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ABSTRACT

Comparative Study of Machine Learning Models on Solar Flare Prediction Problem

by

Nikhil Sai Kurivella, Master of Science

Utah State University, 2021

Major Professor: Soukaina Filali Boubrahimi, Ph.D.
Department: Computer Science

Solar flare events are explosions of energy and radiation from the Sun’s surface. These

events occur due to the tangling and twisting of magnetic fields associated with sunspots.

When Coronal Mass ejections accompany solar flares, solar storms could travel towards

earth at very high speeds, disrupting all earthly technologies and posing radiation hazards

to astronauts. For this reason, the prediction of solar flares has become a crucial aspect

of forecasting space weather. Our thesis utilized the time-series data consisting of active

solar region magnetic field parameters acquired from SDO that span more than eight years.

The classification models take AR data from an observation period of 12 hours as input to

predict the occurrence of flare in next 24 hours. We performed preprocessing and feature

selection to find optimal feature space consisting of 28 active region parameters that made

our multivariate time series dataset (MVTS). For the first time, we modeled the flare

prediction task as a 4-class problem and explored a comprehensive set of machine learning

models to identify the most suitable model. This research achieved a state-of-the-art true

skill statistic (TSS) of 0.92 with a 99.9% recall of X-/M- class flares on our time series

forest model. This was accomplished with the augmented dataset in which the minority

class is over-sampled using synthetic samples generated by SMOTE and the majority classes

are randomly under-sampled. This work has established a robust dataset and baseline
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models for future studies in this task, including experiments on remedies to tackle the class

imbalance problem such as weighted cost functions and data augmentation. Also the time

series classifiers implemented will enable shapelets mining that can provide interpreting

ability to domain experts.

(78 pages)
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PUBLIC ABSTRACT

Comparative Study of Machine Learning Models on Solar Flare Prediction Problem

Nikhil Sai Kurivella

Solar flare events are explosions of energy and radiation from the Sun’s surface. These

events occur due to the tangling and twisting of magnetic fields associated with sunspots.

When Coronal Mass ejections accompany solar flares, solar storms could travel towards

earth at very high speeds, disrupting all earthly technologies and posing radiation hazards

to astronauts. For this reason, the prediction of solar flares has become a crucial aspect

of forecasting space weather. Our thesis utilized the time-series data consisting of active

solar region magnetic field parameters acquired from SDO that span more than eight years.

The classification models take AR data from an observation period of 12 hours as input to

predict the occurrence of flare in next 24 hours. We performed preprocessing and feature

selection to find optimal feature space consisting of 28 active region parameters that made

our multivariate time series dataset (MVTS). For the first time, we modeled the flare

prediction task as a 4-class problem and explored a comprehensive set of machine learning

models to identify the most suitable model. This research achieved a state-of-the-art true

skill statistic (TSS) of 0.92 with a 99.9% recall of X-/M- class flares on our time series

forest model. This was accomplished with the augmented dataset in which the minority

class is over-sampled using synthetic samples generated by SMOTE and the majority classes

are randomly under-sampled. This work has established a robust dataset and baseline

models for future studies in this task, including experiments on remedies to tackle the class

imbalance problem such as weighted cost functions and data augmentation. Also the time

series classifiers implemented will enable shapelets mining that can provide interpreting

ability to domain experts.
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CHAPTER 1

INTRODUCTION

The Sun has a massive impact on our planet and space behavior. Many changes, dis-

turbances, and phenomena keep occurring in and around the Sun’s atmosphere, generally

referred to as Solar activity. It has several variables that fluctuate even on a fraction of

a millisecond. There are four primary forms of solar activity: solar flares, coronal mass

ejections, high-speed solar winds, and solar energetic particles. While each of these forms

can negatively impact the earth, X-, M- solar flares and coronal mass ejections can disrupt

all earthly technologies, space architectures, destroy power grids, and pose radiation haz-

ards [2]. While posing such a significant threat, these extreme events are very rare, making

the prediction task very challenging.

With the goal of understanding the influence of sun on earth’s behavior they launched

a Solar dynamics observatory mission in 2010. It continuously observes the sun’s magnetic

field and structure and tries to unfold how such huge amounts of energy is accumulated

and released in the form of solar winds into heliosphere and geospace. Although several

research communities are utilizing this information to explain the occurrence of flares, no

theory was able to certainly explain the mechanism behind them; which is hampering the

efforts to forecast. Meanwhile, with the growth in artificial data intelligence, space weather

strategies are drifting towards data driven approaches to find an efficient way.

Our thesis attempts to help space weather forecasters predict solar flares occurring in

next 24 hours using machine learning techniques. We trained and evaluated nine machine

learning models to create a baseline for flare prediction tasks using a multivariate time series

(MVTS) dataset. Following are the classification models implemented in this thesis: fully

connected neural networks, convolutional neural networks [3], long short term memory net-
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works, symbolic aggregate approXimation vector space model, time series forests, random

forests, shapelet transforms, support vector machines and logistic regression.

1.1 What are Solar flares?

Solar flares are massive eruptions of electromagnetic radiation from the sun’s surface.

They originate from the release of high energy accumulated in the magnetic field of solar ac-

tive regions. When such areas suddenly explode they travel straight out from the flare sight

with incredible velocity in the form of solar winds. If the flare sight is facing the earth,

then there is a possibility that it can reach the earth’s atmosphere or human-interested

space. Nevertheless, when these solar flares are accompanied by large clouds of plasma and

magnetic field explosions called coronal mass ejections (CME) [4], they get splattered. They

can travel in any direction causing high-speed solar storms. An image of an evident solar

flare captured on August 24, 2014, by NASA’s solar dynamics observatory is displayed in

figure 1.1

Solar flares are classified into five different levels based on their peak x-ray flux. The

figure 1.2 is the snapshot of 2 days from the GOES satellite observation where there is an

instance of X and M class flares. They are A, B, C, M, X classes, starting from A, each class

increases ten-fold in intensity. Most intense X and M class flares cause significant risk to

humans. In contrast, other flares can hardly impact human interests but can play a major

role in studying behavior of sun’s atmosphere.

1.2 Why do we need to predict Solar Flares?

Intense enough Solar flares and CMEs, when they reach the earth’s atmosphere or

human interested space regions, can derange telecommunications, machinery, computers,

electrical appliances, etc., and can even blackout the earth. The airline passengers and

crew, astronauts in the space, space infrastructure, and satellites are at huge risk to such

flares [5].
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Fig. 1.1: M class solar flare captured by NASA’s SDO. Image Credit: NASA/SDO

The sun goes through a solar cycle of 11 years, during which its activity decreases and

increases. Usually, when the activity ramps up, frequent massive solar flares and CMEs

occur, and chances that our planet can come in its way increases. However, flares hitting

the earth’s atmosphere are sporadic, but there are several instances in the last decade where

the earth has faced severe consequences. There were also cases where the earth could have

been wreak havoc if not for mere luck.

1.3 Few Instances when Solar flares hit the earth

• July 23, 2012, when earth made a narrow escape

An unusually large solar flare(CME) has hit NASA’s solar-terrestrial relations Obser-

vatory satellite (STEREO) spacecraft that orbits the sun. As it was placed in orbit

to observe and withstand such storms and flares, it survived the encounter. However,
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Fig. 1.2: Image Credit: [1] Levels of solar flares as measured by GOES satellite near Earth

when scientists calculated its occurrence, they realized that the earth had missed it

by a margin of 9 days. Later in 2014, they have estimated that if a similar flare had

occurred at that time, it would have caused cataclysmic damage worth $2 trillion,

cost years to repair, and left people with the void of electricity.

