terms of the the eta I design

parameters optimization, with the LCOE design parameters optimization and penalty de-

sign parameters optimization just a tiny behind the ones of the physics-based simulation

model. Meanwhile, the surrogate model with the Basin-Hopping optimizer (w/ BH) out-

performs the physics-based simulation model in terms of the the penalty design parameters

optimization, with the LCOE design parameters optimization and eta I design parameters

optimization a little behind the ones of the physics-based simulation model.

Furthermore, from Tab. 5.1, it can be observed that, in general, the baseline design

parameters and the optimized design parameters are in the similar range, with the surrogate

model with DA optimizer slightly outperforms the surrogate model with BH optimizer in

term of the average relative errors.

Table 5.3: Direct Results with Dual-Annealing (DA) optimizer Compared with the Baseline
and DA Final Results.

Results direct surrogate model baseline surrogate model

LCOE+penalty [-] 78.3189 77.2864 78.1020

eta I [%] 33.10 30.77 31.01

LCOE+penalty RE [%] - 1.3359 0.2777

eta I RE [%] - 7.57 6.74

Moreover, Tab. 5.3 and Tab. 5.4 summarizes the optimized results directly from the

surrogate model (direct surrogate model), and they are compared with the baseline results

(baseline) and with the final results that are from the physics-based model with the opti-

mized design parameters as inputs (surrogate model). It is worth noticing that the added

LCOE and penalty values are compared. That is because in the chosen surrogate model,

LCOE and penalty are trained together as one output, so that when the optimized design

71

Table 5.4: Direct Results with Basin-Hopping (BH) optimize Compared with the Baseline
and BH Final Results.

Results direct surrogate model baseline surrogate model

LCOE+penalty [-] 78.0661 77.2864 78.8820

eta I [%] 32.49 30.77 30.54

LCOE+penalty RE [%] - 1.0088 -1.0343

eta I RE [%] - 5.59 6.39

parameters are put into the surrogate LCOE+penalty model, the outcome would directly

be the corresponding optimized LCOE+penalty value, as summarized in Sec. 3.3.3.2.

Specifically, in Tab. 5.3, with the optimized design parameters from the surrogate-DA-

optimizer model as inputs, as summarized in Tab. 5.1, the corresponding results directly

from the surrogate-DA-optimizer model (direct surrogate model) is compared with the

baseline results (baseline) and with the corresponding results from the physics-based model

with the optimized design parameters as inputs (surrogate model). It can be observed that

the first law efficiency value from the direct surrogate model is 7.57% higher that from

the baseline, and it is 6.74% higher than that from the surrogate model. Meanwhile, the

LCOE+penalty value from the direct model is 1.3359% higher that from the baseline, and it

is 0.2777% higher than that from the surrogate model. It can be concluded that, in terms of

the first law efficiency result, the direct surrogate model way outperforms the physics-based

model and the surrogate-DA-optimizer model; however, in terms of the LCOE + penalty

result, the direct surrogate model is slightly outperformed by the physics-based model and

the surrogate-DA-optimizer model, although not too much.

In Tab. 5.4. with the optimized design parameters from the surrogate-BH-optimizer

model as inputs, as summarized in Tab. 5.1, the corresponding results directly from the

surrogate-BH-optimizer model (direct surrogate model) is compared with the baseline re-

sults (baseline) and with the corresponding results from the physics-based model with the

optimized design parameters as inputs (surrogate model). It can be observed that the first

law efficiency value from the direct surrogate model is 5.59% higher that from the baseline,

and it is 6.39% higher than that from the surrogate model. Meanwhile, the LCOE+penalty

72

value from the direct model is 1.0088% higher that from the baseline, and it is 1.0343%

lower than that from the surrogate model. It can be concluded that, in terms of the first

law efficiency result, the direct surrogate model again way outperforms the physics-based

model and the surrogate-BH-optimizer model; however, in terms of the LCOE + penalty

result, the direct surrogate model is slightly outperformed by the physics-based model, but

slightly outperforms the surrogate-BH-optimizer model.

In summary, in terms of the first law efficiency, the direct surrogate model produces the

optimal value, with the optimized design parameters from either the surrogate-DA-optimizer

model or the surrogate-BH-optimizer model. In addition, in terms of the LCOE+ penalty,

the direct surrogate model normally produces the less optimal values in comparison with the

baseline and surrogate models, no matter with the optimized design parameters from either

the surrogate-DA-optimizer model or the surrogate-BH-optimizer model. In this specific

study, only the LCOE + penalty value from the direct surrogate model with BH optimizer

slightly outperforms the one from the surrogate-BH-optimizer model.

In general, the ML-based surrogate model is proved to satisfy high-accuracy for pre-

dicting outputs with new input values, while only consuming small amount computational

power. In this study, it took around 100 hours to find the optimized baseline design pa-

rameters and corresponding results in Tab. 5.1 and Tab. 5.2 with the physics-based sim-

ulation model; while it took only under 10 minutes with the surrogate-optimizer models.

Specifically, the fact that the separate model outperforms the integrated model implies the

relation between inputs and outputs of the samples in the dataset are different for the

LCOE + penalty and the eta I models. As indicated in the parametric studies in Sec. 1.2,

Eta I demonstrates clear trends with the seven design parameters; while the penalty and

LCOE fluctuates much more, particularly with the the penalty fluctuates almost randomly

as the increase of seven design parameters. For this reason, by building ML-based surrogate

models for LCOE + penalty and the eta I separately, with their respective network struc-

ture and weight parameters optimized, gives the separate model more accurate prediction

capability than that of the integrated model. In addition, in comparison with the integrated

73

model, where LCOE, penalty, eta I are trained in one network, the separate model almost

doubled the amount of weight parameters overall, which also could be the reason why the

separate model performs better.

For optimization, unlike the ANN-GA methods chosen by [36], [38] and etc., in this

study, the basin-hopping and dual annealing algorithms are selected as the best optimizer.

According to Tab. 4.3, the differential evolution genetic optimizer has a hard time converging

for unknown reasons. It is Hypothesised that the hyperparameters, such as the mutation

rate or the recombination ratio, are not chosen properly so that the optimizer searches

slowly at the beginning; or the hyperparameters caused the searching dynamics too er-

ratic so that searching process is basically jumping around randomly within the domains.

In contrast, the basin-hopping algorithm takes advantages of local searches heavily while

leveraging the global searches by perturbation; and the dual annealing algorithm combines

the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated An-

nealing) [59,60] coupled to a strategy for applying a local search on accepted locations [61].

Both algorithms carefully reached a balance between searching too erratically so that being

kept bouncing around and searching too locally so that being trapped in a local trough.

Within the rest of the optimizers, Shgo algorithm has the worst performance in terms of

both optimization capability and time consumption. The reason is hypothesised to be the

over-complexity of the Shgo algorithm itself, so that more computational time is needed

and more noises are added during the optimization procedure. On the other hand, the

brute force and Fmin algorithms show moderate performances, with the brute force show-

ing better optimization capabilities and with the Fmin showing better time efficiency. The

brute force is not time efficient to use for big searching tasks. For example, in this study,

even though the brute force algorithm produced optimized design parameters that result

in good LCOE and Eta I values, the time consumed is relatively high, while the penalty

is outside the range of acceptability. If the penalty is to be reduced, much precise steps

need to be applied in the brute force algorithm for finding a better set of design parame-

ters, which would cause exponential increase of the computing time. However, comparing

74

with using the physics-based model along with the brute search optimizer, the surrogate

model helps accelerate the searching process significantly. This obviously violates the initial

purpose of applying the surrogate model. The Fmin algorihtm is time-efficient to use, and

the penalty and Eta I values resulted from the optimized design parameters it searched

are both acceptable. However, the LCOE value is not that optimal, but still acceptable. If

more initial searching points are given, Fmin could reach a better optimization capability

while sacrificing little time efficiency.

During the development of the program, some obstacles were confronted. Besides,

the differential evolution non-converging issue, the training of the penalty was also hard, no

matter in LCOE+penalty+eta I network, in LCOE+penalty network or in penalty alone

network. As indicated in Tab. 5.2, in comparing the optimized results with the baseline

results, the relative errors (RE) of both the Eta I and LCOE are calculated, but the

penalty is compared in terms of the absolute error (AE). This is because the penalty value

predicted from the ML-based surrogate model is trained with the absolute error instead of

the relative error. It was found that training dataset of the penalty are more like random

noises, so that whenever it is trained with the relative error, the error never goes down

when it reaches around 200%. For this reason, the absolute error was applied as the loss

function in training the LCOE + penalty. More efforts on tackling this issue is left for the

future work.

75

CHAPTER 6

CONCLUSION

In this study, a fast surrogate-optimizer model is built to accelerate the optimization

process in searching for the design parameters of a integrated regenerative methanol tran-

scritical cycle. Specifically, several machine-learning based surrogate models are built in

replacing the physics-based simulation model of the cycle, and the one with the best syn-

thesized evaluation score of R2, relative absolute error (RAE) and L1 loss is selected as the

final model. Prior to the surrogate model, a machine learning-based converged/diverged

classifier model is also built to filter out the non-converging input samples of design param-

eters. Lastly, a optimizer is carefully selected to work along with the classifier and surrogate

models in searching for the set of design parameters that could result in optimized LCOE,

penalty and eta I values in the physics-based model.

As the results, the separate Multi-Layer Feedforward (MLF) neural network outper-

forms all other surrogate models with R2 score of 0.987, RAE value of 2.37% and L1 loss

value of 1.903. Moreover, by executing all the candidate global/semi-global optimizers along

with the final-chosen separate MLF neural network surrogate model and the classifier model,

it indicates that the the dual-annealing (DA) and the basin-hopping (BH) optimizers pro-

duce design parameters that correspond to the best-performed LCOE, penalty and eta I

values from the physics-based model by passing those design parameters into it. Specifically,

the LCOE relative absolute error (RAE) corresponding to the DA-optimized design param-

eters is 0.94%, and the LCOE RAE corresponding to the BH-optimized design parameters

is 2.18%; the penalty absolute error (AE) corresponding to the DA-optimized design param-

eters is 0.0936, and the penalty RA corresponding to the BH-optimized design parameters

is -0.0904; the eta I relative absolute error (RAE) corresponding to the DA-optimized de-

sign parameters is 0.78%, and the eta I RAE corresponding to the BH-optimized design

parameters is -0.75%.

76

In summary, there are in total two top surrogate-optimizer model combinations: sepa-

rate MLF neural network surrogate model + dual-annealing (DA) optimizer, separate MLF

neural network surrogate model + basin-hopping (BH) optimizer. Both of them are ca-

pable of searching for the optimized design parameters that results in comparable LCOE,

penalty and eta I values from the physics-based model in comparison with the baseline

values. Particularly, in terms of the penalty value, the results from the surrogate model

with the basin-hopping (BH) optimizer slightly outperforms the baseline result; in terms

of the eta I value, the results from the surrogate model with the dual-annealing (DA) op-

timizer slightly outperforms the baseline result; and in terms of the LCOE value, both

surrogate-optimizer models are slightly outperformed by the baseline result, with the sur-

rogate model with the dual-annealing (DA) optimizer performs a bit better than the other

surrogate-optimizer model.

In building the surrogate-optimizer models, there are three persisting issues to be

addressed:

1. Obstacles in training the penalty in the related neural networks: the training dataset

for penalty is more like random noises, and it happens due to the complex nature of

the simulated system. Also, it is worth noting that the largest source of penalty is

due to fluid in the the pumps, even at the identified optima.

2. The non-converging problem with the differential evolution (DE) optimizer: when-

ever the optimizer in the surrogate-optimizer model is the DE optimizer, it becomes

extremely hard for the surrogate-optimizer model to converge. One hypothesis is

that the hyper parameters of the DE optimizer, such as the mutation ratio, are not

adjusted to the optima in adapt to the complex surrogate model.

3. Instability of the identified optima: for the converged optimal design parameters found

from the surrogate-optimizer models, if the values of them are rounded up a little bit,

it would become non-converging in the physics-based model.

77

For the future work, the issues mentioned above are expected to be addressed. Firstly,

for making the penalty easier to be trained in the neural network, its dataset generated

from the physics-based model should be less noisier. For example, since the fluid in pumps

are not desired, future work could seek to more heavily penalize these terms. Also, the

pump/regenerator solver in the physics-based model can be reconstructed to explore the

possibility of solving for a regenerator that will keep the fluid at the pump inlet subcooled.

Moreover, changing the way to define the penalty may also make the dataset easier to

be interpreted. Secondly, for reducing the complexity of Machine Learning (ML)-based

surrogate model, hybrid physics/ML model may be considered, meaning the ML-based

model can be used to approximate just the most time-consuming parts of the physics-based

model. This could potentially reduce runtime compared to the full physics-based model and

error compared to the full ML-based surrogate model. Lastly, more in-depth exploration on

why the instability happens at the optima are expected. For example, parametric studies

can be carried out at different sets of the optimal design parameters.

78

REFERENCES

[1] LLC NuScale Power. How the nuscale module works.

[2] Kelly Fleetwood. An introduction to differential evolution.

[3] Kemal H. Sahin and Amy R. Ciric. A dual temperature simulated annealing approach
for solving bilevel programming problems.

[4] DanielSvozil, Vladimir KvasniEka, and JiE Pospichal. Introduction to multi-layer
feed-forward neural networks.

[5] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

[7] . Random forest.

[8] alex abhi43. Gini impurity and entropy in decision tree – ml, 2020. GreeksforGreeks.

[9] Madison Schott. K-nearest neighbors (knn) algorithm for machine learning, 2019.

[10] Ashish Anand. What is the difference between linear regression and logistic regres-
sion?, 2019.

[11] Nikita Sharma. Understanding the mathematics behind support vector machines,
2020.

[12] Connor Shorten. Introduction to resnets, 2019.

[13] Sumit Saha. A comprehensive guide to convolutional neural networks — the eli5 way,
2018.

[14] Jiangfeng Wang, Zhixin Sun, Yiping Dai, and Shaolin Ma. Parametric optimization
design for supercritical co2 power cycle using genetic algorithm and artificial neural
network.

[15] Alessandro Massimiani, Laura Palagi, Enrico Sciubba, and Lorenzo Tocci. Neural
networks for small scale orc optimization.

[16] Laura Palagi, Enrico Sciubba, and Lorenzo Tocci. A neural network approach to
the combined multi-objective optimization of the thermodynamic cycle and the radial
inflow turbine for organic rankine cycle applications.

[17] VIRGINIA TORCZON. On the convergence of pattern search algorithms.

[18] Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, and Karel Crombecq. A
surrogate modeling and adaptive sampling toolbox for computer based design.

79

[19] D.T.Ingersoll, Z.J.Houghton, R.Bromm, and C.Desportes. Nuscale small modular
reactor for co-generation of electricity and water. 340:84–93, 2014.

[20] Yili Zhang, Hailei Wang, Sean Kissick, and Derick Botha. System modeling of an
integrated organic regenerative transcritical cycle with a small modular light water
reactor.

[21] Venkatesh Dasari. What is a pinch point in a heat exchanger?, 2017.

[22] Rohit K. Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network surrogate
models for high dimensional uncertainty quantification.

[23] M. Balesdent, L. Brevault, S. Lacaze, S. Missoum, and J. Morio. Methods for high-
dimensional and computationally intensive models.

[24] M M Rashidi, O Anwar Beg, A Basiri Parsa, and F Nazari. Analysis and optimization
of a transcritical power cycle with regenerator using artificial neural networks and
genetic algorithms.

[25] Jinxing Zhao, Min Xu, Mian Li, Bin Wang, and Shuangzhai Liu. Design and opti-
mization of an atkinson cycle engine with the artificial neural network method.

[26] M.A. José and A. Fernando. Combining neural networks and genetic algorithms to
predict and reduce diesel engine emissions.

[27] Xiaoshun Zhang, Bo Yang, Tao Yu, and Lin Jiang. Dynamic surrogate model based
optimization for mppt of centralized thermoelectric generation systems under hetero-
geneous temperature difference.

[28] R. G. Regis. Evolutionary programming for high-dimensional constrained expensive
black-box optimization using radial basis functions.

[29] Wahid Ali, Mohd Shariq Khan, Muhammad Abdul Qyyuma, and Moonyong Lee.
Surrogate-assisted modeling and optimization of a natural-gas liquefaction plant.

[30] Mustafa Berke Yelten, Ting Zhu, Slawomir Koziel, Paul D. Franzon, and Michael B.
Steer. Demystifying surrogate modeling for circuits and systems.

[31] Mazhar F, Khan AM, and Chaudhry IA. On using neural networks in uav structural
design for cfd data fitting and classification.

[32] Gang Sun and Shuyue Wang. A review of artificial neural network surrogate modelling
in aerodynamic design.

[33] Seung-Woo Kim, Anzy Lee, and Jongyoon Mun. A surrogate modeling for storm
surge prediction using an artificial neural network.

[34] RAVIPUDI V. RAO, ANKIT SAROJ, PAWEL OCLON, JAN TALER, , and JAYA
LAKSHMI. A posteriori multiobjective self-adaptive multipopulation jaya algorithm
for optimization of thermal devices and cycles.

80

[35] Michael D. Vose. The Simple Genetic Algorithm: Fundation and Theory. The MIT
Press, Cambridge, Massachusetts, 1971.

[36] M.V.J.J.Suresh, K.S.Reddy, and Ajit KumarKolar. Ann-ga based optimization of a
high ash coal-fired supercritical power plant.

[37] Delft University of Technology. Cycle-tempo release 5.0, 2007.

[38] Farzaneh Hajabdollahi, Zahra Hajabdollahi, and Hassan Hajabdollahi. Soft comput-
ing based multi-objective optimization of steam cycle power plant using nsga-ii and
ann.

[39] Arash Jamali, Pouria Ahmadi, Mohammad Nazri, and Mohd Jaafar. Optimization
of a novel carbon dioxide cogeneration system using artificial neural network and
multi-objective genetic algorithm.

[40] I.Y. Kim and O.L. de Weck. Adaptive weighted-sum method for bi-objective opti-
mization: Pareto front generation.

[41] Cybenko G. Approximation by superpositions of a sigmoidal function.

[42] Bishop C.M. Neural networks and their applications.

[43] MATLAB. fmincon active set algorithm., 2015.

[44] MATLAB. version 8.5.0.197613 (r2015a), 2015.

[45] Fubin Yang, Heejin Cho, Hongguang Zhang, Jian Zhang, and Yuting Wu. Artificial
neural network (ann) based prediction and optimization of an organic rankine cycle
(orc) for diesel engine waste heat recovery.

[46] Laura Palagi, Apostolos Pesyridis, Enrico Sciubba, and Lorenzo Tocci. Machine learn-
ing for the prediction of the dynamic behavior of a small scale orc system. 166:72–82,
2019.

[47] Akshay J. Dave, Jarod Wilson, and Kaichao Sun. Deep surrogate models for multi-
dimensional regression of reactor power. pages 1–4, 2020.

[48] David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to 110 atoms.

[49] Stefan Kühn. Mathematical optimization: What is the basin hopping algorithm?,
2018.

[50] David J. Wales. Energy Landscapes. Cambridge University Press, Cambridge, UK,
2003.

[51] Zhenqin Li and Harold A. Scheraga. Monte carlo-minimization approach to the
multiple-minima problem in protein folding.

[52] David J. Wales and Harold A. Scheraga. Global optimization of clusters, crystals,
and biomolecules. 285:1368–1372, 1999.

81

[53] SciPy. scipy.optimize.basinhopping.

[54] Anthony B. Morton and Iven M. Y. Mareels. An efficient brute-force solution to the
network reconfiguration problem.

[55] SciPy. scipy.optimize.brute.

[56] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuris-
tic for global optimization over continuous spaces.

[57] Stefan C. Endres, Carl Sandrock, and Walter W. Focke. A simplicial homology algo-
rithm for lipschitz optimisation.

[58] Xiang Y, Sun DY, Fan W, and Gong XG. Generalized simulated annealing algorithm
and its application to the thomson model.

[59] Tsallis C. Possible generalization of boltzmann-gibbs statistics.

[60] Tsallis C and Stariolo DA. Generalized simulated annealing.

[61] Xiang Y and Gong XG. Efficiency of generalized simulated annealing.

[62] SciPy. scipy.optimize.dual annealing.

[63] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi Jr. Optimization by simulated anneal-
ing. 220:671–680, 1983.

[64] Frank Liang. Optimization techniques simulated annealing, 2020.

[65] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties
of the nelder-mead simplex method in low dimensions.

[66] MATLAB. fminsearch algorithm.

[67] MATLAB. fminsearch.

[68] Alessandro Massimiani, Laura Palagi, Enrico Sciubba, and Lorenzo Tocci. Neural
networks for small scale orc optimization.

[69] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Fran-
cisco Herrera. A review on ensembles for the class imbalance problem: Bagging,
boosting, and hybridbased approaches.

[70] Bartosz Krawczyk, Micha l Wozniak, and Gerald Schaefer. Costsensitive decision tree
ensembles for effective imbalanced classification.

[71] Octavio LoyolaGonzález, José Fco. Mart́ınezTrinidad, Jesús Ariel CarrascoOchoa,
and Milton GarćıaBorroto. Study of the impact of resampling methods for contrast
pattern basedclassifiers in imbalanced databases. 175:935–947, 2016.

[72] Victoria López, Sara del Ŕıo, José Manuel Beńıtez, and Francisco Herrera. Cost-
sensitive linguistic fuzzy rule based classification systemsunder the mapreduce frame-
work for imbalanced big data.

82

[73] Guo Haixianga, Li Yijing, Jennifer Shang, Gu Mingyuna, Huang Yuanyuea, and Gong
Binge. Learning from class-imbalanced data: Review of methods and applications.

[74] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique.

[75] Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and Fei Yan. A multiple
expert approach to the class imbalance problem using inverse random under sampling.

[76] Jason Brownlee. What is the difference between a batch and an epoch in a neural
network?, 2018. Deep Learning.

[77] Jason Brownlee. How to grid search hyperparameters for deep learning models in
python with keras, August 2016. Deep Learning.

[78] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? In 32nd Conference on Neural Information
Processing Systems (NeurIPS 2018), 2018.

[79] SEBASTIAN RUDER. An overview of gradient descent optimization algorithms,
January 2016. OPTIMIZATION.

[80] Sebastian Bock and Martin Weiß. A proof of local convergence for the adam optimizer.
In International Joint Conference on Neural Networks, 2019.

[81] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In ICLR 2015, 2015.

[82] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization.

[83] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera: Neural networks for
machine learning.

[84] Abien Fred M. Agarap. Deep learning using rectified linear units (relu). In arXiv
preprint arXiv:1803.08375, 2018.

[85] Mariana Belgiu and Lucian Dragut. Random forest in remote sensing: A review of
applications and future directions.

[86] Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson, and
Robert P. Sheridan and.

[87] Avinash Navlani. Understanding random forests classifiers in python, May 2018.
datacamp.

[88] . sklearn.ensemble.randomforestclassifier.

[89] HARRY ZHANG. Exploring conditions for the optimality of naive bayes.

[90] . Naive bayes.

83

[91] SHICHAO ZHANG, XUELONG LI, MING ZONG, XIAOFENG ZHU, and DEBO
CHENG. Learning k for knn classification.

[92] TAVISH SRIVASTAVA. Introduction to k-nearest neighbors: A powerful machine
learning algorithm (with implementation in python r), 2018.

[93] Dhilip Subramanian. A simple introduction to k-nearest neighbors algorithm, 2019.

[94] . sklearn.neighbors.kneighborsclassifier.

[95] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. Robust logistic regression
and classification.

[96] Anuja Nagpal. L1 and l2 regularization methods, 2017.

[97] . sklearn.linear model.logisticregression.

[98] Qiang Wu and Ding-Xuan Zhou. Analysis of support vector machine classification.

[99] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-
rithm for optimal margin classifiers. In the Fifth Annual Workshop of Computational
Learning Theory 5, 1992.

[100] Corinna Cortes and Vladimir Vapnik. Support-vector networks.

[101] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database.

[102] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition.

[103] Rupesh K Srivastava, Klaus Greff, and Jurgen Schmidhuber. Training very deep
networks.

[104] Y. Bengio, A. Courville, and P. Vincent. “representation learning: A review and new
perspectives.

[105] Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. In
SoutheastCon, 2016.

[106] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised
feature learning.

[107] D. H. Wiesel and T. N. Hubel. Receptive fields of single neurones in the cat’s striate
cortex.

[108] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jurgen Schmidhuber.
Deep big simple neural nets for handwritten digit recognition.

[109] Dominik Scherer, Andreas Muller, and Sven Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In 20th International Conference
on Artificial Neural Networks (ICANN), 2010.

84

[110] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks.

[111] . Conv1d.

[112] Jake Lever, Martin Krzywinski, and Naomi Altman. Classification evaluation.

[113] Koo Ping Shung. Accuracy, precision, recall or f1?, 2018. towards data science.

[114] Newcastle University. Coefficient of determination, r-squared, 2020.

[115] Coefficient of determination, 2021.

[116] sklearn.metrics.r2 score, 2021.

[117] Stephanie. What is relative absolute error, 2019. Statistics How To.

[118] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image
restoration with neural networks.

[119] Amit Shekhar. What are l1 and l2 loss functions?, 2019.

[120] Jim Frost. How to interpret r-squared in regression analysis, 2021.

[121] Stephanie. What is relative absolute error?, 2019.

85

APPENDICES

86

APPENDIX A

Coding Files Hierarchy Diagram

Fig. A.1: Coding Files Diagram.

87

APPENDIX B

main.py

In Appendix B, the main.py file unde the main directory in Fig. A.1 are presented.

This is the only file needed to be run.

import numpy as np

import concurrent . f u t u r e s

import time

from s r c . i n t e g r a t e d c y c l e import In teg ratedCyc l e

from Optimizat ion . ScipyBasinhopping . bas inhopping import

Basinhopping

from Optimizat ion . S c i p y D i f f e r e n t i a l E v o l u t i o n .

d i f f e r e n t i a l e v o l u t i o n import D i f f e r e n t i a l E v o l u t i o n

from Optimizat ion . ScipyDual Anneal ing . dua l annea l ing import

DualAnnealing

from Optimizat ion . ScipyFmin . fmin import Fmin

def o p t i m i z e r t o o l () :

”””

For user to choose the o p t i m i z e r t o o l .

”””

us e r i np u t = input (”Which opt imize r to apply ?\n”

”Type ’B ’ f o r ’ Basinhopping ’ ;\ n”

88

”Type ’D1 ’ f o r ’ D i f f e r e n t i a l Evolut ion ’ ;\ n

”

”Type ’D2 ’ f o r ’ Dual Annealing ’ ;\ n”

”Type ’F ’ f o r ’Fmin ’ .\ n”)

i f us e r i np u t == ’B ’ :

opt imize r = Basinhopping ()

e l i f us e r i np u t == ’D1 ’ :

opt imize r = D i f f e r e n t i a l E v o l u t i o n ()

e l i f us e r i np u t == ’D2 ’ :

opt imize r = DualAnnealing ()

e l i f us e r i np u t == ’F ’ :

opt imize r = Fmin ()

else :

raise Exception (ValueError)

return opt imize r

def opt imiza t i on (opt imize r) :

”””

Do o p t i m i z a t i o n wi th the chosen o p t i m i z e r and then check the

r e s u l t s wi th the p h y s i c a l−based model

− f r e l e r r : R e l a t i v e e r r o r s between the opt imized t a r g e t (

LCOE surrogate + p e n a l t y s u r r o g a t e) from the s u r r o g a t e

model and the t a r g e t (LCOE true + p e n a l t y t r u e) from the

p h y s i c a l−based model wi th the opt imized d es i gn parameters

.

89

− P max : Surrogate model op t imized maximum p r e s s u r e o f the

secondary c y c l e .

− Pr 1 : Surrogate model op t imized h igh p r e s s u r e r a t i o o f the

secondary c y c l e .

− Pr 2 : Surrogate model op t imized middle p r e s s u r e r a t i o o f

the secondary c y c l e .

− Pr 3 : Surrogate model op t imized low p r e s s u r e r a t i o o f the

secondary c y c l e .

− f 1 : Surrogate model op t imized high−p r e s s u r e mass f r a c t i o n

o f the secondary c y c l e .

− f 2 : Surrogate model op t imized middle−p r e s s u r e mass f r a c t i o n

o f the secondary c y c l e .

− f 3 : Surrogate model op t imized low−p r e s s u r e mass f r a c t i o n o f

the secondary c y c l e .

− f s u r r o g a t e : LCOE surrogate + p e n a l t y s u r r o g a t e .

− f t r u e : LCOE true + p e n a l t y t r u e .

− LCOE true : The LCOE from the p h y s i c a l−based model wi th the

s u r r o g a t e model op t imized de s i g n parameters .

− p e n a l t y t r u e : The p e n a l t y from the p h y s i c a l−based model

wi th the s u r r o g a t e model op t imized de s i g n parameters .

− e t a F L s u r r o g a t e : The f i r s t law e f f i c i e n c y from the

s u r r o g a t e model wi th the s u r r o g a t e model op t imized des i gn

parameters .

− e ta F L t rue : The f i r s t law e f f i c i e n c y from the p h y s i c a l−

based model wi th the s u r r o g a t e model op t imized d es i gn

parameters .

− e t a F L r e l e r r : R e l a t i v e er ror between the e t a F L s u r r o g a t e

and the e t a F L tr ue .

90

”””

P max 0 , Pr 1 , Pr 2 , Pr 3 , f1 , f2 , f3 , f s u r r o g a t e ,

e ta FL sur rogate = opt imize r . s o l v e ()

P max = (P max 0 + 8 . 2 2) ∗ 1e6

try :

model = Integra tedCyc l e (P max , Pr 1 , Pr 2 , Pr 3 , f1 , f2 ,

f 3)

model . s o l v e ()

e ta FL true = model . eta FL

LCOE true , = model .LCOE()

p e n a l t y t r u e = model . pena l ty ()

f t r u e = LCOE true + p e n a l t y t r u e

f r e l e r r = (f s u r r o g a t e − f t r u e) / f t r u e

e t a F L r e l e r r = (e ta FL sur rogate − eta FL true) /

eta FL true

new re su l t = np . array ([[f s u r r o g a t e , f r e l e r r , P max ,

Pr 1 , Pr 2 , Pr 3 , f1 , f2 , f3 , f t r u e , LCOE true ,

pena l ty t rue , e ta FL surrogate ,

eta FL true , e t a F L r e l e r r]])

convergence = True

except :

print (’ Surrogate Optimizat ion Not Converged ’)

new re su l t = [P max 0 , Pr 1 , Pr 2 , Pr 3 , f1 , f2 , f 3]

convergence = False

91

return convergence , new re su l t

def search around (new resu l t , ∗ args) :

”””

Search the v i a b i l i t y o f o p t i m i z a t i o n around the non−converged

outcome .