• March 10, 1989, when North America faced a blackout.

A powerful CME has caused electric currents on the grounds of North America. It has

created chaos by affecting around 200 power grids in Quebec, Canada, which resulted

in 12 hr blackout. It interfered with sensors on the space shuttle Discovery and

disrupted communication with satellites in space. In 1989, we encountered two other

storms, one of which crashed computer hard drives halting Toronto’s stock market for

few hours, and the other posed a life risk to astronauts causing burning in their eyes.

• May 23, 1967, when United States thought it’s Russia.

A large Solar flare has jammed the U.S. and United Kingdom’s radar and radio com-

munications. The U.S. military has begun preparing for war, suspecting the soviets

for the failure in communication systems; Just in time, space weather forecasters have

intervened.

Predicting the solar flares upfront may not help us to avoid the storms but could help

us in mitigating the damage by taking necessary precautions. As humans are now are
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exploring space more than ever and becoming more and more technology and electricity-

dependent, the risk the flares could pose to humans is shooting up [2]. Therefore, continuous

monitoring of solar events is crucial for accurately forecasting space weather. NOAA has

a constellation of geostationary operational environmental Satellites which send continuous

stream of data to support the weather forecasting, solar events tracking and other research.

However, the mechanism behind their occurrence is still not completely known.

As the understanding of theoretical models of solar flare events such as the relationship

between the photospheric and coronal magnetic field is limited, the heliophysics community

is showing an inclination towards data-driven approaches to replace the expensive setup [5].

Note: Information and facts about solar flares presented in this thesis have been taken

from the web sources of NASA, NOAA, SDO.

1.4 What is the existing knowledge?

This section summarizes our study of the already established knowledge of flare predic-

tion studies. Significantly, the prediction pipelines that were built using machine learning

models. Most of the approaches were data-driven except for the rule-based expert system

called THEO by Mcintosh [6] in the earlier days of flare prediction in 1990. Also, most of

the earlier studies did not consider the data’s time-series nature.

Initial data-driven approaches were based on linear statistical modeling. In the work

of Jing [7], they tried to find the correlations between the magnetic parameters and a flare

production based on line of sight vector magnetogram data. Later on, several machine

learning approaches were implemented using the vector magnetogram data. Below is the

list of Machine learning techniques that have been experimented on in this task.

• Time series Forest(TSF) (2020) [8] They took a contrasting approach; they tried to

predict if the forecasts flare-free or not while trying to minimize the number of false

negatives and false alarms. They trained the interval based model called TSF, which
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uses a random forest classifier to make the prediction. They achieved able to detect

non-flaring activity with a recall of 88.5%.

• Solar flare prediction using LSTM network (2020) [9] They reduced the flare prediction

problem to binary classification and used 20 SHARP parameters to train an LSTM

network. A TSS of 0.79 has been achieved in identifying flares ≥ M. They concluded

that SHARP parameters have limited information.

• Gramian Angular Fields Images using Neural Networks (2018) [10]

This research converted the time series X-ray data acquired from the GOES satellite

into Gramian angular field images to train a convolutional neural network after com-

pressing the data using a piece-wise approximation. However, their results were not

impressive.

• k-NN based on Time series data (2017) [5]

This study performed their experiments using a k-NN classifier with the vector mag-

netogram time-series data. They compared each of the 16 univariate feature’s perfor-

mance before concluding that ”TOTUSJH” is the best AR parameter with a flaring

region recall of 90% .

• Multivariate Time Series Decision Trees (2017) [11] This research has approached

this problem using multivariate time series analysis perspective to cluster potential

flaring active regions by applying distance clustering [12–15] to each feature and then

organizing them back together into a multivariate time series decision tree. They

achieved an accuracy of 85% in predicting the flaring activity.

• k-NN and ERT (Extremely randomized tree) (2017) [16]

This research combined the line of sight data, vector magnetogram data, GOES X-

ray data and UV continuum of the lower chromosphere from atmospheric imaging

assembly to calculate 65 features. They trained three machine learning algorithms:

SVM, k-NN, and ERT, to achieve the true skill score of 0.9. (Skill scores will be

explained in the later section)
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• Support Vector Machines (2015) [17] Their attempt to forecast the X- and M- flares

relied on the 25 AR vector magnetogram features. They calculated the linear cor-

relation between each feature and target variable to eliminate 12 features from their

forecasting algorithm. They achieved a TSS skill score of 0.61 with the SVM algo-

rithm.

Apart from the above-mentioned notable research on Flare prediction, more research

is performed on this task in a data-driven approach. Right from 2001 to 2015 several ma-

chine learning algorithms were experimented to improve flare prediction; such as pattern

recognition using relevance vector machine by Al-Ghraibah [18], cascade correlation Neural

Networks by Ahmed [19], logistic regression by Y.Yuan [20], decision trees by D.Yu [21] and

artificial neural networks by R.A.F. Borda [22].

Based on our literature study, we observed that the time-series nature of vector magne-

togram data is not yet well studied except for the works of Angryk [11], [8], where they used

time-series forest and multivariate decision trees. Secondly, the flare prediction problem is

modeled chiefly as a binary classification problem. They combined X and M class flares as

positive classes and C, B, Q as the negative class. Though binary modeling fulfills the main

objective of identifying the most harmful flares, they ignore the importance of C and B class

flares, completely treating them as non-flaring events. According to a study [23], C class

flares are more valuable than X and M class flares in studying the evolution of sunspots.

Furthermore, B class flares are more synchronous with sunspot group numbers than X and

M when the number of sunspot groups is around 100. This study concludes C and B as low

magnetic activity flares that could be crucial in studying the sunspot groups, which are the

main cause of solar flares. Though there are a different variety of machine learning models

experimented there is no common dataset that has been investigated on all of them to find

the classifier that is the most suitable for this prediction task.
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Considering the above-discussed points, our thesis aims to make an extensive com-

parison of different types of Neural Network architectures and time-series classifiers and

the baseline comparison with traditional classifiers such as Random Forests, SVM, logistic

regression. We modeled the problem as a 4 class problem to classify the flares between

X, M, C/B, and Q classes. We hope that this contribution will be a valuable asset to the

data-driven flare prediction community and fills a few gaps in this area’s existing knowledge.

1.5 Thesis Organization

• Chapter 2: Introduction to the dataset, explains where the data is coming from and

what are the features present, how much data we have and the challenges it brings

and the feature selection pipeline used to arrive at the final dataset.

• Chapter 3: In this chapter, we discuss machine learning methodologies used in different

experiments and the evaluation techniques used in our thesis including the domain

specific metrics.

• Chapter 4: Here, we describe and discuss the results achieved in the experiments and

compare the performance of classifiers.

• Chapter 5: In the final chapter, we discuss the outcomes, conclusions, challenges and

future scope of this thesis.
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CHAPTER 2

DATA ANALYSIS AND FEATURE SELECTION

2.1 Introduction to the Dataset

A Time series is a progression of a variable feature captured in continuous time intervals.

The spacing between each time instance (τ) captured is known as cadence. Our dataset

is time-series data with a cadence of 12 minutes through 60 time intervals (60τ , 12 hours

long). As our data has multiple variable features (33), it is called as Multivariate Time

series data. The below matrix represents the dimension of our sample.

Each sample of our data consists of 33 active region magnetic field parameters ac-

quired from HMI instrument on solar dynamics observatory. Each feature is a time-series

of mathematically represented magnetic field parameter. The table 2.2 below is the list

of features and their description. More information about each feature can found at:

”http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm”.

MV TS(33,60) =



f1,1 f1,2 f1,3 f1,4 · · · f1,60

f2,1 f2,2 f2,3 f2,4 · · · f2,60

...
...

...
...

...
...

f33,1 f33,2 f33,3 f33,4 · · · f33,60


2.2 Data Acquisition

Solar flares and CMEs occur in the Sun areas where there is a strong magnetic field.

Such areas are called flaring Active regions(AR). Though the underlying mechanism of how

solar flares and CMEs occur is still not well understood, there are several studies that show

solar flares arise because of sudden release of energy developed by photospheric magnetic

reconnection in the coronal field [24]. This is well known as CSHKP model; there are sev-

eral other variations of these models explaining the initiation mechanisms of the flares and
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CMEs. Since the photospheric magnetic field has a huge role in driving the coronal field

around the Sun, it is highly possible that evolution patterns of the photospheric magnetic

field may serve as indicators for predicting solar flares and CMEs.

The solar dynamic observatory satellite that has been launched by NASA a few years

ago has been observing the Sun from 2010. It has three instruments set up on board

for different purposes: Extreme Ultraviolet Variability Experiment (EVE), Helioseismic

and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA). HMI takes the

high-resolution measurement of photospheric vector magnetic field parameters and extracts

space weather HMI AR patches (SHARPS). [25] AIA is responsible for imaging the outer

surface(corona) of the sun, it captures full sun images every 10 seconds. EVE keeps track of

extreme ultraviolet rays and helps us in calculating the amount of UV reaching the earth.

Fig. 2.1: This image shows the three main SDO instruments on-board: AIA, HMI, EVE.
HMI is responsible for capturing solar magnetic field information and the primary source
of AR parameters that we feed to the classifiers to train and test. Image credits: NASA
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In our thesis, the data we are using is coming from the HMI called SHARPS. They

have several pre-calculated time series quantities(AR parameters) captured by HMI every

12 minutes. These quantities called as active region (AR) parameters, and are our features

in the each sample 2.2. Each time series is a look back of flare or no flare occurrence.

Similar to the work of Bobra and Couvidat [17] we are using these past observations of AR

parameters as preflare signatures to train the AI models to predict future flaring activity.

These long SHARP time series are broken into chunks of 60 instances of span 12 hours,

making our multivariate time series dataset. The label of each MVTS is the largest flare

that occurred in next 12 hours (prediction period).

Fig. 2.2: The picture shows the observation window, which we feed to our classification
models to predict the flare occurrence in the prediction period. In our case, the span of
the observation window and the prediction window is 12 hours and 24 hours, respectively.
Latency is minimized to the smallest possible time interval (the last point of the observation
period is closest to the first point of the prediction period). Image Credits: [1]

The MVTS dataset was made available by a research team from Georgia State Univer-

sity. This dataset was made with an intention to facilitate machine learning models. The

labels for each time series are also marked with utmost care after several phases of clean-

ing, pre-processing and cross checking with secondary sources. The block diagram briefly
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mentions the cleaning phases and secondary data sources 2.3. Much detailed information

about AR parameters and the dataset can be found at [1].

Fig. 2.3: The flow of information from several sources and cross checking before arriving at
the final MVTS dataset ready for machine learning. Image Credits: [1]

2.3 Datasets

On the Georgia state university public server, the latest flare dataset is available. They

have three partitions of data that are labeled. There are a total of 214023 MVTS, out of

which only 1.98% of them are from X- and M- preflare signatures and 82.64% are flaring

quiet regions (Q class), and the remaining are C and B class preflare signatures 2.1. The

dataset excluded A class flare data as they do not pose any risk and are have almost

negligible peak flux.

Datasource: https://dmlab.cs.gsu.edu/solar/data/data-comp-2020/
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Fig. 2.4: Flare class distribution showing the huge class imbalance

Classes/Partition X M C B Q

P1 172 1157 6531 6010 63400

P2 72 1393 9130 5159 78013

P3 141 1313 5364 709 35459

Class % 0.179 1.80 9.82 5.54 82.64

Table 2.1: Class Distribution across different data partitions

2.3.1 Class imbalance problem

From the pie chart in figure 2.4 it’s explicit that we have fewer samples of the critical X-

and M- class flares. On the other hand, we have a ton of samples for non-flaring instances,

leaving us with class imbalance problem as high as 1 is to 800 between the minority X class

and majority Q class. Class imbalance problems can skew the models drastically, making

them biased to the classes with majority samples. On top of that, our majority class is

the negative flare class (Q) which implies that the model could end up with too many false

negatives (Increased chances of missing the flare detection) [26] .

For the scope of this thesis, we decided to generate two data sets to experiment with

different machine learning models; one based on random under sampling and the other with
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a combination of oversampling and under-sampling to tackle the class imbalance problem.

Note that we merged classes C and B as one class based on the discussion in the literature

study. Hence our two final data sets will be having X, M, C/B, and Q classes.

2.3.2 Random under-sampling

We took the classic random under-sampling approach on the classes with more samples

to tackle this problem. In this method, we down-sample the majority classes to the minority

classes by randomly selecting the required number of samples to be included. While this

method looks very simple, we can’t overlook its success in addressing the class imbalance

in several applications [27]. Though random under-sampling might lead to the loss of

unique data, in most cases, it is proven to be advantageous and generalized better than

oversampling. In the study of Satwik Mishra [28], they compared SMOTE approach with

under-sampling on randomly generated data sets and found out that random under-sampling

is performing better with random forests and XGboost. Our under-sampled dataset has

1540 samples, with each of the majority classes down-sampled to 385 samples to be on par

with the minority X- class. This dataset will be referred as RUS dataset in the rest of the

thesis.

2.3.3 SMOTE along with random under-sampling

However, we can not say that one specific approach would work with this applica-

tion. Hence, we did not wholly overlook the oversampling approach, as it is advantageous

to accommodate more data for data-hungry models like neural networks. We arrived at

a hybrid method that includes oversampling the minority class by SMOTE and random

under-sampling of majority classes.

Synthetic minority oversampling (SMOTE) over samples the minority class by generat-

ing synthetic samples, unlike oversampling by replicating data. SMOTE operates on feature

space instead of data space; it uses the kNN approach [29] and creates new samples on the

line segment, joins all or any of the k nearest neighbors based on the chosen oversampling
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rate. [30] In our case, we over-sampled the X- class and down-sampled C/B and Q classes

to the level of M- class. This brings our dataset to the size of 15440 with 3860 samples in

each category. This dataset will be referred as SMOTE RUS dataset in rest of the thesis.

To get a general idea about how well the data of each class is separated, we used

principal component analysis (PCA) to project the original dataset in a two-dimensional

plane. PCA computes principal components by performing eigen decomposition on the

covariance matrix of the features from the dataset while minimizing the loss of information.

Looking at the figure 2.5, we can undoubtedly say that the data is not linearly separable.