− n e w r e s u l t : The not converged de s i g n parameters from the

s u r r o g a t e o p t i m i z a t i o n output . Type : L i s t

− args : Tuple input o f (replacement , d e l t a)

− rep lacement : The de s i gn parameter be ing r e p l a c e d

− d e l t a : Value change on the r e p l a c e d des i gn parameter

− r e s u l t : The corresponding de s i gn parameters and outcomes o f

the newly searched d es i g n parameters

”””

print (f ’ S ta r t Optimizat ion . . . ’)

(replacement , d e l t a) = args

index = [’P max ’ , ’ Pr 1 ’ , ’ Pr 2 ’ , ’ Pr 3 ’ , ’ f 1 ’ , ’ f 2 ’ , ’ f 3 ’] .

index (replacement)

new re su l t [index] = new re su l t [index] + de l t a

try :

model = Integra tedCyc l e (new re su l t [0] , n ew re su l t [1] ,

n ew re su l t [2] , n ew re su l t [3] , n ew re su l t [4] ,

n ew re su l t [5] , n ew re su l t [6])

model . s o l v e ()

e ta FL true = model . eta FL

LCOE true , = model .LCOE()

92

p e n a l t y t r u e = model . pena l ty ()

f t r u e = LCOE true + p e n a l t y t r u e

r e s u l t = np . array ([[n ew re su l t [0] , n ew re su l t [1] ,

n ew re su l t [2] , n ew re su l t [3] , n ew re su l t [4] ,

n ew re su l t [5] ,

n ew re su l t [6] , f t r u e , LCOE true ,

pena l ty t rue , e ta FL true]])

except :

r e s u l t = ’ Not Converged ’

return r e s u l t

i f name == ’ ma in ’ :

”””

Run the program with mult i−p r o c e s s o r s

”””

opt imize r = o p t i m i z e r t o o l () # Get user−chosen o p t i m i z a t i o n

t o o l

s t a r t = time . p e r f c o u n t e r ()

convergence , new re su l t = opt imiza t i on (opt imize r)

i f convergence :

print (’ Surrogate Optimizat ion Converged ! ’)

print (new re su l t)

f i n i s h = time . p e r f c o u n t e r ()

93

print (f ’ F in i sh in { round (f i n i s h − s ta r t , 2) } second (s) ’)

else :

d e l t a = 0 .5 # Try : 0 . 1 , 0 .01 , 0.001

check po in t s = [(’P max ’ , d e l t a ∗1 e6) , (’P max ’ , −d e l t a ∗1

e6) , (’ Pr 1 ’ , d e l t a) , (’ Pr 1 ’ , −d e l t a) , (’ Pr 2 ’ , d e l t a

) ,

(’ Pr 2 ’ , −d e l t a) , (’ Pr 3 ’ , d e l t a) , (’ Pr 3

’ , −d e l t a) , (’ f 1 ’ , d e l t a) , (’ f 1 ’ , −

d e l t a) ,

(’ f 2 ’ , d e l t a) , (’ f 2 ’ , −d e l t a) , (’ f 3 ’ ,

d e l t a) , (’ f 3 ’ , −d e l t a)] # No more than

20 , s i n c e we only have 20 l o g i c a l

p r o c e s s o r s

with concurrent . f u t u r e s . ProcessPoolExecutor () as executor

:

r e s u l t s = [executor . submit (search around , new resu l t ,

∗ args) for args in check po in t s]

for f in concurrent . f u t u r e s . as completed (r e s u l t s) :

print (f . r e s u l t ())

f i n i s h = time . p e r f c o u n t e r ()

print (f ’ F in i sh in { round (f i n i s h−s ta r t , 2) } second (s) ’)

94

APPENDIX C

src

In Appendix C, all Python files under the src directory in Fig. A.1 are presented. The

src directory includes all files of physical-based simulation of the Integrated Regenerative

Methanol Transcritical Cycle.

C.1 integrated cycle.py

import numpy as np

import s c ipy . opt imize as opt

import CoolProp . CoolProp as CoolProp

import CoolProp

from s r c . l c o e import hx cost , pump cost , c ondense r co s t

from s r c . secondary hx import SecondaryHX

from s r c . p r imary cyc l e import PrimaryCycle

from s r c . primary hx import PrimaryHX

from s r c . s e conda ry cyc l e import SecondaryCycle

class In teg ratedCyc l e :

”””

I n t e g r a t e d C y c l e models the NuScale SMR with a secondary

t r a n s c r i t i c a l Rankine c y c l e wi th Methanol as i t s working

f l u i d . The primary and secondary c y c l e s are s o l v e d

s i m u l t a n e o u s l y .

95

@author : Jacob Bryan

@date : 13 August 2020

”””

======================================

= LCOE & Penal ty Model Constants =

======================================

CEPCI 2019 = 607.9248 # ”Chemical Engineer ing Plant Cost

Index in 2018”

CEPCI 2016 = 541 .7 # ”Chemical Engineer ing Plant Cost Index

in 2016”

LCOE 2016 = 85 # [$/MWh] ” L e v e l i z e d c o s t o f e l e c t r i c i t y o f

NuScale p l a n t from : h t t p ://www. nuscalepower . com/smr−

b e n e f i t s / economical / operat ing−c o s t s ”

LCOE 2019 = LCOE 2016 ∗ CEPCI 2019 / CEPCI 2016

OvernightEquipCost f rac = 0.08067 # ” f r a c t i o n o f equipment

c o s t s o f b a s e l i n e c y c l e t h a t c o n t r i b u t e s to the p l a n t

o v e r n i g h t c o s t s (12 modules t o t a l) : from b a s e l i n e c y c e l

model”

Base l ineCyc leCost = 20841690 # [$]

LCOECapital frac = 0 .5 # ” f r a c t i o n o f LCOE t h a t covers

c a p i t a l c o s t s o f the p l a n t from : h t t p ://www. nuscalepower .

com/smr−b e n e f i t s / economical / c o n s t r u c t i o n−c o s t ”

T pinch = 5 # [K] pinch p o i n t d e l t a temperature in feed wat er

h e a t e r s

T normal = 10 # [K] v a l u e used to normal ize hxer temperature

c o n s t r a i n t s

T out normal = 1 # [K] v a l u e used to normal ize hxer

temperature c o n s t r a i n t s

96

x normal = 0 .1 # v a l u e used to normal ize q u a l i t y at mixing

e x i t c o n s t r a i n t s

x e x p a n s i o n l i m i t = 0 .87

e t a B a s e l i n e = 0.3122

def i n i t (s e l f , P max , Pr 1 , Pr 2 , Pr 3 , f1 , f2 , f3 , p f l d

=’ Water ’ , s f l d=’ Methanol ’ , p backend=’HEOS ’ , s backend=’

REFPROP’) :

”””

Parameters

−−−−−−−−−−

P max : f l o a t

Maximum secondary c y c l e p r e s s u r e [Pa]

Pr 1 : f l o a t

Pressure r a t i o o f the f i r s t t u r b i n e . Ranges from 0 to

1 .

Pr 2 : f l o a t

Pressure r a t i o o f the second t u r b i n e . Ranges from 0

to 1 .

Pr 3 : f l o a t

Pressure r a t i o o f the t h i r d t u r b i n e . Ranges from 0 to

1 .

f1 : f l o a t

97

Mass f r a c t i o n o f the f i r s t s p l i t t e r . Ranges from 0 to

1 .

f2 : f l o a t

Mass f r a c t i o n o f the second s p l i t t e r . Ranges from 0

to 1 .

f3 : f l o a t

Mass f r a c t i o n o f the t h i r d s p l i t t e r . Ranges from 0 to

1 .

p f l d : s t r i n g (Opt iona l)

Working f l u i d o f the primary c y c l e . D e f a u l t i s ’ Water

’ .

s f l d : s t r i n g (Opt iona l)

Working f l u i d o f the secondary c y c l e . D e f a u l t i s ’

Methanol ’ .

p backend : s t r i n g (Opt iona l)

S p e c i f i e s which backend CoolProp shou ld use when

c a l c u l a t i n g p r o p e r t i e s f o r the primary c y c l e f l u i d

. D e f a u l t

i s ’HEOS ’ . NOTE: Using the REFPROP backend f o r both

primary and secondary f l u i d s w i l l cause the model

to run

s i g n i f i c a n t l y s lower !

98

s backend : s t r i n g (Opt iona l)

S p e c i f i e s which backend CoolProp shou ld use when

c a l c u l a t i n g p r o p e r t i e s f o r the secondary c y c l e

f l u i d . D e f a u l t

i s ’REFPROP ’ . NOTE: Using the REFPROP backend f o r

both primary and secondary f l u i d s w i l l cause the

model to run

s i g n i f i c a n t l y s lower !

”””

s e l f .P = np . z e ro s (27)

s e l f .T = np . z e r o s (27)

s e l f . h = np . z e ro s (27)

s e l f . m dot = np . z e ro s (27)

s e l f . w t = np . z e r o s (4)

s e l f . w p = np . z e r o s (4)

s e l f . P max = P max

s e l f . Pr 1 = Pr 1

s e l f . Pr 2 = Pr 2

s e l f . Pr 3 = Pr 3

s e l f . f 1 = f1

s e l f . f 2 = f2

s e l f . f 3 = f3

s e l f . p f l d = CoolProp . AbstractState (p backend , p f l d)

s e l f . s f l d = CoolProp . AbstractState (s backend , s f l d)

s e l f . eta FL = np . nan

99

s e l f . DeltaT SGmin = np . nan

s e l f . W dot t = np . nan

s e l f . W dot p = np . nan

s e l f . W dot net = np . nan

s e l f . Q dot in = np . nan

s e l f . hxers = None

s e l f . p r imary cyc l e = PrimaryCycle (s e l f . p f l d)

s e l f . m dot H = 0

s e l f . m dot C = 0

s e l f . u s e s u r r o g a t e = False

s e l f . tune = False

s e l f . r t o l s u r r = 1e−6

def s o l v e (s e l f , r t o l =1e−6, maxiter =100) :

”””

S o l v e s the i n t e g r a t e d primary and secondary c y c l e s .

”””

So lve secondary c y c l e

s e c c y c l e = SecondaryCycle (s e l f . P max , s e l f . Pr 1 , s e l f .

Pr 2 , s e l f . Pr 3 , s e l f . f1 , s e l f . f2 , s e l f . f3 , s e l f . s f l d

, r t o l , maxiter)

s e c c y c l e c o n v e r g e d = s e c c y c l e . s o l v e ()

i f not s e c c y c l e c o n v e r g e d :

100

raise ValueError (’ Secondary c y c l e s o l v e r did not

converge ! ’)

Copy over secondary c y c l e s t a t e s to parent c l a s s o b j e c t

f o r ease o f ac ces s

s e l f .P = s e c c y c l e .P

s e l f .T = s e c c y c l e .T

s e l f . h = s e c c y c l e . h

s e l f . m dot = s e c c y c l e . m dot

s e l f . w t = s e c c y c l e . w t

s e l f . w p = s e c c y c l e . w p

S p e c i f i c turb ine , pump , and net power ; f i r s t law

e f f i c i e n c y o f secondary c y c l e c a l c u l a t i o n

w dot t = np .sum(s e l f . w t ∗ s e l f . m dot [[1 , 3 , 5 , 7]])

w dot p = np .sum(s e l f . w p ∗ s e l f . m dot [[1 0 , 13 , 16 , 1 9]])

w dot net = w dot t − w dot p

s e l f . eta FL = w dot net / (s e l f . h [0] − s e l f . h [2 0])

Seem to run i n t o o c c a s i o n a l non−p h y s i c a l s o l u t i o n s

which g i v e eta FL o u t s i d e o f p o s s i b l e bounds . S t i l l

l o o k i n g

i n t o a way to keep the secondary s o l v e r bounded to

avoid t h i s problem or l o o k f o r m u l t i p l e r o o t s .

i f s e l f . eta FL < 0 or s e l f . eta FL > 1 :

raise ValueError (’ eta was negat ive ! ’)

Main loop i n i t i a l g u e s s e s (d e f a u l t secant method)

101

x0 = 160 e6 # b a s e l i n e

x1 = 400 ∗ (s e l f . h [0] − s e l f . h [2 0]) # phys ics−informed

guess based on secondary c y c l e s o l u t i o n and ’

r e a s o n a b l e ’ m dot C v a l u e

Main loop (primary c y c l e and primary heat exchanger)

s o l u t i o n

r e s = opt . r o o t s c a l a r (f=s e l f . ma in l oop ob j e c t i v e , x0=x0 ,

x1=x1 , method=’ secant ’ , r t o l=r t o l , maxiter=maxiter)

i f not r e s . converged :

raise ValueError (’ In t eg ra t ed c y c l e s o l v e has not

converged ! ’)

Fina l c a l c u l a t i o n o f t o t a l power terms

s e l f . Q dot in = r e s . root

s e l f . W dot t = np .sum(s e l f . w t ∗ s e l f . m dot C ∗ s e l f .

m dot [[1 , 3 , 5 , 7]])

s e l f . W dot p = np .sum(s e l f . w p ∗ s e l f . m dot C ∗ s e l f .

m dot [[1 0 , 13 , 16 , 1 9]])

s e l f . W dot net = s e l f . W dot t − s e l f . W dot p

def m a i n l o o p o b j e c t i v e (s e l f , Q dot in) :

”””

O b j e c t i v e f u n c t i o n f o r main loop s o l v e r . Contains c a l l s

f o r the primary c y c l e and primary heat exchanger

s o l v e r s .

”””

102

Solve primary and secondary c y c l e mass f l o w r a t e s as

f u n c t i o n o f Q dot in e s t i m a t e

s e l f . m dot C = Q dot in / (s e l f . h [0] − s e l f . h [2 0])

s e l f . m dot H = s e l f . p r imary cyc l e . s o l v e (Q dot in)

Primary HX S o l v e r

primary hx = PrimaryHX(s e l f . P max , s e l f . m dot H , s e l f .

m dot C , s e l f . p f l d , s e l f . s f l d)

primary hx . s o l v e ()

Q dot update = primary hx . Q dot in

s e l f . DeltaT SGmin = primary hx . DeltaT SGmin

return Q dot update − Q dot in

def LCOE(s e l f) :

”””

C a l c u l a t e s l e v e l i z e d c o s t o f energy . Returns LCOE and

percent change in LCOE.