The figure shows the derived data sets their class distribution and projection in the 2-D

feature space.
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SMOTE (X) + Random under sampling (C/B, Q)
(SMOTE_RUS)

Random under sampling (M, C/B, Q)
(RUS)

Class X M C/B Q

Samples 3860 3860 3860 3860

Class X M C/B Q

Samples 385 385 385 385

Class X M C/B Q

Samples 385 3860 32903 176872

Original Dataset

Fig. 2.5: 2-D projections of the original and derived data sets to visualize the separability
between the data samples of each class. It looks quite obvious that classes are not linearly
separable. The SMOTE plus random under sampling dataset has over-sampled X class and
under-sampled C/B and Q classes while the random under sampling dataset has under-
sampled M, C/B and Q classes. Also shows that the derived data sets have done decent
job in maintaining the original distribution.
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ID AR Parameter Description

0 TOTUSJH Total unsigned current helicity
1 TOTBSQ Total magnitude of Lorentz force
2 TOTPOT Total photospheric magnetic energy density
3 TOTUSJZ Total unsigned vertical current
4 ABSNJZH Absolute value of the net current helicity in G2/m
5 SAVNCPP Sum of the absolute value of the net current per polar-

ity
6 USFLUX Total unsigned flux in Maxwells
7 TOTFZ Sum of Z-component of Lorentz force
8 MEANPOT Mean photospheric excess magnetic energy density
9 EPSZ Sum of Z-component of normalized Lorentz force
10 SHRGT45 Area with shear angle greater than 45 degrees
11 MEANSHR Mean shear angle
12 MEANGAM Mean inclination angle
13 MEANGBT Mean value of the total field gradient
14 MEANGBZ Mean value of the vertical field gradient
15 MEANGBH Mean value of the horizontal field gradient
16 MEANJZH Mean current helicity
17 TOTFY Sum of Y-component of Lorentz force
18 MEANJZD Mean vertical current density
19 MEANALP Mean twist parameter
20 TOTFX Sum of X-component of Lorentz force
21 EPSY Sum of Y-component of normalized Lorentz force
22 EPSX Sum of X-component of normalized Lorentz force
23 R VALUE Total unsigned flux around high gradient polarity in-

version lines using the Br component
24 RBZ VALUE Derived
25 RBT VALUE Derived
26 RBP VALUE Derived
27 FDIM Derived
28 BZ FDIM Derived
29 BT FDIM Derived
30 BP FDIM Derived
31 PIL LEN Derived
32 XR MAX Derived

Table 2.2: 33 Active region magnetic field parameters which are our features in multivariate
time series dataset. Each of these parameter is a time-series captured with a cadence of 12
minutes. Our MVTS dataset has 60 instances of each feature in every sample
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2.4 Data preprocessing

As the dataset is thoroughly validated and made machine learning ready [1], we only

made the basic checks, such as imputing the missing values and removing the outliers. We

filled them with the corresponding feature’s mean in the time series with missing values.

We got rid of the XR MAX feature as it consisted of many outliers and its univariate per-

formance was also very poor. Univariate performance evaluation is discussed in the next

section.

The AR features have values ranging in different scales and huge magnitudes. Hence,

each feature has been z-normalized (standard score) across the dataset before sending them

as input to the machine learning models. Standard score normalization allows us to compare

raw scores from two different normal distributions while considering both mean values and

variance. In our experiments, Z-normalization helped neural networks avoid exploding

gradient problems and speed up the computation by reducing rounding errors and expensive

operations.

2.5 Feature Selection

Now that we have our data samples ready and classes are finalized we can now jump

into feature selection. In this section we aimed to quantify the importance of features using

few statistical and performance based tests. Based on our tests few features turned out to

be useless and only added noise to the ML systems. To calculate each feature’s contribution,

we performed a statistical test, which is independent of the machine learning models and

two machine learning-based performance tests using Random Forests and Convolutional

Neural Networks. Our goal here was to find the best-performing minimal feature set.

Our focus in this feature selection pipeline was to quantify the univariate importance

of derived parameters that introduced each parameter’s weighting based on their distance

from the polarity inversion line on the active region the parameter were collected. As these

parameters were experimental, their contribution to the models is skeptical.
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• Mutual Information Analysis: Mutual Information between two variables captures

both linear and non-linear relationships. For example, if X and Y are two variables,

let us take X as one of the 33 features and Y as our target class (X- flare). Suppose

X and Y are independent variables, then the mutual information score will be 0. If

there exists a deterministic function between X and Y, then the mutual information

score will be one. For other cases, mutual Information will be between 0 and 1. The

below bar chart shows us where each feature stands based on the mutual information

2.6.

Fig. 2.6: Mutual Information scores of individual AR parameters, the red line is our thresh-
old below which we doubt the contribution of the feature.
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The following five features were on the radar to be removed as their mutual information

contribution is limited and under the lenient threshold of 0.1

– FDIM

– BZ FDIM

– BP FDIM

– BT FDIM

– MEANGBH

However, before removing these features to get more evidence and confirm that these

features are underperforming or not adding any value to the remaining features, we have

run experiments on each univariate feature with random forest and convolutional neural

networks to rank the features based on classification performance.

A simple convolutional neural network with 4 and 8 filters and a random forest with

50 decision trees has been trained with each univariate feature individually. Performance

results are captured by training and testing the models using 10-fold cross-validation. The

results in figures 2.8 and 2.7 show that four of the five features sidelined based on mutual

information scores also appeared here at the table’s bottom except for the MEANGBH

feature.

As a final step in our feature selection process, we performed a backward recursive

feature elimination technique to ensure that the removal of the features is not affecting the

classification performance. In this procedure, we remove the low-priority features one by

one based on a priority order until there is only the highest priority feature left. Ideally,

this test plots an elbow curve showing the peak value at an optimal number of features.
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Fig. 2.7: Random Forest Performance on individual AR parameters, it shows the same
features as mutual information test as low performing except for MEANGBH.

Fig. 2.8: Neural Network Performance on individual AR parameters, it shows the same
features as mutual information test as low performing except for MEANGBH.
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Stating that our hypothesis of removing the four features (FDIM, BZ FDIM, BP FDIM,

BT FDIM) is true, the elbow curve has peaked when these four features are removed from

the dataset. We have implemented this backward recursive feature elimination on random

forests and neural networks.The fig 2.9 and table 2.3 shows the results of these tests.

Fig. 2.9: Backward recursive feature elimination showing that the Random Forest model
achieved the peak accuracy of 80.1% when four features are removed

Metric\Number of Features 32 28 27 20 14

Accuracy 0.785 0.795 0.770 0.735 0.729

HSS1 0.570 0.591 0.541 0.471 0.458

HSS2 0.701 0.717 0.681 0.627 0.618

TSS 0.703 0.718 0.682 0.629 0.621

Table 2.3: Performance metrics of neural networks with number of features as variable. Left
to right features are removed based on the mutual information priority. With 28 features
the neural networks gave ts peak performance.



23

Based on the above experiments, we can say that model performance has slightly in-

creased with removing features; adding those four features does not benefit. Hence, we

decided to remove the four features FDIM, BZ FDIM, BP FDIM, BT FDIM, along with

the XR MAX, which is causing outliers. The final datasets (RUS and SMOTE RUS) we are

going to use for implementing machine learning models will have a reduced feature space

of 28 features instead of 33.
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CHAPTER 3

METHODS AND EXPERIMENTS

As we now developed a thorough understanding of the solar flare prediction prob-

lem and the data sets. This chapter will discuss machine learning algorithms that were

used in our experiments along with training and testing strategies and performance eval-

uation techniques. All the experiments in thesis can be classified as RUS based and

SMOTE RUS based. First we experimented on different machine learning models using

the RUS dataset and next the top six performing architectures/models were experimented

using the SMOTE RUS dataset. The chapter will be structured as mentioned below.

• Performance Evaluation Metrics

• Training and Testing Strategy

• Traditional Machine learning Algorithms:

– Logistic Regression

– Support Vector Machines

– Random Forests

• Neural Network Architectures:

– Multi layer Perceptron (MCP)

– Recurrent Neural Networks with Long short term memory(LSTM) units

– Convolutional Neural Networks

• Time Series Classifiers:

– Time Series Forest

– Symbolic Aggregate approXimation (SAX) Vector space model (VSM)

– Shapelet Transforms
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3.1 Performance Evaluation Metrics

Metrics help analyze the performance of the model. After data cleaning, Feature se-

lection, and training the model, we get the results as a probability or class. It’s essential

that we choose the right metrics to evaluate our models based on the nature of the data,

such as the consequences of false negatives or false positives. For example, In a model that

tells us whether to buy a specific stock, we can’t afford a false positive because investing in

an unprofitable venture leads you to lose. Hence, in this case, precision is more important

than recall. Similarly, in COVID detection, false negatives can’t be tolerated as they pose

a massive risk to the patients and other people in contact with the person. Hence, in this

case, the recall will be our chosen metric.

In Solar Flare prediction, the false negatives can cause crucial damage to the earth and

space resources; consequences such as satellite destruction or collapse of power grids may

occur, while false positives can also trigger satellite maneuvering or expensive preventive

measures. However, not detecting the flares will definitely because more damage than false

alarms. Hence recall of flaring activity will be crucial in deciding the suitable model. Below

are the standard metrics we are using to evaluate our models.

As our prediction has more than two outcomes, we followed the one vs. rest procedure

to find performance measures for each class and then calculated the weighted average to

find the metric for the model as a whole. The following quantities required to calculate

metrics are captured from confusion matrix 3.1.

• True Positives (TP) and False Positives (FP)

• True Negatives (TN) and False Negatives (FN)

• Positives (P) and Negatives (N)

• Predicted Positives (P’) and Predicted Negatives (N’)
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Target Class Rest Total

Target Class TP FN P

Rest FP TN N

Total P’ N’ P+N

Predictions

Actuals

Fig. 3.1: Confusion Matrix

• The Recall represents the models ability to classify a positive class as positive.

TP

TP + FN

• The Precision represents the model’s ability to not classify a negative class as positive.

TP

TP + FP

• The F1-score is the harmonic mean of precision and recall of a classifier. This metric

comes into picture when you can’t decide upon choosing a model based on recall or

precision.

2 ∗ Precision ∗Recall
Precision+Recall

• The Accuracy allows us to quantify the total number of correct predictions made by

a classifier. This metric often fails to handle the class imbalance problem as it gets

biased to the class with more samples.

TP + TN

TP + TN + FP + FN

Except for the recall of other metrics, the metrics mentioned above are not very suit-

able for this task. Hence, we decided to calculate skill scores [31] which are being widely
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used by the solar flare prediction community [17] [16] [5]. They are the following:

• Heidke Skill Scores (HSS) is present in two versions; HSS1 is defined by Leka and

Barnes [32]; it ranges from −∞ to 1. A score closer to 1 represents a perfect forecast,

while 0 illustrates that the model predicted everything as a negative class. While

negative scores denote that performance is worse than anticipating everything under

negative class. It measures forecast over predicting that no flare will ever occur. This

measure makes sense, as solar flares are rare events.

HSS1 =
TP + TN −N

P

HSS2 is another skill score which measures the improvement of prediction over random

predictions [5] [33]. This metric is defined by the Space weather prediction center. [17]

Score ranges from 0 to 1; closer to one better the forecast.

HSS2 =
2 ∗ [(TP ∗ TN)− (FN ∗ FP )]

P ∗N ′ +N ∗ P ′

• Gilbert Skill Score (GS) [5] [33] takes True positives obtained by chance into con-

sideration. This helps one to arrive at model which is not predicting the flares by

chance.

GS =
TP ∗ (P +N)− P ∗ P ′

FN ∗ (P +N)−N ∗ P ′

• True Skill Statistic (TSS) is a metric independent of the class imbalance ratio. This

is the most desired metric in the solar flare prediction community, as it converges to 1

when the false alarm rate and the false-negative rate are minimized. Flare prediction

demands a very similar metric; we neither want to create chaos unnecessarily or miss

a flare and put humans at risk. [17] [34] [5].

TSS =
TP

P
− FP

N
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Every skill score has its characteristic which can be helpful to analyze. However, HSS1,

HSS2, and GS are still somewhat prone to class imbalance ratio [5]. Hence, in the later

sections of results and discussion, we will be analyzing the performance more in terms of

TSS and Recall.

3.2 Training and testing strategies

To handle the class imbalance problem, we have under-sampled our dataset to 1540

MVTS. As most machine learning models are data-hungry, standard train-test splits such

as 60-40 or 70-30 would leave the model with a shortage of data either for validation or

training. Hence, we decided to perform stratified 10-fold cross-validation.

Stratified Cross-validation uses a stratified sampling technique to divide the data into

k folds. Stratified sampling ensures the same proportion of samples are present in each fold.

This method helps us to approximate the generalization error using cross-validation closely.

Also, no sample will be over or underrepresented in the training and testing sets. It follows

the below procedure:

• Randomly Shuffles the entire dataset.

• Splits the dataset into k groups with each group having same class concentration.

• Every group is once held out as a testing group (Test Set).

• Remaining groups are used to train the model (Train set).

• Train the model with train set and evaluate with test set.

• Re-initialize the model to train with all of the k combinations.

• Performance of model is retained after evaluating model with each test set.
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3.3 Traditional Classifiers

We performed experiments on the traditional classifiers to establish a baseline for Neu-

ral Network models and Time series classifiers. These classifiers can handle only univariate

time series data. Hence, we flattened the 28 features into one extended feature vector,

partly sacrificing the time-series nature of the data following the work of Bobra [17] where

he used a similar kind of vector magnetogram data.

Our task is a 4 class classification problem, and the class data is non-overlapping. The

train and Test Splits are z-score normalized for all the classifiers before flattening and send-

ing them as input. All the machine learning model implementations in this section are using

the Scikit-Learn library.

3.3.1 Support Vector Machines

SVM is a supervised machine learning algorithm known for classification tasks. SVM

plots the N-dimensional data and aims to find the optimal (N-1) hyperplane possible that

can split the dataset into different groups [35]. If there are only two features, then the

hyperplane becomes a line. The two hyper-parameters we need to adjust are C, Gamma γ

and the kernel type. C is the penalty imposed for each misclassification; the lower the C, the

more tolerant to misclassifications and the better it generalizes. Gamma is the curvature

amount that we need to tune for only the RBF kernel.

In our experiments with SVM we performed a grid search with C ranging from 0.0001

to 10 and gamma from 0.0001 to 1. We used this search space for rbf and poly except for

linear kernel which doesn’t need gamma to be adjusted. The radial basis function is our

best-performing kernel with a C value of 0.1 and Gamma of 0.01.
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3.3.2 Multinomial Logistic Regression

Logistic regression gives an estimated probability as output; it tells the likelihood of

the predicted class. It fits the below sigmoid curve to solve this optimization problem.

Logistic regression has a set of N weights for N features which it optimizes using a loga-

rithmic cost function via gradient descent algorithm. We experimented with the following

solvers: newton-cg, sag, saga, and lbfgs; with C ranging from 0.0001 to 1. Newton-cg solver

resulted in the most generalized model with a C value of 0.1. We used the L2 penalty for

misclassifications. Below are the equations of hypothesis function and the Cost function of

Logistic regression.

hΘ(X) =
1

1 + e−(a0+a1X)

J(Θ) = − 1

m
Σm
i=1[y(i)log(hΘ(x(i)) + (1− y(i))log(1− hΘ(x(i)))]

3.3.3 Random Forests

This is one of the machine learning methods that hasn’t been explored much in this

solar flare prediction domain. Random Forests operate using an ensemble of decision trees

for categorical and continuous response variables. Random Forests is likely the most in-

terpretable machine learning method [36–38] and also performs on par with the Neural

Networks in most cases, especially with numerical data; they are relatively speedy to train

and also demand less computational power [39]. With only two hyper parameters, it’s easy

to reach the optimal model. They can be used directly with high-dimensional data and be

easily implemented in parallel.