”””

Sca le m dot array (s t o r e d as mass f r a c t i o n s) to a c t u a l

mass f l o w r a t e s

s e l f . m dot ∗= s e l f . m dot C

Required heat t r a n s f e r r a t e s f o r secondary c y c l e heat

exchangers

Q dot hx1 = s e l f . m dot [7] ∗ (s e l f . h [7] − s e l f . h [8])

Q dot hx2 = s e l f . m dot [2 5] ∗ (s e l f . h [2 5] − s e l f . h [2 6])

Q dot hx3 = s e l f . m dot [2 3] ∗ (s e l f . h [2 3] − s e l f . h [2 4])

103

Q dot hx4 = s e l f . m dot [2 1] ∗ (s e l f . h [2 1] − s e l f . h [2 2])

Solve secondary HX geometr ie s & p r o f i l e s

s e l f . hxers = [SecondaryHX (s e l f . s f l d , s e l f . s f l d , s e l f . h

[7] , s e l f . h [1 0] , s e l f . m dot [7] , s e l f . m dot [1 0] ,

Q dot hx1 , s e l f .P [7] , s e l f .P [1 0]) ,

SecondaryHX (s e l f . s f l d , s e l f . s f l d , s e l f . h

[2 5] , s e l f . h [1 3] , s e l f . m dot [2 5] , s e l f .

m dot [1 3] , Q dot hx2 , s e l f .P [2 5] , s e l f .P

[1 3]) ,

SecondaryHX (s e l f . s f l d , s e l f . s f l d , s e l f . h

[2 3] , s e l f . h [1 6] , s e l f . m dot [2 3] , s e l f .

m dot [1 6] , Q dot hx3 , s e l f .P [2 3] , s e l f .P

[1 6]) ,

SecondaryHX (s e l f . s f l d , s e l f . s f l d , s e l f . h

[2 1] , s e l f . h [1 9] , s e l f . m dot [2 1] , s e l f .

m dot [1 9] , Q dot hx4 , s e l f .P [2 1] , s e l f .P

[1 9])]

C a l c u l a t e c o s t terms

C = np . z e ro s (9)

C[0] = hx cos t (s e l f . hxers [0] . area , s e l f .P [1 0] ∗ 1e−6)

C[1] = hx cos t (s e l f . hxers [1] . area , s e l f .P [1 3] ∗ 1e−6)

C[2] = hx cos t (s e l f . hxers [2] . area , s e l f .P [1 6] ∗ 1e−6)

C[3] = hx cos t (s e l f . hxers [3] . area , s e l f .P [1 9] ∗ 1e−6)

C[4] = pump cost (s e l f . w p [0] ∗ s e l f . m dot [1 0] ∗ 1e−3,

s e l f .P [1 0] ∗ 1e−6)

104

C[5] = pump cost (s e l f . w p [1] ∗ s e l f . m dot [1 3] ∗ 1e−3,

s e l f .P [1 3] ∗ 1e−6)

C[6] = pump cost (s e l f . w p [2] ∗ s e l f . m dot [1 6] ∗ 1e−3,

s e l f .P [1 6] ∗ 1e−6)

C[7] = pump cost (s e l f . w p [3] ∗ s e l f . m dot [1 9] ∗ 1e−3,

s e l f .P [1 9] ∗ 1e−6)

C[8] = condense r co s t (s e l f . W dot t)

C to ta l = np .sum(C)

C a l c u l a t e LCOE of the c y c l e

e f f f r a c = s e l f . Q dot in ∗ s e l f . eta FL / (160 e6 ∗ s e l f .

e t a B a s e l i n e)

co s t pe r c en t change = (C tota l − s e l f . Base l ineCyc leCost)

/ s e l f . Base l ineCyc leCost

LCOE new = (s e l f . LCOE 2019 + s e l f . LCOE 2019 ∗ s e l f .

LCOECapital frac ∗ s e l f . OvernightEquipCost f rac ∗

co s t pe r c en t change) / e f f f r a c

LCOE percent change = (LCOE new − s e l f . LCOE 2019) / s e l f .

LCOE 2019 ∗ 100

return LCOE new , LCOE percent change

def pena l ty (s e l f) :

”””

C a l c u l a t e s and r e t u r n s p e n a l t y term .

”””

P c r i t = s e l f . s f l d . p c r i t i c a l ()

105

g = np . z e ro s (16)

i f s e l f . hxers i s None :

s e l f .LCOE() # HX o b j e c t s are c r e a t e d in LCOE() ; c a l l

t h i s f u n c t i o n i f they haven ’ t been made y e t to

avoid throwing an er ror . TODO: This i s n ’ t p r e t t y

. . .

for i in range (4) : # g1 to g4 −− condenser and heat

exchanger regen

g [i] = s e l f . hxers [i] . pena l ty / s e l f . T normal

for i , j in zip ([4 , 5 , 6 , 7] , [1 0 , 13 , 16 , 1 9]) : # g6 to

g9 −− temperature change in c o l d s i d e o f heat

exchangers

g [i] = max(0 , (s e l f .T[j] − s e l f .T[j + 1]) / s e l f .

T out normal)

for i , j in zip ([8 , 9 , 1 0] , [1 2 , 15 , 1 8]) : # g10 to g12

−− pump q u a l i t y c o n s t r a i n t s

g [i] = s e l f . q u a l i t y p e n a l t y (s e l f . h [j] , s e l f .P [j] ,

P c r i t) / s e l f . x normal

for i , j in zip ([1 1 , 12 , 13 , 1 4] , [1 , 3 , 5 , 7]) : # g13

to g16 −− t u r b i n e expansion l i m i t s

s e l f . s f l d . update (CoolProp . HmassP INPUTS , s e l f . h [j] ,

s e l f .P [j])

106

g [i] = max(0 , (s e l f . x e x p a n s i o n l i m i t − s e l f .

a d j u s t q u a l i t y (s e l f . s f l d .Q() , s e l f . s f l d . phase ()

))) / s e l f . x normal

g [1 5] = max(0 , s e l f . T pinch − s e l f . DeltaT SGmin) / s e l f .

T normal # g17 −− primary heat exchanger pinch temp

pena l ty = np .sum(g ∗∗ 2) # Using element−wise square o f

i n d i v i d u a l terms to d i s c o u r a g e h i g h e r i n d i v i d u a l

p e n a l t y v a l u e s

return pena l ty

def q u a l i t y p e n a l t y (s e l f , h , P, P c r i t) :

i f P > P c r i t :

return 0

else :

s e l f . s f l d . update (CoolProp . HmassP INPUTS , h , P)

Q = s e l f . s f l d .Q()

phase = s e l f . s f l d . phase ()

return s e l f . a d j u s t q u a l i t y (Q, phase)

@staticmethod

def a d j u s t q u a l i t y (x , phase) :

”””

Returns an a p p r o p r i a t e q u a l i t y v a l u e g iven the input

phase . The q u a l i t y v a l u e re turned by CoolProp f o r

phases

107

o t her than two−phase mixtures don ’ t have an i n t e r p r e t a b l e

q u a l i t y v a l u e . This r e t u r n s a v a l u e a p p r o p r i a t e f o r

the phase .

”””

i f phase == 6 : # two−phase

x r e t = x

e l i f phase == 0 : # l i q u i d

x r e t = 0

e l i f phase in [1 , 2 , 3 , 5] : # s u p e r c r i t i c a l ,

s u p e r c r i t i c a l gas , s u p e r c r i t i c a l l i q u i d , gas

x r e t = 1

else :

raise ValueError (’ Unsupported phase : {} ’ . format (phase

))

return x r e t

C.2 lcoe.py

from math import f l o o r , log10

CEPCI 2019 = 607.9248 # ”Chemical Engineer ing Plant Cost Index

in 2018”

def hx cos t (A, P) :

K1 = 4.3247

K2 = −0.3030

K3 = 0.1634

108

B1 = 1.74

B2 = 1.55

P g = P − 0.101325

i f P g < 0 . 5 :

C1 = 0

C2 = 0

C3 = 0

else :

C1 = 0.03881

C2 = −0.11272

C3 = 0.08183

F p = p r e s s u r e c o r r e c t i o n (P g ∗ 0 . 1 , C1 , C2 , C3)

F m = 2.73 # ”For S t a i n l e s s S t e e l ”

” i f area > 1000 need to compute m u l t i p l e heat exchangers ”

max area = 1000 # [mˆ2]

i f A > max area :

n = f l o o r (A / max area)

rem = A % max area

u n i t c o s t = bare modu le cos t (max area , K1, K2, K3, B1 ,

B2 , F p , F m)

rem cost = bare modu le cos t (rem , K1, K2, K3, B1 , B2 , F p

, F m)

co s t = n ∗ u n i t c o s t + rem cost

else :

109

co s t = bare modu le cos t (A, K1, K2, K3, B1 , B2 , F p , F m)

return co s t

def p r e s s u r e c o r r e c t i o n (P, C1 , C2 , C3) :

i f C1 == C2 == C3 == 0 :

return 1

else :

F p = 10 ∗∗ (C1 + −C2 ∗ l og10 (P) + C3 ∗ (log10 (P)) ∗∗ 2)

return F p

def bare modu le cos t (A, K1, K2, K3, B1 , B2 , F p , F m) :

CEPCI 1 = 397 # ”Chemical Engineer ing Plant Cost Index in

2001”

i f A <= 1 :

C p o = 0 # [$]

else :

C p o = 10 ∗∗ (K1 + K2 ∗ (log10 (A)) + K3 ∗ (log10 (A)) ∗∗

2) ∗ CEPCI 2019 / CEPCI 1 # ”Non−c o r r e c t e d equipment

c o s t 2019 d o l l a r s ”

co s t = C p o ∗ (B1 + B2 ∗ F p ∗ F m) # ”Bare module c o s t ”

return co s t

def pump cost (W, P) :

K1 = 3.3892

110

K2 = 0.0536

K3 = 0.1538

B1 = 1.89

B2 = 1.35

P g = P − 0.101325

i f P g < 10 :

C1 = 0

C2 = 0

C3 = 0

else :

C1 = −0.3935

C2 = 0.3957

C3 = −0.00226

F P = p r e s s u r e c o r r e c t i o n (P ∗ 0 . 1 , C1 , C2 , C3)

F m = 2.3

co s t = bare modu le cos t (W, K1, K2, K3, B1 , B2 , F P , F m)

return co s t

def condens e r co s t (W dot t) :

a = 2913.64828

b = 0.70920

F m = 3

111

co s t = a ∗ (1 e−3 ∗ W dot t ∗ 1) ∗∗ b ∗ F m

return co s t

C.3 primary cycle.py

import numpy as np

import CoolProp . CoolProp as CP

import s c ipy . opt imize as opt

class PrimaryCycle :

T 2 = 583.15 # [K]

P primary = 12 .8 e6 # [Pa]

Primary Heigh t s in Both Steam Generator and Reactor Core [m

]

z 1 = 0.6622034

z 2 = 6.0026042

z 3 = 8.0518

z 4 = 14.404975

Height d i f f e r e n c e s in each s e c t i o n [m]

dh = np . array ([z 2 − z 1 ,

z 4 − z 2 ,

z 4 − z 3 ,

z 3 − z 1])

Flow areas [mˆ2]

A 1 = 0.9606432

A 3 = 2.660188228

k l o s s = 27 .6 # l o s s cons tant

112

def i n i t (s e l f , f l d) :

s e l f . f l d = f l d

def s o l v e (s e l f , Q dot in , r t o l =1e−6, maxiter =100) :

p r i m a r y c y c l e s o l n = opt . r o o t s c a l a r (f=s e l f .

ob j e c t i v e p r imary , bracket =[273 , 5 8 3 . 1 4 9] , method=’

brentq ’ ,

a rgs=(Q dot in) ,

r t o l=r t o l ,

maxiter=maxiter)

i f not p r i m a r y c y c l e s o l n . converged :

raise ValueError (p r i m a r y c y c l e s o l n . f l a g)

T 4 = p r i m a r y c y c l e s o l n . root

T 1 = 0 .5 ∗ (s e l f . T 2 + T 4)

s e l f . f l d . update (CP. PT INPUTS, s e l f . P primary , T 1)

cp = s e l f . f l d . cpmass ()

m dot H = Q dot in / (cp ∗ (s e l f . T 2 − T 4))

i f m dot H < 0 :

raise ValueError (’ m dot H i s negat ive ! T 4 = {} ’ .

format (T 4))

return m dot H

def o b j e c t i v e p r i m a r y (s e l f , T 4 , Q dot core) :

T 1 = (s e l f . T 2 + T 4) / 2 # a l s o i s T 3

113

T p = np . array ([T 1 , s e l f . T 2 , T 1 , T 4])

rho p = np . z e ro s (4)

s e l f . f l d . update (CP. PT INPUTS, s e l f . P primary , T 1)

cp = s e l f . f l d . cpmass ()

rho p [[0 , 2]] = s e l f . f l d . rhomass ()

s e l f . f l d . update (CP. PT INPUTS, s e l f . P primary , T p [1])

rho p [1] = s e l f . f l d . rhomass ()

s e l f . f l d . update (CP. PT INPUTS, s e l f . P primary , T p [3])

rho p [3] = s e l f . f l d . rhomass ()

m dot = Q dot core / (cp ∗ (s e l f . T 2 − T 4))

P p = rho p ∗ 9.80665 ∗ s e l f . dh # h y d r o s t a t i c p r e s s u r e [

Pa]

u 1 = m dot / s e l f . A 1 / rho p [0]

u 3 = m dot / s e l f . A 3 / rho p [2]

P dr ive P = P p [2] + P p [3] − P p [0] − P p [1]

P lo s s P = 0 .5 ∗ s e l f . k l o s s ∗ rho p [0] ∗ (u 1 ∗∗ 2 + u 3

∗∗ 2)

Delta P = P drive P − P los s P

return Delta P

C.4 primary hx.py

114

import numpy as np

import CoolProp . CoolProp as CP

def e u l e r (f , y0 , z0 , t span , N) :

t = np . l i n s p a c e (t span [0] , t span [1] , N + 1)

y dims = (N + 1 ,) i f (isinstance (y0 , f loat) or len (y0) == 1)

else (N + 1 , len (y0))

y = np . z e ro s (y dims)

z = np . z e ro s (y dims)

y [0] = y0

z [0] = z0

for i in range (N) :

h = t [i + 1] − t [i]

fn = f (t [i] , y [i])

y [i + 1] = y [i] + fn [: 2] ∗ h

z [i + 1] = fn [2 :]

return y .T, z .T

class PrimaryHX :

T p = 310 + 273.15 # hot s i d e i n l e t

T s = 301 + 273.15 # c o l d s i d e o u t l e t

tube mate r i a l = ’ Incone l 718 ’ # tube m a t e r i a l

RelRough = 0.035 # tube roughness

d o = 0.015875 # [m] ” o u t s i d e diameter o f steam genera tor

tube . Data from Kevin Drost emai l ”

115

d i = 0.013335 # [m] ” i n s i d e diameter o f steam genera tor

tube . Data from Kevin Drost emai l ”

A primary f low min = 1.597932 # [mˆ2] ”minimum f l o w area

between t u b e s f o r primary s i d e . Data from Kevin Drost

emai l ”

N t = 1380 # Total number o f t u b e s . Data from drawing #:

NP12−01−A011−M−SA−2689−S02

r c = 0.95885254 # [m] ” Averge tube column r a d i u s . Data from

drawing #: NP12−01−A011−M−SA−2689−S02”

d c = 2 ∗ r c # average tube column diameter

k t = 15.095 # [W/m−K] Thermal Res i s tance Analogy

L = 24.4812312 # [m] ” Average t o t a l tube l e n g t h . Data from

drawing #: NP12−01−A011−M−SA−2689−S02”

P primary = 12 .8 e6 # [Pa]

Some terms t h a t remain cons tant ; p r e c a l c u l a t e d to save time

in the long run

R foul dpr ime = 5e−6 # [mˆ2−K/W] ” Foul ing f a c t o r f o r tube

w a l l s . Value s e l e c t e d to match temp p r o f i l e to NuScale

Ana lys i s ”

R prime wal l = np . l og (d o / d i) / (2 ∗ np . p i ∗ k t)

R prime H foul = R foul dpr ime / (np . p i ∗ d o)

R prime C foul = R foul dpr ime / (np . p i ∗ d i)