In our thesis, we used random forests as a baseline approach and calculated feature

importance (discussed in the previous chapter). We experimented with different decision

trees from 10 to 300 to find the optimal model.
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3.4 Neural Networks

Neural networks(NN) or Deep learning is essentially a subset of machine learning. They

comprise an input layer that accepts input features, an output layer, which gives prediction

results, and an arbitrary number of hidden layers, making the core computational part of

NN. Layers consist of nodes; each node can be treated as a single computational unit with a

threshold over which it is activated. All the layers are fully connected, and every connection

between nodes is associated with a weight.

To train the NN, we pass the data through the network. Based on the error between the

ground truth and the predicted result, the back-propagation algorithm performs a backward

pass to adjust the network’s weights and biases. This back and forth process is continued

until NN gradually learns the correlations and dependencies between input and output vari-

ables to minimize the error.

Neural networks are primarily used in a supervised learning setting. There are several

variations of NN used for different purposes. Our thesis has used three types to perform

this 4-class classification task.

3.4.1 Training strategies implemented for the neural networks:

Below mentioned methods are applied throughout the training, and each model is

trained for a maximum of 1000 epochs.

1) Model Checkpoint: During training, we continuously monitored the validation accuracy

to save the model with the best performance ultimately.

2) Early Stopping: Though we set the maximum epochs to 1000. we stopped the training

of models if the validation loss doesn’t reach a new minimum for 50 epochs. This helps us

to avoid over-fitting the model and training time.

3) Reduce learning rate on the plateau: Usually, when the learning of the model stagnates,

they get benefited by reducing the learning rate a little bit. We reduced the learning rate
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if the validation loss didn’t decrease for 30 epochs.

4) Dropout: We implemented a dropout of 0.5 to the fully connected layers when we ob-

served the over-fitting model. In ANN and LSTM this came to an excellent use to generalize.

5) Batch Normalization: Applying batch normalization helped us save some crucial amount

of training time as it helped the model converge quickly. It also adds a bit of regularization.

Especially in ANN, it seemed to have improved the performance slightly.

3.4.2 Multi-layer Perceptron

It is a basic feed-forward Neural Network that accepts only vector data as input. Hence,

we flattened the feature space(28*60) into a vector(1680) to train it. We started with one

hidden layer while experimenting with the learning rate, batch size, and layer size. In our

search space, below architecture mentioned was our best performing one.

Input: 
1680

O/P: 4 
softmax

1024
ReLU

Dropout 0.5

256
ReLU 

Dropout 0.5512
ReLU

Dropout 0.5

Loss: Categorical Cross Entropy
Optimizer: Adam

Fig. 3.2: ANN architecture that achieved the best performance
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3.4.3 Convolutional Neural Network

CNN’s are known for learning visual Imagery data. They can accept n channel 2-D

data as input. It uses convolutional layers to learn several features from the input data such

as edges, color, etc. also captures several high-level features as we increase the number of

layers. It uses pooling layers to reduce the dimensionality of convoluted features. We used

three convolutional layers with different kernel sizes and a max-pooling strategy.

Max pooling: 2x2
32 x 14 x 30

MVTS Input
28 x 60

Convolutions
Kernel: 5x5
32 x 28 x 60

Kernel: 5x5
16 x 28 x 60

Max pooling: 2x2
16 x 14 x 30

Convolutions
Kernel: 5x5
8 x 7 x 15

Max pooling: 2x2
8 x 4 x 8

flattening

Dense: 256

O/P: 4

Fig. 3.3: CNN architecture that achieved the best performance

3.4.4 Recurrent Neural Network LSTM

Recurrent Neural Networks can accept input of arbitrary lengths. They have hidden

states which remember the past that influences the decision-making of RNN. We can also

configure the RNN as bidirectional, where it also remembers the future states. RNNs are

especially helpful with time-series data. Unlike vanilla RNNs, LSTM networks use addi-

tional gates and hidden units to maintain the information for longer periods allowing them

to learn long-term dependencies. Our best LSTM architecture used 2 LSTM layers with

100 hidden units each. Below figure 3.4 is the architecture used.
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LSTM2 LSTM2 LSTM2 LSTM2

LSTM1 LSTM1 LSTM1 LSTM1

….

….

28 AR Features

Softmax

O/P

Fig. 3.4: LSTM architecture that achieved the best performance, image on the left side is
the internal structure of LSTM unit.

3.5 Time Series Classifiers

Time series data is found everywhere globally, ranging from health care, finance, mar-

keting, stocks, disease detection, etc. As the need for handling temporal data for several

applications increases, many new algorithms have been explicitly proposed to deal with

time-series data. Among them, interval-based, dictionary-based, and shapelet-based are

the three primary classifiers. In our thesis, we decided to explore one technique from each

category.

These time series classifiers have a feature engineering layer before performing clas-

sification, unlike deep learning and most of the other machine learning algorithms which

internally do feature engineering. This extra layer increases the development time. How-

ever, they are more interpretable and sometimes achieve better results. They are known

to surpass the classical nearest neighbors with dynamic time warping techniques in several

applications. [40]

3.5.1 Time-series Forests (TSF)

This is an interval-based classifier that adds a statistical feature extraction scheme on
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top of random forest implementation. It reduces the dimension of time-series data by ran-

domly extracting intervals and replacing them with mean, standard deviation, and slope.

They combine the entropy used by random forests and distance measures obtained from

statistical measures to take decisions [41]. The figure3.5 below describes how the input

data is transformed into a reduced feature space and trained on random forests. In our

experiments, TSF has been experimented with using different number of decision trees. As

it adapts to the random forests, hyperparameter tuning became more straightforward with

fewer parameters, and we were able to train them quickly. TSF with 150 decision trees has

reported the best accuracy with the slightest variance in folds.

3.5.2 Symbolic Aggregate ApproXimation and Vector Space Model (SAXVSM)

This is a dictionary-based classifier, as the name suggests, it converts input time series

data into a set of words by using a bag of words concept on top of symbolic aggregate ap-

proximation (SAX). SAX converts the time series of length l to a string of length s, where s

<< l. It requires the input time series to be normalized and transformed using a piece-wise

aggregate approximation. As the data is in Gaussian distribution, it now divides the data

magnitude into equal-sized areas and assigns an alphabet to each bin.

Once the SAX sentences are extracted from the multiple binning approaches, SAXVSM

generates word frequency matrices for each time-series class and classifies the new time-series

based on the cosine similarity. Figure 3.6 visualizes the process in detail. In our experiment

we varied the number of bins, window size and word size to find the optimal parameters.

However, SAXVSM’s heavy preprocessing restricts us from widening the hyper parameters

search space. Window size of 0.25%, word size of 0.075% and 24 bins have given us the best

accuracy in our search space.



36

T0
Tm

I1 I3 I4 I 𝑚I2

µ0, σ0, m0 µ2, σ2, m2µ1, σ1, m1 µ4, σ4, m4 µ 𝑚, σ 𝑚, m 𝑚

Decision Tree 1 Decision Tree 2 Decision Tree n

Result  1 Result  nResult  2

Majority Voting

Final Flare Class Prediction

MVTS

Transformed Feature

Calculating mean, 
Standard deviation and 
slope of each interval to 
build a new feature for
each timeseries. 