R pr ime wa l l t o t = R prime wal l + R prime H foul +

R prime C foul

C z = 0.27

m z = 0.63

116

n z = 0.36

C nusca le = 1

h H const1 = C nusca le ∗ C z / d o ∗ (d o /

A primary f low min) ∗∗ m z

def i n i t (s e l f , P max , m dot H , m dot C , h f l d , c f l d ,

r t o l =1e−6, maxiter =100) :

s e l f . m dot H = m dot H

s e l f . m dot C = m dot C

s e l f . m dot H tube = s e l f . m dot H / s e l f . N t

s e l f . m dot C tube = s e l f . m dot C / s e l f . N t

s e l f . P max = P max

s e l f . i H = None

s e l f . i C = None

s e l f . T H = None

s e l f . T C = None

s e l f . x = None

s e l f . Q dot in = None

s e l f . DeltaT SGmin = None

s e l f . p f l d = h f l d

s e l f . s f l d = c f l d

s e l f . h H = 9850

s e l f . h H old = 9850

s e l f . h C = 7750

s e l f . h C old = 7750

117

s e l f . r t o l = r t o l

s e l f . maxiter = int (maxiter)

s e l f . h H const2 = m dot H ∗∗ s e l f . m z

def s o l v e (s e l f , N=50) :

s e l f . p f l d . update (CP. PT INPUTS, s e l f . P primary , s e l f . T p)

i h i n = s e l f . p f l d . hmass ()

s e l f . s f l d . update (CP. PT INPUTS, s e l f . P max , s e l f . T s)

i C out = s e l f . s f l d . hmass ()

(s e l f . i H , s e l f . i C) , (s e l f . T H , s e l f . T C) = e u l e r (s e l f .

e n t h a l p y d i f f , t span =(0 , s e l f . L) , y0=[i h i n , i C out

] , z0=[s e l f . T p , s e l f . T s] , N=N)

s e l f . Q dot in = s e l f . m dot H ∗ (i h i n − s e l f . i H [−1])

s e l f . DeltaT SGmin = np .min(s e l f . T H − s e l f . T C)

def e n t h a l p y d i f f (s e l f , t , x) :

i H , i C = x

Use l i n e a r approximation to p r e c o n d i t i o n loop . Usua l l y

keeps the s o l v e r l i m i t e d to j u s t 2−3 i t e r a t i o n s !

h H , s e l f . h C , T H , T C , dqdx tube , converged = s e l f .

c o n v e c t i o n c o e f f s (2 ∗ s e l f . h H − s e l f . h H old , i H ,

i C)

s e l f . h H old = s e l f . h H

s e l f . h H = h H

118

i f not converged :

raise ValueError (’ Convection c o e f f i c i e n t s o l u t i o n has

not converged ’)

di H = −dqdx tube / s e l f . m dot H tube

di C = −dqdx tube / s e l f . m dot C tube

return np . array ([di H , di C , T H , T C])

def c o n v e c t i o n c o e f f s (s e l f , h H , i H , i C) :

”””

I t e r a t i v e l y s o l v e s f o r the convec t ion c o e f f i c i e n t s o f a

heat exchanger .

”””

Get hot f l u i d p r o p e r t i e s

s e l f . p f l d . update (CP. HmassP INPUTS , i H , s e l f . P primary)

0.03 sec

Pr H avg = s e l f . p f l d . Prandtl ()

k H = s e l f . p f l d . conduc t i v i ty ()

T H = s e l f . p f l d .T()

h H const3 = Pr H avg ∗∗ (s e l f . n z + 0 . 2 5) ∗ k H

Get c o l d f l u i d p r o p e r t i e s

s e l f . s f l d . update (CP. HmassP INPUTS , i C , s e l f . P max) #

0.4 sec

T C = s e l f . s f l d .T()

Pr C = s e l f . s f l d . Prandtl ()

119

k C = s e l f . s f l d . c onduc t i v i ty ()

mu C = s e l f . s f l d . v i s c o s i t y ()

Re C = 4 ∗ s e l f . m dot C tube / (np . p i ∗ s e l f . d i ∗ mu C)

Nu C = 0.023 ∗ abs (Re C) ∗∗ 0 .8 ∗ abs (Pr C) ∗∗ 0 .4

h C = Nu C ∗ k C / s e l f . d i

R prime C = 1 / (h C ∗ np . p i ∗ s e l f . d i)

R prime other = R prime C + s e l f . R pr ime wa l l t o t

dqdx tube = 0 # d e f a u l t v a l u e t h a t shouldn ’ t ever

a c t u a l l y be used , but i t keeps the l i n t e r from y e l l i n g

at me . . .

converged = False

for i in range (s e l f . maxiter) :

R prime H = 1 / (h H ∗ np . p i ∗ s e l f . d o)

R prime T = R prime H + R prime other

dqdx tube = (T H − T C) / R prime T

T w o = T H − dqdx tube ∗ R prime H

s e l f . p f l d . update (CP. PT INPUTS, s e l f . P primary , T w o

) # 0.3 sec

Pr H s = s e l f . p f l d . Prandtl ()

mu H local = s e l f . p f l d . v i s c o s i t y ()

120

h H update = s e l f . h H const1 ∗ s e l f . h H const2 ∗

h H const3 ∗ mu H local ∗∗ (− s e l f . m z) ∗ Pr H s ∗∗

(−0.25)

d i f f h = abs (h H update − h H) / h H update

h H = h H update

i f d i f f h < s e l f . r t o l :

converged = True

break

return h H , h C , T H , T C , dqdx tube , converged

C.5 secondary cycle.py

import numpy as np

import CoolProp . CoolProp as CP

class SecondaryCycle :

T max = 301 + 273.15 # maximum src temperature

T pinch = 5 # pinch temperature f o r heat exchangers

T min = 35 + 273.15 # minimum sr c temperature

e ta p = 0.75 # pump e f f i c i e n c y

e t a t = 0.85 # t u r b i n e e f f i c i e n c y

def i n i t (s e l f , P max , Pr 1 , Pr 2 , Pr 3 , f1 , f2 , f3 , f l d ,

r t o l =1e−6, maxiter =100 ,) :

121

s e l f . f l d = f l d

s e l f . r t o l = r t o l

s e l f . maxiter = maxiter

s e l f . P max = P max

s e l f . Pr 1 = Pr 1

s e l f . Pr 2 = Pr 2

s e l f . Pr 3 = Pr 3

s e l f . f 1 = f1

s e l f . f 2 = f2

s e l f . f 3 = f3

s e l f .P = s e l f . i n i t P ()

s e l f . m dot = s e l f . i n i t m dot ()

s e l f .T = np . z e r o s (27)

s e l f .T [0] = s e l f . T max

s e l f . h = np . z e ro s (27)

s e l f . w t = np . z e r o s (4)

s e l f . w p = np . z e r o s (4)

s e l f . m dot tot = 0

#

===

==== These s t a t e s are d e f i n e d by the d es i gn parameters

====

122

#

===

S t a t e 1 p r o p e r t i e s are g iven by the max temperature and

p r e s s u r e o f the s rc

s e l f . f l d . update (CP. PT INPUTS, s e l f . P max , s e l f . T max)

s e l f . h [0] = s e l f . f l d . hmass ()

Solve s t a t e 2 p r o p e r t i e s

s e l f . w t [0] , s e l f . h [1] , s e l f .T [1] = s e l f . t u r b i n e (s e l f . h

[0] , s e l f .P [0] , s e l f .P [1])

Solve s t a t e 3 p r o p e r t i e s

s e l f .T[[2 , 2 1]] = s e l f .T [1]

s e l f . h [[2 , 2 1]] = s e l f . h [1]

Solve s t a t e 4 p r o p e r t i e s

s e l f . w t [1] , s e l f . h [3] , s e l f .T [3] = s e l f . t u r b i n e (s e l f . h

[2] , s e l f .P [2] , s e l f .P [3])

Solve s t a t e 5 p r o p e r t i e s

s e l f .T[[4 , 2 3]] = s e l f .T [3]

s e l f . h [[4 , 2 3]] = s e l f . h [3]

Solve s t a t e 6 p r o p e r t i e s

s e l f . w t [2] , s e l f . h [5] , s e l f .T [5] = s e l f . t u r b i n e (s e l f . h

[4] , s e l f .P [4] , s e l f .P [5])

123

Solve s t a t e 7 p r o p e r t i e s

s e l f .T[[6 , 2 5]] = s e l f .T [5]

s e l f . h [[6 , 2 5]] = s e l f . h [5]

Solve s t a t e 8 p r o p e r t i e s

s e l f . f l d . update (CP.QT INPUTS, 0 , s e l f . T min)

P min = s e l f . f l d . p ()

s e l f .P [[7 , 8 , 9]] = P min

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [6] , s e l f .T [6])

s e l f . w t [3] , s e l f . h [7] , s e l f .T [7] = s e l f . t u r b i n e (s e l f . h

[6] , s e l f .P [6] , s e l f .P [7])

Solve s t a t e 10 p r o p e r t i e s

s e l f . f l d . update (CP. PQ INPUTS, s e l f .P [9] , 0)

s e l f .T [9] = s e l f . f l d .T()

s e l f . h [9] = s e l f . f l d . hmass ()

s10 = s e l f . f l d . smass ()

Solve s t a t e 11 p r o p e r t i e s

s e l f . w p [0] , s e l f . h [1 0] , s e l f .T[1 0] = s e l f . pump(s e l f . h

[9] , s10 , s e l f .P [1 0])

Solve s t a t e 12 e n t h a l p y

s e l f . h [1 1] = s e l f . hot p inch temp (i h o t i n =7, i c o l d i n

=10)

def s o l v e (s e l f , h13o=64e3 , h16o=293e3 , h19o=630e3) :

converged = False

124

for j in range (s e l f . maxiter) :

for i , (ind , ho) in enumerate(zip ([1 3 , 16 , 1 9] , [h13o

, h16o , h19o])) :

s e l f . f l d . update (CP. HmassP INPUTS , ho , s e l f .P [ind

− 1])

s e l f . w p [i + 1] , s e l f . h [ind] , s e l f .T[ind] = s e l f .

pump(ho , s e l f . f l d . smass () , s e l f .P [ind])

S o l v e s output o f c o l d s i d e o f each heat exchanger

for a , b , c in [[1 4 , 25 , 1 3] , [1 7 , 23 , 1 6] , [2 0 , 21 ,

1 9]] :

s e l f . h [a] = s e l f . hot p inch temp (b , c)

Update e n t h a l p i e s based on t h i s mass f l o w r a t e

s e l f . h [2 2] = s e l f . h [2 1] − (s e l f . h [2 0] − s e l f . h [1 9]) /

s e l f . f 1

s e l f . h [2 4] = s e l f . h [2 3] − (s e l f . h [1 7] − s e l f . h [1 6]) /

s e l f . f 2

s e l f . h [2 6] = s e l f . h [2 5] − (s e l f . h [1 4] − s e l f . h [1 3]) /

s e l f . f 3

s e l f . h [1 2] = (s e l f . m dot [1 1] ∗ s e l f . h [1 1] + s e l f .

m dot [2 6] ∗ s e l f . h [2 6]) / s e l f . m dot [1 2]

s e l f . h [1 5] = (s e l f . m dot [1 4] ∗ s e l f . h [1 4] + s e l f .

m dot [2 4] ∗ s e l f . h [2 4]) / s e l f . m dot [1 5]

s e l f . h [1 8] = (s e l f . m dot [1 7] ∗ s e l f . h [1 7] + s e l f .

m dot [2 2] ∗ s e l f . h [2 2]) / s e l f . m dot [1 8]

Errors in our roo t e s t i m a t e s

125

e r r s = np . array ([(s e l f . h [1 2] − h13o) / s e l f . h [1 2] ,

(s e l f . h [1 5] − h16o) / s e l f . h [1 5] ,

(s e l f . h [1 8] − h19o) / s e l f . h [1 8]])

Next e s t i m a t e s are the newly c a l c u l a t e d v a l u e s (

f i x e d p o i n t i t e r a t i o n)

h13o = s e l f . h [1 2]

h16o = s e l f . h [1 5]

h19o = s e l f . h [1 8]

Check r t o l e x i t c r i t e r i a

i f np . a l l (abs (e r r s) < s e l f . r t o l) :

converged = True

break

Solve s t a t e 9 e n t h a l p y

s e l f . h [8] = s e l f . h [7] − s e l f . h [1 1] + s e l f . h [1 0]

Other temperatures

for ind in [1 1 , 13 , 14 , 16 , 17 , 19 , 2 0] :

s e l f . f l d . update (CP. HmassP INPUTS , s e l f . h [ind] , s e l f .P

[ind])

s e l f .T[ind] = s e l f . f l d .T()

return converged

def i n i t P (s e l f) :

P = np . z e ro s (27)

126

P [[0 , 19 , 2 0]] = 1

P [[1 , 2 , 16 , 17 , 18 , 21 , 2 2]] = s e l f . Pr 1

P [[3 , 4 , 13 , 14 , 15 , 23 , 2 4]] = s e l f . Pr 1 ∗ s e l f . Pr 2

P [[5 , 6 , 10 , 11 , 12 , 25 , 2 6]] = s e l f . Pr 1 ∗ s e l f . Pr 2 ∗

s e l f . Pr 3

P ∗= s e l f . P max

return P

def i n i t m dot (s e l f) :

m dot = np . ones (27)

m dot [[2 , 3 , 15 , 16 , 1 7]] = 1 − s e l f . f 1

m dot [[4 , 5 , 12 , 13 , 1 4]] = (1 − s e l f . f 1) ∗ (1 − s e l f . f 2)

m dot [[6 , 7 , 8 , 9 , 10 , 1 1]] = (1 − s e l f . f 1) ∗ (1 − s e l f .

f 2) ∗ (1 − s e l f . f 3)

m dot [[2 1 , 2 2]] = s e l f . f 1

m dot [[2 3 , 2 4]] = (1 − s e l f . f 1) ∗ s e l f . f 2

m dot [[2 5 , 2 6]] = (1 − s e l f . f 1) ∗ (1 − s e l f . f 2) ∗ s e l f . f 3

return m dot

def t u r b i n e (s e l f , h in , P in , P out) :

s e l f . f l d . update (CP. HmassP INPUTS , h in , P in)

x1 = s e l f . f l d .Q()

phase1 = s e l f . f l d . phase ()

x in = s e l f . a d j u s t q u a l i t y (x1 , phase1)

s i n = s e l f . f l d . smass ()

s s o u t = s i n

s e l f . f l d . update (CP. PSmass INPUTS , P out , s s o u t)

h s out = s e l f . f l d . hmass ()

127

x2 = s e l f . f l d .Q()

phase2 = s e l f . f l d . phase ()

x o u t s = s e l f . a d j u s t q u a l i t y (x2 , phase2)

x a = 0 .5 ∗ (x in + x o u t s)

e ta a = s e l f . e t a t ∗ (1 − 0 .72 ∗ (1 − x a))

W dot t s m dot = h in − h s out

W dot t m dot = W dot t s m dot ∗ e ta a

h out = h in − W dot t m dot

s e l f . f l d . update (CP. HmassP INPUTS , h out , P out)

T out = s e l f . f l d .T()

return W dot t m dot , h out , T out

def pump(s e l f , h in , s i n , P out) :

s e l f . f l d . update (CP. PSmass INPUTS , P out , s i n) # output

wi th no entropy change

h s out = s e l f . f l d . hmass ()

W dot s p m dot = h s out − h in # pump work needed w/

no entropy change

W dot p m dot = W dot s p m dot / s e l f . e ta p # a c t u a l

pump work needed d/ t e f f i c i e n c y l o s s e s

h out = h in + W dot p m dot # output e n t h a l p y

s e l f . f l d . update (CP. HmassP INPUTS , h out , P out) # a c t u a l

output s t a t e

T out = s e l f . f l d .T()

return W dot p m dot , h out , T out

def a d j u s t q u a l i t y (s e l f , x , phase) :

”””

128

Returns an a p p r o p r i a t e q u a l i t y v a l u e g iven the input

phase . The q u a l i t y v a l u e re turned by CoolProp f o r

phases

o t her than two−phase mixtures don ’ t have an i n t e r p r e t a b l e

q u a l i t y v a l u e . This r e t u r n s a v a l u e a p p r o p r i a t e f o r

the phase .

”””

i f phase == 6 : # two−phase

x r e t = x

e l i f phase == 0 : # l i q u i d

x r e t = 0

e l i f phase in [1 , 2 , 3 , 5] : # s u p e r c r i t i c a l ,

s u p e r c r i t i c a l gas , s u p e r c r i t i c a l l i q u i d , gas

x r e t = 1

else :

raise ValueError (’ Unsupported phase : {} ’ . format (phase

))

return x r e t

def hot pinch temp (s e l f , i h o t i n , i c o l d i n) :

”””

This i s a bunch o f c o n d i t i o n s f o r what ’ s e s s e n t i a l l y j u s t

h c o u t = h c p i n c h + d e l t a h ∗ m dot H / m dot C

This i s a f u n c t i o n only o f the input hot and c o l d s t a t e s .

Note t h a t we know the r a t i o o f mass f l o w r a t e s from

129

the des i gn parameters ; we don ’ t need to know the a c t u a l

mass f l o w r a t e s !

”””

P c r i t = s e l f . f l d . p c r i t i c a l ()

s e l f . f l d . update (CP. HmassP INPUTS , s e l f . h [i h o t i n] , s e l f .

P [i h o t i n])

T h in = s e l f . f l d .T()

s e l f . f l d . update (CP. HmassP INPUTS , s e l f . h [i c o l d i n] , s e l f

.P [i c o l d i n])

T c in = s e l f . f l d .T()

i f T h in − T c in > s e l f . T pinch : # temp d i f f e r e n c e i s

g r e a t e r than pinch temp

i f s e l f .P [i c o l d i n] < P c r i t and s e l f .P [i h o t i n] <

P c r i t : # below s u p e r c r i t i c a l

s e l f . f l d . update (CP. PQ INPUTS, s e l f .P [i h o t i n] ,

1)

T h sat , h h sa t = s e l f . f l d .T() , s e l f . f l d . hmass ()

s e l f . f l d . update (CP. PQ INPUTS, s e l f .P [i c o l d i n] ,

1)

T c sat = s e l f . f l d .T()

i f T h sat − s e l f . T pinch == T c sat :

s e l f . f l d . update (CP. PQ INPUTS, s e l f .P [

i c o l d i n] , 0)

h c p inch = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] − h h sa t)

e l i f T h sat − s e l f . T pinch > T c in :

130

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [

i c o l d i n] , T h sat − s e l f . T pinch)

h c p inch = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] − h h sa t)

else :

h c p inch = s e l f . h [i c o l d i n]

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [i h o t i n

] , T c in + s e l f . T pinch)

h superheat = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] −

h superheat)

e l i f s e l f .P [i h o t i n] < P c r i t : # hot s i d e not

s u p e r c r i t i c a l

s e l f . f l d . update (CP. PQ INPUTS, s e l f .P [i h o t i n] ,

1)

T h sat , h h sa t = s e l f . f l d .T() , s e l f . f l d . hmass ()

i f T h sat − T c in > s e l f . T pinch : # temp

d i f f e r e n c e g r e a t e r than pinch temp

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [

i c o l d i n] , T h sat − s e l f . T pinch)

h c p inch = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] − h h sa t)

else :

h c p inch = s e l f . h [i c o l d i n]

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [i h o t i n

] , T c in + s e l f . T pinch)

h superheat = s e l f . f l d . hmass ()

131

d e l t a h = max(0 , s e l f . h [i h o t i n] −

h superheat)

else : # both are s u p e r c r i t i c a l

P f1 = P c r i t − 1

s e l f . f l d . update (CP. PQ INPUTS, P f1 , 1)

h h pinch = s e l f . f l d . hmass ()

s e l f . f l d . update (CP. HmassP INPUTS , h h pinch , s e l f

.P [i c o l d i n])

T h pinch = s e l f . f l d .T()

i f T h pinch − T c in > s e l f . T pinch :

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [

i c o l d i n] , T h pinch − s e l f . T pinch)

h c p inch = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] − h h pinch

)

else :

h c p inch = s e l f . h [i c o l d i n]

s e l f . f l d . update (CP. PT INPUTS, s e l f .P [i h o t i n

] , T c in + s e l f . T pinch)

h superheat = s e l f . f l d . hmass ()

d e l t a h = max(0 , s e l f . h [i h o t i n] −

h superheat)

Q dot = s e l f . m dot [i h o t i n] ∗ d e l t a h

else :

h c p inch = s e l f . h [i c o l d i n]

Q dot = 0

return h c p inch + Q dot / s e l f . m dot [i c o l d i n]

132

C.6 secondary hx.py

import numpy as np

import CoolProp . CoolProp as CP

class SecondaryHX :

N area = 30

T pinch = 5

def i n i t (s e l f , h f l d , c f l d , h hot in , h co ld in ,

m dot hot , m dot cold , Q dot , P hot , P cold) :

s e l f . h f l d = h f l d

s e l f . c f l d = c f l d

s e l f . P hot = P hot

s e l f . P cold = P cold

s e l f . h h = np . z e ro s (s e l f . N area + 1)

s e l f . T h = np . z e r o s (s e l f . N area + 1)

s e l f . phase h = np . z e r o s (s e l f . N area + 1)

s e l f . h c = np . z e ro s (s e l f . N area + 1)

s e l f . T c = np . z e r o s (s e l f . N area + 1)

s e l f . phase c = np . z e r o s (s e l f . N area + 1)

s e l f . area = s e l f . hx area (h hot in , h co ld in , m dot hot ,

m dot cold , Q dot , P hot , P cold)

133

s e l f . pena l ty = s e l f . c h e c k h x v a l i d (s e l f . T h , s e l f . T c ,

s e l f . T pinch)

def hx area (s e l f , h hot in , h co ld in , m dot hot , m dot cold

, Q dot , P hot , P cold) :

Solve s t a t e s f o r hot and c o l d s i d e s at t h e i r i n p u t s

s e l f . h h [−1] = h h ot in

s e l f . h f l d . update (CP. HmassP INPUTS , h hot in , P hot)

s e l f . T h [−1] = s e l f . h f l d .T()

s e l f . phase h [−1] = s e l f . h f l d . phase ()

s e l f . h c [0] = h c o l d i n

s e l f . c f l d . update (CP. HmassP INPUTS , h co ld in , P cold)

s e l f . T c [0] = s e l f . c f l d .T()

s e l f . phase c [0] = s e l f . c f l d . phase ()

Find s p e c i f i c heat t r a n s f e r r e d on each s i d e and the

corresponding e n t h a l p y change

q h = Q dot / m dot hot

q c = Q dot / m dot cold

de l tah h = q h / s e l f . N area

d e l t a h c = q c / s e l f . N area

for j in range (1 , s e l f . N area + 1) :

s e l f . h h [− j − 1] = s e l f . h h [− j] − de l tah h

s e l f . h f l d . update (CP. HmassP INPUTS , s e l f . h h [− j − 1] ,

P hot)

s e l f . T h[− j − 1] = s e l f . h f l d .T()

134

s e l f . phase h [− j − 1] = s e l f . h f l d . phase ()

s e l f . h c [j] = s e l f . h c [j − 1] + d e l t a h c

s e l f . c f l d . update (CP. HmassP INPUTS , s e l f . h c [j] ,

P cold)

s e l f . T c [j] = s e l f . c f l d .T()

s e l f . phase c [j] = s e l f . c f l d . phase ()

area = 0

for k in range (s e l f . N area) :

U o = s e l f . g e t u (s e l f . phase h [k] , s e l f . phase c [k] ,

P hot , P cold)

deltaT lm = s e l f . log mean temp (s e l f . T h [k + 1] , s e l f

. T h [k] , s e l f . T c [k] , s e l f . T c [k + 1])

de l taQ dot = m dot hot ∗ (s e l f . h h [k + 1] − s e l f . h h [

k])

i f U o ∗ deltaT lm != 0 :

area += deltaQ dot / (U o ∗ deltaT lm)

return area

def g e t u (s e l f , phase h , phase c , P h , P c) :

d o = 0.033401 # [m] tube o u t s i d e diameter

d i = 0.0266446 # [m] tube i n s i d e diameter

k w = 16.3 # [W/m−K] approximate metal c o n d u c t i v i t y at

average temperature

135

h h = s e l f . c o n v c o e f f (phase h , 0 , P h)

h c = s e l f . c o n v c o e f f (phase c , 1 , P c)

h o , h i = (h c , h h) i f h h > h c else (h h , h c)

u = 1 / (1 / h o + d o ∗ np . l og (d o / d i) / (2 ∗ k w) +

d o / (d i ∗ h i))

return u

@staticmethod

def c h e c k h x v a l i d (T h , T c , T pinch) :

deltaT = T c − T h + T pinch

pena l ty = 0 i f ((T h [−1] − T h [0] < T pinch) and (T c [−1]

− T c [0] < T pinch)) else max(max(deltaT) , 0)

return pena l ty

@staticmethod

def c o n v c o e f f (phase , s ide , P) :

p = P ∗ 1e−6 # conver t to [MPa] so I don ’ t have to

f i g u r e out what ’ s go ing on with u n i t s wi th t h e s e

i n t e r p o l a t i o n s . . .

i f phase in [1 , 2 , 3 , 4 ,

5] : # i s s u p e r c r i t i c a l / s a t u r a t e d vapor /

superheated gas (” s e n s i b l e gas ”) ; on ly

l e a v e s twophase f o r o the r cases

i f p < 0 . 2 :

h = 0 .1

136

e l i f p < 1 :

h = 0 .1 ∗ (1 − (p − 0 . 2) / 0 . 8) + 0.325 ∗ (p −

0 . 2) / 0 .8

e l i f p < 10 :

h = 0.325 ∗ (1 − (p − 1) / 9) + 0.625 ∗ (p − 1) /

9

else :

h = 0.625

e l i f s i d e == 0 : # hot s i d e (” condensing ”)

i f p < 0 . 0 1 :

h = 1.75

e l i f p < 0 . 1 :

h = 1.75 ∗ (1 − (p − 0 . 0 1) / 0 . 0 9) + 3 ∗ (p −

0 . 0 1) / 0 .09

e l i f p < 1 :

h = 3 ∗ (1 − (p − 0 . 1) / 0 . 9) + 3 .5 ∗ (p − 0 . 1) /

9

else :

h = 3 .5

else : # c o l d s i d e (” b o i l i n g ”)

h = 1.75

return h ∗ 1e3 # conver t to [W/mˆ2−K]

@staticmethod

def log mean temp (Thi , Tho , Tci , Tco) :

dT1 = Thi − Tco

dT2 = Tho − Tci

137

i f abs (dT1 − dT2) < 1e−8 or abs ((dT1 − dT2) / dT1) < 1e

−8:

return Thi − Tci

else :

return (dT1 − dT2) / np . l og (dT1 / dT2)

138

APPENDIX D

Optimization

In Appendix D, all Python files under the optimization directory in Fig. A.1 are

presented. The optimization directory includes all optimization methods for the surrogate

model of the Integrated Regenerative Methanol Transcritical Cycle.

D.1 basinhopping.py

”””

Import l i b r a r i e s

”””

from s c ipy . opt imize import basinhopping

import torch

import numpy as np

from Modules import Module FFN LCOE penalty

from Modules import Module BinaryClass i f ierFNN

from Modules import Module FFN eta I

class Basinhopping :

”””

Optimize LCOE+p e n a l t y wi th Basinhopping a l g or i t hm .

@author : Y i l i Zhang

@date : 8/22/2020

”””

def i n i t (s e l f) :

139

s e l f . dev i c e = torch . dev i c e (’ cuda ’ i f torch . cuda .

i s a v a i l a b l e () else ’ cpu ’)

FNN LCOE penalty Model Hyper−parameters

s e l f . input s ize LCOE penalty = 7

s e l f . h idden s ize1 LCOE penalty = 256

s e l f . h idden s ize2 LCOE penalty = 128

s e l f . num out LCOE penalty = 1

s e l f . dropout rate LCOE penalty = 0

FFN BinaryClass i f i er Model Hyper−parameters

s e l f . i npu t s i z e B i na ryC la s s i f i e rFNN = 7

s e l f . h idden s i z e1 B inaryC la s s i f i e rFNN = 256

s e l f . h idden s i z e2 B inaryC la s s i f i e rFNN = 128

s e l f . num out BinaryClass i f ierFNN = 1

s e l f . d ropout ra te B inaryClas s i f i e rFNN = 0

FFN eta I Model Hyper−parameters

s e l f . i n p u t s i z e e t a I = 7

s e l f . h i d d e n s i z e 1 e t a I = 256

s e l f . h i d d e n s i z e 2 e t a I = 128

s e l f . num out eta I = 1

s e l f . d r o p o u t r a t e e t a I = 0 .3

def s o l v e (s e l f) :

”””

So lve the o p t i m i z a t i o n problem with the Basin−hopping

Algorithm

140

”””

x0 = [0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5] # I n i t i a l Guess

r e t = basinhopping (s e l f . func , x0 , n i t e r =500 , s t e p s i z e

=0.1 , i n t e r v a l =50) # Basin−hopping

p max = round(np . abs (r e t . x [0]) , 2)

pr1 = round(np . abs (r e t . x [1]) , 4)

pr2 = round(np . abs (r e t . x [2]) , 4)

pr3 = round(np . abs (r e t . x [3]) , 4)

f 1 = round(np . abs (r e t . x [4]) , 4)

f 2 = round(np . abs (r e t . x [5]) , 4)

f 3 = round(np . abs (r e t . x [6]) , 4)

f s u r r o g a t e = round(r e t . fun , 4)

e ta FL sur rogate = s e l f . g e t e f f i (np . abs (r e t . x))

return p max , pr1 , pr2 , pr3 , f1 , f2 , f3 , f s u r r o g a t e ,

e ta FL sur rogate

def FFN LCOE penalty (s e l f) :

”””

Load the FFN LCOE penalty s u r r o g a t e model

”””

FFN LCOE penalty = Module FFN LCOE penalty . MyModule(s e l f .

input s ize LCOE penalty , s e l f .

h idden size1 LCOE penalty , s e l f .

h idden size2 LCOE penalty , s e l f . num out LCOE penalty ,

s e l f . dropout rate LCOE penalty) # Load model

parameters

141

model path LCOE etaI = ’ . / Paths/

FFN LCOE penalty samllerRange . pth ’

FFN LCOE penalty . l o a d s t a t e d i c t (torch . load (

model path LCOE etaI , map locat ion=s e l f . dev i c e))

FFN LCOE penalty . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return FFN LCOE penalty

def FFN eta I (s e l f) :

”””

Load the FFN eta I s u r r o g a t e model

”””

FFN eta I = Module FFN eta I . MyModule(s e l f .

i n p u t s i z e e t a I , s e l f . h i d d e n s i z e 1 e t a I , s e l f .

h i d d e n s i z e 2 e t a I , s e l f . num out eta I , s e l f .

d r o p o u t r a t e e t a I)

mode l path e ta I = ’ . / Paths/ FFN eta I . pth ’

FFN eta I . l o a d s t a t e d i c t (torch . load (mode l path eta I ,

map locat ion=s e l f . dev i c e))

FFN eta I . eval () # f o r r e s t o r e the batch norm a l i z a t i on

and drop out i n f o .

return FFN eta I

def BinaryClass i f i e rFNN (s e l f) :

”””

Load the BinaryClassi f ierFNN s u r r o g a t e model in order to

d i s t i n g u i s h between the converged and the d i v e r g e d

142

de s i g n parameters .