Train Random Forest with 
transformed features

Fig. 3.5: Time series Forest algorithm; explains how each time series is transformed into a
compressed feature space using a interval based approach and fed to the random forest
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a

b b

c
c c

bb

a

Step 1: Normalize each time 
series and 

transform using piece wise 
aggregate approximation (PAA)

Step 2: Find SAX sentences 
of each PAA timeseries 

using Symbolic Aggregate 
Approximation (SAX)

SAX sentence: baabccbcb

baa
aab
abc
bcc
ccb
cbc
bcb

SAX words of stride 1:

SAX words X- M- CB Q

SAX1 5

SAX2 2 7 1 5

……

SAXn 1 4 8 2

Step 4: Compute Frequency Matrix 
(M) between SAX words and Time 
series samples of each class.

Training Result: SAX- term frequency 
vectors (V) of each class.

Perform step 1 – step 4 to 
find SAX frequency 

vector.

Step 3: Find SAX words 
from SAX sentence

Test Time-
series

Compute cosine similarity
with each class vector in V

Class vector that shows 
max cosine similarity will 
be the Final prediction

Fig. 3.6: Symbolic Aggregate Approximation and Vector Space Model; explains how the
SAX dictionary of dataset in obtained based on which SAX term frequency vector of each
class is derived.
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3.5.3 Shapelet Transforms

This classifier comes under the family of shapelet-based classifiers. Shapelets are noth-

ing but snapshots of a time series that represent a specific class. This algorithm aims to

find the user-defined number of shapelets with the highest discriminatory power based on

the alignment distance with each time series. It tries to identify specific shapelets whose

presence or absence could help classify a time series into a particular class.

However, this is a greedy algorithm, and it’s hard to find out the correct size and

amount of shapelets required to achieve desired discriminatory power. The search space

for window size and stride is directly proportional to the size of the time series, and in

applications like ours, where feature space is vast, it demands heavy computational power.

Shapelets extracted are used to build distance vectors with each time series and trained on

a choice of the distance-based classifier. In our case, we used a kNN to teach a shapelet-

based best alignment distance matrix. Figure 3.7 visualizes the classification procedure

implemented clearly.

In our experiments with shapelet transforms we have varied the shapelets size from 10

to 100 and number of shapelets from 100 to 520 with an interval of 60 to construct a set

of the best alignment distance matrices. Matrix calculated with 280 shapelets of length 30

have resulted us the highest accuracy with k-NN classifier with a k value of 5.
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Step 1: Feed 
flattened MVTS 
(Length: 1680)

Step 2: Find all the Shapelet 
candidates of a desired 

length from Time series data

Step 3: Finding the best alignment
between every Shapelet candidate and 

timeseries based on Euclidean distance by 
moving the Shapelet across the 

timeseries 

Feature space representation using Shapelet Transform

Best alignment distance  matrix between TS and Shapelet candidates

TS1 0.5 2 3 3 2.1

TS2 3 5 1.7 2 0.05

TS3 1 1.4 3 4 0.2

------- ----- ----- ----- ------ ------

TS1

TS2

TS3

TS4

TS5

TS1540

Train k-NN 
Classifier

Flare Prediction Result

Test 
Timeseries

Best alignment 
distance vectorPerform step 3

Step 4

Fig. 3.7: Shapelet based classification Algorithm; explains how the shapelets are extracted
from the time series dataset and best alignment distance matrix is obtained to train a kNN
dataset.
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CHAPTER 4

RESULTS AND DISCUSSION

We applied a wide range of supervised machine learning algorithms to predict the

flares occurring in the next 24 hours using the 28 AR features of the vector magnetogram

data acquired from the GOES satellite. Classifiers are modeled to classify each data point

(MVTS) into one of the four flaring levels. X- and M- flares pose a threat to humans, CB

flares are essential for heliophysics studies, and Q represents that there is no flaring activity.

All the models are trained and tested in a stratified 10-fold cross-validation setting

and evaluated using standard measures such as precision, recall, f1 score, and side domain-

specific measures such as TSS, HSS1, and HSS2, and GS.

4.1 Prediction results on RUS dataset

This section discusses the results achieved on the dataset which is prepared using ran-

dom under sampling. Among the nine classifiers we modeled in our thesis, seven of them

have shown decent performance in predicting solar flares. Time series forest (TSF) is the

best individual classifier, while Random Forests and Neural Networks have crossed the mark

of 80% accuracy. The table 4.1 reveals the performance of each classifiers.

Classifier\Metric Accuracy F1-score Recall Precision HSS1 HSS2 GS TSS

ANN 0.811 (0.026) 0.808 (0.028) 0.811 (0.026) 0.81 (0.029) 0.622 (0.053) 0.739 (0.038) 0.605 (0.047) 0.74 (0.038)

CNN 0.831 (0.021) 0.83 (0.021) 0.831 (0.021) 0.836 (0.022) 0.661 (0.041) 0.768 (0.029) 0.641 (0.036) 0.769 (0.029)

LSTM 0.818 (0.023) 0.818 (0.024) 0.818 (0.023) 0.826 (0.025) 0.636 (0.047) 0.752 (0.033) 0.624 (0.04) 0.752 (0.033)

TSF 0.855 (0.023) 0.855 (0.023) 0.855 (0.023) 0.859 (0.022) 0.71 (0.047) 0.804 (0.032) 0.694 (0.043) 0.804 (0.032)

SAXVSM 0.558 (0.04) 0.563 (0.042) 0.558 (0.04) 0.64 (0.051) 0.117 (0.08) 0.377 (0.063) 0.253 (0.047) 0.372 (0.063)

ST 0.625 (0.034) 0.622 (0.03) 0.625 (0.034) 0.629 (0.029) 0.25 (0.068) 0.461 (0.049) 0.317 (0.04) 0.462 (0.051)

RF 0.825 (0.024) 0.824 (0.025) 0.825 (0.024) 0.83 (0.024) 0.651 (0.048) 0.762 (0.034) 0.637 (0.042) 0.762 (0.034)

SVM 0.773 (0.03) 0.773 (0.031) 0.773 (0.03) 0.799 (0.03) 0.545 (0.06) 0.689 (0.043) 0.547 (0.05) 0.688 (0.044)

LG 0.723 (0.028) 0.722 (0.026) 0.723 (0.028) 0.73 (0.028) 0.447 (0.056) 0.612 (0.04) 0.456 (0.042) 0.612 (0.041)

Table 4.1: Classifier Performance Analysis on the RUS dataset. Reported values are the
mean of the 10-fold stratified cross-validation test accuracies. Value in the parenthesis
denote the standard error of each measure across the folds.
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With a mean TSS of 0.804 (SE=0.029) over a rigorous ten-fold cross-validation, the

time series forest takes first place. CNN has the highest skill score of 0.769 (SE = 0.029)

among the Neural Networks, followed by the LSTM network and ANN. Random Forest

(TSS=0.762, SE=0.024) has clearly shown its superiority in the baseline approaches, while

SVM (TSS=0.688, SE=0.044) and Logistic Regression (TSS=0.612, SE=0.041) are far be-

hind.