”””

BinaryClass i f i e rFNN = Module BinaryClass i f ierFNN . MyModule

(s e l f . i nput s i z e B ina ryC la s s i f i e rFNN , s e l f .

h idden s i z e1 BinaryClas s i f i e rFNN , s e l f .

h idden s i z e2 BinaryClas s i f i e rFNN , s e l f .

num out BinaryClass i f ierFNN , s e l f .

d ropout rate B inaryClas s i f i e rFNN) . to (s e l f . dev i c e)

model path BinaryClass i f i e rFNN = ’ . / Paths/

BinaryClass i f i e rFNN . pth ’

BinaryClass i f i e rFNN . l o a d s t a t e d i c t (torch . load (

model path BinaryClass i f ierFNN , map locat ion=s e l f .

dev i c e))

BinaryClass i f i e rFNN . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return BinaryClass i f i e rFNN

def d a t a c l e a r n i n g (s e l f , Dataset , Col Name , LThre=None , HThre

=None) :

”””

Data Clearning : Clearn the O u t l i e r s in the d a t a s e t :

E l iminate a l l samples wi th the f i r s t law e f f i c i e n c y

lower than 20%

”””

i f (LThre == None) and (HThre == None) :

newData = Dataset

e l i f HThre == None :

newData = Dataset [Dataset [Col Name]>LThre]

143

e l i f LThre == None :

newData = Dataset [Dataset [Col Name]<HThre]

else :

newData = Dataset [Dataset [Col Name]<HThre]

newData = newData [newData [Col Name]>LThre]

return newData

def col Drop (s e l f , Dataset , Columns to drop) :

”””

Drop Undesired columns in the d a t a s e t

”””

newData = Dataset . drop (columns=Columns to drop)

return newData

def data prep (s e l f , des ign params) :

”””

Function : Data p r e p a r a t i o n

”””

f e a t u r e = des ign params . reshape (1 , −1) # Transfer data

from numpy array to t e n s o r

f e a t u r e = torch . t enso r (f e a t u r e)

return f e a t u r e # Return tranformed sample

def get Multi Task LCOE penalty (s e l f , des ign params) :

”””

Function : Get outcome from new s e t o f input sample

”””

144

f e a t u r e = s e l f . data prep (des ign params) # Data

p r e p a r a t i o n

f e a t u r e = f e a t u r e . to (s e l f . dev i c e) # Move t e n s o r s to the

c o n f i g u r e d d e v i c e

FFN LCOE penalty = s e l f . FFN LCOE penalty ()

Mult i Task pre l im = FFN LCOE penalty (f e a t u r e . f loat ()) #

Forward pass

Mult i Task pre l im = Mult i Task pre l im . cpu () . detach () .

numpy() # I n v e r s e Transform LCOE to i t s o r i g i n a l

v a l u e

t a r g e t = Mult i Task pre l im [0 , 0] . reshape (1 , −1)

return t a r g e t [0 , 0] # Return output

def g e t e f f i (s e l f , des ign params) :

Data p r e p a r a t i o n

f e a t u r e = s e l f . data prep (des ign params)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

Forward pass

FFN eta I = s e l f . FFN eta I ()

e f f i = FFN eta I (f e a t u r e . f loat ())

e f f i = e f f i . cpu () . detach () . numpy()

Return output

145

e f f i = e f f i [0 , 0]

return e f f i

def i f c o n v e r g e d (s e l f , des ign params) :

”””

Data p r e p a r a t i o n : Transfer data from numpy array to

t e n s o r

”””

f e a t u r e = des ign params . reshape (1 , −1)

f e a t u r e = torch . t enso r (f e a t u r e)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

Forward pass

BinaryClass i f i e rFNN = s e l f . BinaryClass i f i e rFNN ()

converged = BinaryClass i f i e rFNN (f e a t u r e . f loat ()) . cpu () .

detach () . numpy() [0 , 0] . reshape (1 , −1)

Determine i f converged

i f (converged >0.5) == True :

out = True

else :

out = False

Print the R e s u l t s

return out

146

def func (s e l f , x) :

”””

O b j e c t i v e Function

”””

x = np . abs (x) # Making sure the opt imized v a r i a b l e

f i n a l l y be ing processed are p o s i t i v e v a l u e s

i f s e l f . i f c o n v e r g e d (x) == True :

t a r g e t = s e l f . get Multi Task LCOE penalty (x)

f = t a r g e t

else :

f = 1 e10

return f

D.2 dual annealing.py

”””

Import l i b r a r i e s

”””

from s c ipy . opt imize import dua l annea l ing

import torch

import numpy as np

from Modules import Module FFN LCOE penalty

from Modules import Module BinaryClass i f ierFNN

from Modules import Module FFN eta I

class DualAnnealing :

”””

Optimize LCOE+p e n a l t y wi th Dual Annealing a l gor i thm .

147

@author : Y i l i Zhang

@date : 8/22/2020

”””

def i n i t (s e l f) :

s e l f . dev i c e = torch . dev i c e (’ cuda ’ i f torch . cuda .

i s a v a i l a b l e () else ’ cpu ’)

FNN LCOE penalty Model Hyper−parameters

s e l f . input s ize LCOE penalty = 7

s e l f . h idden s ize1 LCOE penalty = 256

s e l f . h idden s ize2 LCOE penalty = 128

s e l f . num out LCOE penalty = 1

s e l f . dropout rate LCOE penalty = 0

FFN BinaryClass i f i er Model Hyper−parameters

s e l f . i npu t s i z e B i na ryC la s s i f i e rFNN = 7

s e l f . h idden s i z e1 B inaryC la s s i f i e rFNN = 256

s e l f . h idden s i z e2 B inaryC la s s i f i e rFNN = 128

s e l f . num out BinaryClass i f ierFNN = 1

s e l f . d ropout ra te B inaryClas s i f i e rFNN = 0

FFN eta I Model Hyper−parameters

s e l f . i n p u t s i z e e t a I = 7

s e l f . h i d d e n s i z e 1 e t a I = 256

s e l f . h i d d e n s i z e 2 e t a I = 128

s e l f . num out eta I = 1

s e l f . d r o p o u t r a t e e t a I = 0 .3

148

def s o l v e (s e l f) :

”””

So lve the o p t i m i z a t i o n problem with the Dual Annealing

Algorithm

”””

bounds = [(0 , 1) , (0 , 1) , (0 , 1) , (0 , 1) , (0 , 1) , (0 , 1) , (0 , 1)

]

r e t = dua l annea l ing (s e l f . func , bounds , maxiter =1000)

p max = round(np . abs (r e t . x [0]) , 2)

pr1 = round(np . abs (r e t . x [1]) , 4)

pr2 = round(np . abs (r e t . x [2]) , 4)

pr3 = round(np . abs (r e t . x [3]) , 4)

f 1 = round(np . abs (r e t . x [4]) , 4)

f 2 = round(np . abs (r e t . x [5]) , 4)

f 3 = round(np . abs (r e t . x [6]) , 4)

f s u r r o g a t e = round(r e t . fun , 4)

e ta FL sur rogate = s e l f . g e t e f f i (np . abs (r e t . x))

return p max , pr1 , pr2 , pr3 , f1 , f2 , f3 , f s u r r o g a t e ,

e ta FL sur rogate

def FFN LCOE penalty (s e l f) :

”””

Load the FFN LCOE penalty s u r r o g a t e model

”””

FFN LCOE penalty = Module FFN LCOE penalty . MyModule(s e l f .

input s ize LCOE penalty , s e l f .

149

hidden size1 LCOE penalty , s e l f .

h idden size2 LCOE penalty , s e l f . num out LCOE penalty ,

s e l f . dropout rate LCOE penalty) # Load model

parameters

model path LCOE etaI = ’ . / Paths/

FFN LCOE penalty samllerRange . pth ’

FFN LCOE penalty . l o a d s t a t e d i c t (torch . load (

model path LCOE etaI , map locat ion=s e l f . dev i c e))

FFN LCOE penalty . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return FFN LCOE penalty

def FFN eta I (s e l f) :

”””

Load the FFN eta I s u r r o g a t e model

”””

FFN eta I = Module FFN eta I . MyModule(s e l f .

i n p u t s i z e e t a I , s e l f . h i d d e n s i z e 1 e t a I , s e l f .

h i d d e n s i z e 2 e t a I , s e l f . num out eta I , s e l f .

d r o p o u t r a t e e t a I)

mode l path e ta I = ’ . / Paths/ FFN eta I . pth ’

FFN eta I . l o a d s t a t e d i c t (torch . load (mode l path eta I ,

map locat ion=s e l f . dev i c e))

FFN eta I . eval () # f o r r e s t o r e the batch norm a l i z a t i on

and drop out i n f o .

return FFN eta I

150

def BinaryClass i f i e rFNN (s e l f) :

”””

Load the BinaryClassi f ierFNN s u r r o g a t e model in order to

d i s t i n g u i s h between the converged and the d i v e r g e d

de s i g n parameters .

”””

BinaryClass i f i e rFNN = Module BinaryClass i f ierFNN . MyModule

(s e l f . i nput s i z e B ina ryC la s s i f i e rFNN , s e l f .

h idden s i z e1 BinaryClas s i f i e rFNN , s e l f .

h idden s i z e2 BinaryClas s i f i e rFNN , s e l f .

num out BinaryClass i f ierFNN , s e l f .

d ropout rate B inaryClas s i f i e rFNN) . to (s e l f . dev i c e)

model path BinaryClass i f i e rFNN = ’ . / Paths/

BinaryClass i f i e rFNN . pth ’

BinaryClass i f i e rFNN . l o a d s t a t e d i c t (torch . load (

model path BinaryClass i f ierFNN , map locat ion=s e l f .

dev i c e))

BinaryClass i f i e rFNN . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return BinaryClass i f i e rFNN

def d a t a c l e a r n i n g (s e l f , Dataset , Col Name , LThre=None , HThre

=None) :

”””

Data Clearning : Clearn the O u t l i e r s in the d a t a s e t :

E l iminate a l l samples wi th the f i r s t law e f f i c i e n c y

lower than 20%

”””

151

i f (LThre == None) and (HThre == None) :

newData = Dataset

e l i f HThre == None :

newData = Dataset [Dataset [Col Name]>LThre]

e l i f LThre == None :

newData = Dataset [Dataset [Col Name]<HThre]

else :

newData = Dataset [Dataset [Col Name]<HThre]

newData = newData [newData [Col Name]>LThre]

return newData

def col Drop (s e l f , Dataset , Columns to drop) :

”””

Drop Undesired columns in the d a t a s e t

”””

newData = Dataset . drop (columns=Columns to drop)

return newData

def data prep (s e l f , des ign params) :

”””

Function : Data p r e p a r a t i o n

”””

f e a t u r e = des ign params . reshape (1 , −1) # Transfer data

from numpy array to t e n s o r

f e a t u r e = torch . t enso r (f e a t u r e)

return f e a t u r e # Return tranformed sample

def get Multi Task LCOE penalty (s e l f , des ign params) :

152

”””

Function : Get outcome from new s e t o f input sample

”””

f e a t u r e = s e l f . data prep (des ign params) # Data

p r e p a r a t i o n

f e a t u r e = f e a t u r e . to (s e l f . dev i c e) # Move t e n s o r s to the

c o n f i g u r e d d e v i c e

FFN LCOE penalty = s e l f . FFN LCOE penalty ()

Mult i Task pre l im = FFN LCOE penalty (f e a t u r e . f loat ()) #

Forward pass

Mult i Task pre l im = Mult i Task pre l im . cpu () . detach () .

numpy() # I n v e r s e Transform LCOE to i t s o r i g i n a l

v a l u e

t a r g e t = Mult i Task pre l im [0 , 0] . reshape (1 , −1)

return t a r g e t [0 , 0] # Return output

def g e t e f f i (s e l f , des ign params) :

Data p r e p a r a t i o n

f e a t u r e = s e l f . data prep (des ign params)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

Forward pass

FFN eta I = s e l f . FFN eta I ()

e f f i = FFN eta I (f e a t u r e . f loat ())

153

e f f i = e f f i . cpu () . detach () . numpy()

Return output

e f f i = e f f i [0 , 0]

return e f f i

def i f c o n v e r g e d (s e l f , des ign params) :

”””

Data p r e p a r a t i o n : Transfer data from numpy array to

t e n s o r

”””

f e a t u r e = des ign params . reshape (1 , −1)

f e a t u r e = torch . t enso r (f e a t u r e)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

Forward pass

BinaryClass i f i e rFNN = s e l f . BinaryClass i f i e rFNN ()

converged = BinaryClass i f i e rFNN (f e a t u r e . f loat ()) . cpu () .

detach () . numpy() [0 , 0] . reshape (1 , −1)

Determine i f converged

i f (converged >0.5) == True :

out = True

else :

out = False

154

Print the R e s u l t s

return out

def func (s e l f , x) :

”””

O b j e c t i v e Function

”””

x = np . abs (x) # Making sure the opt imized v a r i a b l e

f i n a l l y be ing processed are p o s i t i v e v a l u e s

i f s e l f . i f c o n v e r g e d (x) == True :

t a r g e t = s e l f . get Multi Task LCOE penalty (x)

f = t a r g e t

else :

f = 1 e10

return f

D.3 fmin.py

”””

Import l i b r a r i e s

”””

from s c ipy . opt imize import fmin

import torch

import numpy as np

from random import random

from Modules import Module FFN LCOE penalty

from Modules import Module BinaryClass i f ierFNN

from Modules import Module FFN eta I

155

class Fmin :

”””

Optimize LCOE+p e n a l t y wi th fmin a l gor i th m .

@author : Y i l i Zhang

@date : 8/22/2020

”””

def i n i t (s e l f) :

s e l f . dev i c e = torch . dev i c e (’ cuda ’ i f torch . cuda .

i s a v a i l a b l e () else ’ cpu ’)

FNN LCOE penalty Model Hyper−parameters

s e l f . input s ize LCOE penalty = 7

s e l f . h idden s ize1 LCOE penalty = 256

s e l f . h idden s ize2 LCOE penalty = 128

s e l f . num out LCOE penalty = 1

s e l f . dropout rate LCOE penalty = 0

FFN BinaryClass i f i er Model Hyper−parameters

s e l f . i npu t s i z e B i na ryC la s s i f i e rFNN = 7

s e l f . h idden s i z e1 B inaryC la s s i f i e rFNN = 256

s e l f . h idden s i z e2 B inaryC la s s i f i e rFNN = 128

s e l f . num out BinaryClass i f ierFNN = 1

s e l f . d ropout ra te B inaryClas s i f i e rFNN = 0

FFN eta I Model Hyper−parameters

s e l f . i n p u t s i z e e t a I = 7

156

s e l f . h i d d e n s i z e 1 e t a I = 256

s e l f . h i d d e n s i z e 2 e t a I = 128

s e l f . num out eta I = 1

s e l f . d r o p o u t r a t e e t a I = 0 .3

def s o l v e (s e l f) :

”””

So lve the o p t i m i z a t i o n problem with the fmin Algorithm

”””

r e t = s e l f . i t e r f m i n (maxcheckpoints =100)

p max = round(np . abs (r e t [0] [0]) , 2)

pr1 = round(np . abs (r e t [0] [1]) , 4)

pr2 = round(np . abs (r e t [0] [2]) , 4)

pr3 = round(np . abs (r e t [0] [3]) , 4)

f 1 = round(np . abs (r e t [0] [4]) , 4)

f 2 = round(np . abs (r e t [0] [5]) , 4)

f 3 = round(np . abs (r e t [0] [6]) , 4)

f s u r r o g a t e = round(r e t [1] , 4)

e ta FL sur rogate = s e l f . g e t e f f i (np . abs (r e t [0]))

return p max , pr1 , pr2 , pr3 , f1 , f2 , f3 , f s u r r o g a t e ,

e ta FL sur rogate

def FFN LCOE penalty (s e l f) :

”””

Load the FFN LCOE penalty s u r r o g a t e model

”””

157

FFN LCOE penalty = Module FFN LCOE penalty . MyModule(s e l f .

input s ize LCOE penalty , s e l f .

h idden size1 LCOE penalty , s e l f .

h idden size2 LCOE penalty , s e l f . num out LCOE penalty ,

s e l f . dropout rate LCOE penalty) # Load model

parameters

model path LCOE etaI = ’ . / Paths/

FFN LCOE penalty samllerRange . pth ’

FFN LCOE penalty . l o a d s t a t e d i c t (torch . load (

model path LCOE etaI , map locat ion=s e l f . dev i c e))

FFN LCOE penalty . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return FFN LCOE penalty

def FFN eta I (s e l f) :

”””

Load the FFN eta I s u r r o g a t e model

”””

FFN eta I = Module FFN eta I . MyModule(s e l f .

i n p u t s i z e e t a I , s e l f . h i d d e n s i z e 1 e t a I , s e l f .

h i d d e n s i z e 2 e t a I , s e l f . num out eta I , s e l f .

d r o p o u t r a t e e t a I)

mode l path e ta I = ’ . / Paths/ FFN eta I . pth ’

FFN eta I . l o a d s t a t e d i c t (torch . load (mode l path eta I ,

map locat ion=s e l f . dev i c e))

FFN eta I . eval () # f o r r e s t o r e the batch norm a l i z a t i on

and drop out i n f o .

return FFN eta I

158

def BinaryClass i f i e rFNN (s e l f) :

”””

Load the BinaryClassi f ierFNN s u r r o g a t e model in order to

d i s t i n g u i s h between the converged and the d i v e r g e d

de s i g n parameters .

”””

BinaryClass i f i e rFNN = Module BinaryClass i f ierFNN . MyModule

(s e l f . i nput s i z e B ina ryC la s s i f i e rFNN , s e l f .

h idden s i z e1 BinaryClas s i f i e rFNN , s e l f .

h idden s i z e2 BinaryClas s i f i e rFNN , s e l f .

num out BinaryClass i f ierFNN , s e l f .

d ropout rate B inaryClas s i f i e rFNN) . to (s e l f . dev i c e)

model path BinaryClass i f i e rFNN = ’ . / Paths/

BinaryClass i f i e rFNN . pth ’

BinaryClass i f i e rFNN . l o a d s t a t e d i c t (torch . load (

model path BinaryClass i f ierFNN , map locat ion=s e l f .

dev i c e))

BinaryClass i f i e rFNN . eval () # f o r r e s t o r e the batch

no rma l i za t ion and drop out i n f o .

return BinaryClass i f i e rFNN

def d a t a c l e a r n i n g (s e l f , Dataset , Col Name , LThre=None , HThre

=None) :

”””

159

Data Clearning : Clearn the O u t l i e r s in the d a t a s e t :

E l iminate a l l samples wi th the f i r s t law e f f i c i e n c y

lower than 20%

”””

i f (LThre == None) and (HThre == None) :

newData = Dataset

e l i f HThre == None :

newData = Dataset [Dataset [Col Name]>LThre]

e l i f LThre == None :

newData = Dataset [Dataset [Col Name]<HThre]

else :

newData = Dataset [Dataset [Col Name]<HThre]

newData = newData [newData [Col Name]>LThre]

return newData

def col Drop (s e l f , Dataset , Columns to drop) :

”””

Drop Undesired columns in the d a t a s e t

”””

newData = Dataset . drop (columns=Columns to drop)

return newData

def data prep (s e l f , des ign params) :

”””

Function : Data p r e p a r a t i o n

”””

f e a t u r e = des ign params . reshape (1 , −1) # Transfer data

from numpy array to t e n s o r

160

f e a t u r e = torch . t enso r (f e a t u r e)

return f e a t u r e # Return tranformed sample

def get Multi Task LCOE penalty (s e l f , des ign params) :

”””

Function : Get outcome from new s e t o f input sample

”””

f e a t u r e = s e l f . data prep (des ign params) # Data

p r e p a r a t i o n

f e a t u r e = f e a t u r e . to (s e l f . dev i c e) # Move t e n s o r s to the

c o n f i g u r e d d e v i c e

FFN LCOE penalty = s e l f . FFN LCOE penalty ()

Mult i Task pre l im = FFN LCOE penalty (f e a t u r e . f loat ()) #

Forward pass

Mult i Task pre l im = Mult i Task pre l im . cpu () . detach () .

numpy() # I n v e r s e Transform LCOE to i t s o r i g i n a l

v a l u e

t a r g e t = Mult i Task pre l im [0 , 0] . reshape (1 , −1)

return t a r g e t [0 , 0] # Return output

def g e t e f f i (s e l f , des ign params) :

Data p r e p a r a t i o n

f e a t u r e = s e l f . data prep (des ign params)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

161

Forward pass

FFN eta I = s e l f . FFN eta I ()

e f f i = FFN eta I (f e a t u r e . f loat ())

e f f i = e f f i . cpu () . detach () . numpy()

Return output

e f f i = e f f i [0 , 0]

return e f f i

def i f c o n v e r g e d (s e l f , des ign params) :

”””

Data p r e p a r a t i o n : Transfer data from numpy array to

t e n s o r

”””

f e a t u r e = des ign params . reshape (1 , −1)

f e a t u r e = torch . t enso r (f e a t u r e)

Move t e n s o r s to the c o n f i g u r e d d e v i c e

f e a t u r e = f e a t u r e . to (s e l f . dev i c e)

Forward pass

BinaryClass i f i e rFNN = s e l f . BinaryClass i f i e rFNN ()

converged = BinaryClass i f i e rFNN (f e a t u r e . f loat ()) . cpu () .

detach () . numpy() [0 , 0] . reshape (1 , −1)

Determine i f converged

i f (converged >0.5) == True :

162

out = True

else :

out = False

Print the R e s u l t s

return out

def func (s e l f , x) :

”””

O b j e c t i v e Function

”””

x = np . abs (x) # Making sure the opt imized v a r i a b l e

f i n a l l y be ing processed are p o s i t i v e v a l u e s

i f s e l f . i f c o n v e r g e d (x) == True :

t a r g e t = s e l f . get Multi Task LCOE penalty (x)

f = t a r g e t

else :

f = 1 e10

return f

def i t e r f m i n (s e l f , maxcheckpoints =1000) :

x = np . arange (7) # i n i t i a l row in the x matrix

f = np . arange (1) # i n i t i a l row in the o b j e c t i v e f u n c t i o n

v e r t i c a l v e c t o r

for i in range (maxcheckpoints) :

fmin Algorithm

163

x0 = [random () , random () , random () , random () , random

() , random () , random ()] # I n i t i a l Guess

r e t = fmin (s e l f . func , x0 , x t o l =0.0001 , f t o l =0.0001 ,

maxiter =500 , maxfun=500 , f u l l o u t p u t=True , d i sp=

False)

Return Opt imizat ion R e s u l t s

x opt = r e t [0]

func opt = r e t [1]

a t t a c h x o p t array and the f u n c o p t v a l u e to the x

and f array

x = np . vstack ((x , x opt))

f = np . vstack ((f , func opt))

Dele te the f i r s t rows

x = np . d e l e t e (x , 0 , 0)

f = np . d e l e t e (f , 0 , 0)

Find the minimum f v a l u e & i t s index & corresponding x

v a l u e s

f f i n a l o p t = min(f) [0]

f f i n a l o p t i n d e x = np . argmin (f)

x f i n a l o p t = x [f f i n a l o p t i n d e x , :]

return x f i n a l o p t , f f i n a l o p t

164

APPENDIX E

Modules

In Appendix E, all Python files under the Modules directory in Fig. A.1 are presented.

The Modules directory includes all files of Machine Learning patterns/structures of the

corresponding surrogate models of the Integrated Regenerative Methanol Transcritical Cycle

for quickly finding the desired output parameters.

E.1 Module FFN LCOE penalty.py

import torch . nn as nn

import torch

import torch . nn . f u n c t i o n a l as F

’ ’ ’

Network Model : F u l l y connected neura l network wi th four hidden

l a y e r

’ ’ ’

class MyModule(nn . Module) :

def i n i t (s e l f , i n p u t s i z e , h idden s i z e1 , h idden s i z e2 ,

num out , dropout ra te) :

super (MyModule , s e l f) . i n i t ()

s e l f . f c 1 = nn . Linear (i n p u t s i z e , h i d d e n s i z e 1)

s e l f . f c 2 = nn . Linear (h idden s i z e1 , h i d d e n s i z e 2)

s e l f . dropout = nn . Dropout (p=dropout ra te)

s e l f . output = nn . Linear (h idden s i z e2 , num out)

165

s e l f .m1 = nn . BatchNorm1d (h i d d e n s i z e 1)

s e l f .m2 = nn . BatchNorm1d (h i d d e n s i z e 2)

def forward (s e l f , x) :

x = F. r e l u (s e l f . f c 1 (x))

x = F. l e a k y r e l u (s e l f .m1(s e l f . f c 1 (x)))

x = s e l f . dropout (x)

x = F. r e l u (s e l f . f c 2 (x))

x = F. l e a k y r e l u (s e l f .m2(s e l f . f c 2 (x)))

x = s e l f . dropout (x)

x = F. l e a k y r e l u (s e l f . output (x))

return x

def i n i t w e i g h t (x) :

i f type (x) == nn . Linear :

torch . nn . i n i t . xav i e r un i f o rm (x . weight)

x . b i a s . data . f i l l (0 . 0 1)

E.2 Module FFN eta I.py

import torch . nn as nn

import torch

import torch . nn . f u n c t i o n a l as F

’ ’ ’

Network Model : F u l l y connected neura l network wi th four hidden

l a y e r

’ ’ ’

166

class MyModule(nn . Module) :

def i n i t (s e l f , i n p u t s i z e , h idden s i z e1 , h idden s i z e2 ,

num out , dropout ra te) :

super (MyModule , s e l f) . i n i t ()

s e l f . f c 1 = nn . Linear (i n p u t s i z e , h i d d e n s i z e 1)

s e l f . f c 2 = nn . Linear (h idden s i z e1 , h i d d e n s i z e 2)

s e l f . dropout = nn . Dropout (p=dropout ra te)

s e l f . output = nn . Linear (h idden s i z e2 , num out)

s e l f .m1 = nn . BatchNorm1d (h i d d e n s i z e 1)

s e l f .m2 = nn . BatchNorm1d (h i d d e n s i z e 2)

def forward (s e l f , x) :

x = F. r e l u (s e l f .m1(s e l f . f c 1 (x)))

x = s e l f . dropout (x)

x = F. r e l u (s e l f .m2(s e l f . f c 2 (x)))

x = s e l f . dropout (x)

x = F. r e l u (s e l f . output (x))

return x

def i n i t w e i g h t (x) :

i f type (x) == nn . Linear :

torch . nn . i n i t . xav i e r un i f o rm (x . weight)

x . b i a s . data . f i l l (0 . 0 1)

E.3 Module BinaryClassifierFNN.py

import torch . nn as nn

import torch

167

import torch . nn . f u n c t i o n a l as F

’ ’ ’

Network Model : F u l l y connected neura l network wi th four hidden

l a y e r

’ ’ ’

class MyModule(nn . Module) :

def i n i t (s e l f , i n p u t s i z e , h idden s i z e1 , h idden s i z e2 ,

num out , dropout ra te) :

super (MyModule , s e l f) . i n i t ()

s e l f . f c 1 = nn . Linear (i n p u t s i z e , h i d d e n s i z e 1)

s e l f . f c 2 = nn . Linear (h idden s i z e1 , h i d d e n s i z e 2)

s e l f . dropout = nn . Dropout (p=dropout ra te)

s e l f . output = nn . Linear (h idden s i z e2 , num out)

s e l f .m1 = nn . BatchNorm1d (h i d d e n s i z e 1)

s e l f .m2 = nn . BatchNorm1d (h i d d e n s i z e 2)

def forward (s e l f , x) :

x = F. r e l u (s e l f . f c 1 (x))

x = F. r e l u (s e l f .m1(s e l f . f c 1 (x)))

x = s e l f . dropout (x)

x = F. r e l u (s e l f . f c 2 (x))

x = F. r e l u (s e l f .m2(s e l f . f c 2 (x)))

x = s e l f . dropout (x)

x = torch . s igmoid (s e l f . output (x))

return x

168

def i n i t w e i g h t (x) :

i f type (x) == nn . Linear :

torch . nn . i n i t . xav i e r un i f o rm (x . weight)

x . b i a s . data . f i l l (0 . 0 1)

169

APPENDIX F

Paths

The Paths directory in Fig. A.1 includes all the PTH files (.pth) that store the learned

parameters for the corresponding modules in Appendix. E. Due to the difficulty of showing

the content of the .pth files explicitly, please find the corresponding .pth files in my Github:

https://github.com/Yili-Zhang/Dissertation-Path-Files

https://github.com/Yili-Zhang/Dissertation-Path-Files

	Surrogate Optimization Model for an Integrated Regenerative Methanol Transcritical Cycle
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background & Overview
	Thesis Problem
	Literature Review

	OBJECTIVES
	APPROACH
	Overview
	Optimizers
	Basin-Hopping
	Brute Force
	Differential Evolution
	SHGO
	Dual Annealing
	Fmin

	Converged/Diverged Classifier Model and Surrogate Model
	Dataset Analysis & Data Pre-processing
	Converged/Diverged Classifier Model
	Multi-layer Feed-Forward (MLF) Neural Network
	Random Forest
	Gaussian Naïve Bayes
	K Nearest Neighbor
	Logistic Regression
	Support Vector Machine

	Surrogate Model
	Multi-layer Feed-Forward (MLF) Neural Network
	Separate MLF Neural Network
	Penalty Neural Networks
	Deep MLF Residual Neural Network
	1-D Convolutional Neural Network
	1-D Convolutional Residual Neural Network

	RESULTS
	Converged/Diverged Classifier Models & Surrogate Models Comparison
	Converged/Diverged Classifier Model Comparison
	Surrogate Model Comparison

	Optimizers Comparison

	DISCUSSION
	CONCLUSION
	REFERENCES
	APPENDICES
	A Coding Files Hierarchy Diagram
	B main.py
	C src
	 integrated_cycle.py
	 lcoe.py
	 primary_cycle.py
	 primary_hx.py
	 secondary_cycle.py
	 secondary_hx.py

	D Optimization
	 basinhopping.py
	 dual_annealing.py
	 fmin.py

	E Modules
	 Module_FFN_LCOE_penalty.py
	 Module_FFN_eta_I.py
	 Module_BinaryClassifierFNN.py

	F Paths