Performance in terms of skill scores

TSS can be thought of as a stringent version of accuracy. It subtracts the false alarm

rate and false-negative rate from one to reflect the model’s worth. HSS1 shows how much

better the model is than always predicting a negative class, while HSS2 shows how much

better the model is than random prediction. HSS2 will be zero for a four-class problem if

the accuracy is at least 25%. The Gilbert score (GS) takes into account true positives that

happened by chance. HSS1 isn’t appropriate because our issue isn’t binary classification,

and GS isn’t as good as TSS or HSS2 because reducing false negatives is more relevant in

our situation. Hence, our primary metrics will be TSS and HSS2. However, other metrics

are also mentioned to enable comparison with the literature.

The performance pattern of models has remained consistent across various metrics, in-

dicating that models have established the balance in multiple aspects, such as true positive

rate, false alarm rate, precision, and recall. The HSS metrics that are vulnerable to class

imbalance benefited from removing class imbalance. The box plots in 4.1 provide a broad

overview of where models stand. Despite modeling the prediction task as a 4-class prob-

lem, we have achieved relatively better output with our TSF, CNN, ANN, and LSTM in

comparison to Ji’s [8] time-series forests and Nagem’s [10] prediction using gramian angular

fields.
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Fig. 4.1: Classifiers across stratified 10-fold cross validation setting. Smaller box plots rep-
resent more consistent performance of classifier and larger ones represent the inconsistency
in performance in different folds.
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How consistent are the models across the folds?

The low standard error and variance across the ten folds, TSF, RF, ANN, CNN, and

LSTM, appear pretty robust. When looking at the box plots, it’s clear that logistic re-

gression has the smallest box plot but a relatively high standard error, suggesting outliers.

Its prediction accuracy, on the other hand, is not particularly impressive. SVMs performed

admirably but were unreliable because of their significant variance. On the contrasting side,

SAXVSM and Shapelet Transform are nowhere close to the optimum behavior making it

plain that they are under performers.

4.1.1 Performance of Neural Networks

The accuracy of all three Neural Network architectures was greater than 81 percent,

with CNN reaching 83 percent. Let’s look at the models’ confusion matrices to understand

the models’ strengths and weaknesses better.

Flare X M CB Q

X 38 0 0 0

M 4 28 7 0

CB 0 8 27 3

Q 0 1 5 33

Flare X M CB Q

X 37 1 0 0

M 4 30 5 0

CB 0 10 26 2

Q 0 1 8 30

Flare X M CB Q

X 35 0 3 0

M 1 31 7 0

CB 0 2 33 3

Q 0 1 8 30

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

ANN LSTM CNN

Fig. 4.2: Class confusion matrix of the neural networks in median performing fold

The confusion matrices infer that all the neural networks classified the X-class flares

to near perfection. The majority of the confusion is with CB flares; ANN and LSTM have

identified triggered false alarms 8 and 10 times, respectively, by misclassifying CB flares

as M class flares. They even classified Q class(Non-flaring) to M class a couple of times.

On the other hand, they have missed identifying M class flares 7 and 5 times each. Their
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area of improvement is to learn M- and CB flares better. ANN has done a pretty good

job identifying non-flaring time series data. Overall, ANN and LSTM seem to be biased

towards X and M classes.

When it comes to CNN, they achieved a better balance between all of the classes.

Notably, it did a better job of classifying CB flares than the other two networks. CNN is

even more vigilant when it comes to false alarms. But on the other hand, it needs to boost

its recall of M class flares. On the whole, CNN managed to keep the count lower in red and

yellow regions of Confusion matrices to achieve a TSS of 0.769.

4.1.2 Performance of Time series classifiers

Flare X M CB Q

X 39 0 0 0

M 1 35 2 0

CB 0 10 26 3

Q 0 1 6 31

Flare X M CB Q

X 30 2 6 1

M 3 20 13 2

CB 1 20 17 1

Q 0 3 20 15

Flare X M CB Q

X 24 14 0 0

M 10 23 6 0

CB 4 5 21 8

Q 1 2 5 31

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

TSF SAXVSM ST

Fig. 4.3: Class confusion matrix of the time series classifiers in median performing fold

In this thesis, Time Series Forest is our best bet to perform the prediction task. It has

clearly gained advantage with X and M class flares 4.3. It has only skipped reporting flares

twice, indicating that it is our safest classifier. It has outperformed CNN in classifying

non-flaring regions as well. However, on the downside, TSF has to reduce the false alarm

rate to improve its TSS.

Below is the plot 4.4 showing the performance of TSF with a varied number of decision

trees. The low time complexity of TSF has enabled us to find the optimal number of decision
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trees [11,42] by launching several experiments. We have chosen our TSF, which gave us the

highest TSS while keeping the X- and M- flares recall at best; in the tie case, we opted for

the model with the slightest variance across ten fold results.

Fig. 4.4: Time series forests performance on varying the number of decision trees

Coming to SAXVSM, it has its factors for poor performance distributed all over the

matrix. It has only managed to classify X- class flares slightly better. One of the reasons

SAXVSM could not perform could be because some features are constant at most places.

The bag of words(BOW) can’t form distribution and create bins if the feature is constant in

the sliding window, leading BOW to consider larger windows and word size. A large word

size might cause it to miss minor variations in the time series, which could be crucial to

distinguish between two flare classes.

Despite its poor results, Shapelet Transform has achieved classification accuracy on par

with CNN for Q class flares. We believe that shapelet transforms being a greedy classifier;

it needs vast number of shapelets with different window sizes to find the optimal subset for

classification. This procedure seems to be quite computationally demanding, but explor-

ing this technique would help us better interpret discriminative shapelets. Below fig 4.5
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displays the shapelets that are considered most discriminative by the shapelet transforms.

Tracing the shapelets back to the corresponding AR features reveals that RBT VALUE,

RBP VALUE, RBZ VALUE, TOTPOT could be crucial features to distinguish between X,

M, CB and Q classes.

X- M-

C/B Q

Time interval Time interval

Time interval Time interval

Fig. 4.5: Most discriminative shapelet of each class based on shapelet transforms. Cor-
responding AR features from which these shapelets are extracted are RBT VALUE,
RBP VALUE, RBZ VALUE, TOTPOT for X, M, CB and Q respectively. The graph rep-
resents value of the feature on y axis at a given time interval on x axis

4.1.3 Comparison with the Baselines

Support Vector Machines, Logistic Regression, and Random forest (RF) are the three

baseline approaches we performed in this thesis. Random forests have stood right after

TSF and CNN in terms of performance. Like most classifiers, Random forest has a perfect

classification for X class flares and struggled with CB classification. The false alarms in
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Flare X M CB Q

X 39 0 0 0

M 2 33 3 0

CB 2 9 26 2

Q 0 1 7 30

Flare X M CB Q

X 39 0 0 0

M 1 25 12 0

CB 0 5 33 1

Q 0 0 15 23

Flare X M CB Q

X 38 1 0 0

M 13 21 4 0

CB 3 6 27 3

Q 0 2 9 27

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

Random Forests SVM Logistic Regression

Fig. 4.6: Class confusion matrix of the baseline classifiers in median performing fold

yellow region of confusion matrix 4.6 has dragged down the TSS significantly for RF.

Though SVM is not among the top five classifiers, they did a compelling job in classify-

ing CB class flares. SVM’s high dimensionality projection would have helped discriminate

the minor differences in the CB class. Along with CNN, SVM is the only classifier that

performed well in this area. On the downside, SVM is poor at recalling M class flares which

did not help its TSS measure. Logistic Regression also struggled to recall M class flares, but

it confused with X class, making it safer than SVM, but its CB and Q class performance

are only average.

TSF, CNN, LSTM, ANN has surpassed the performance of Logistic Regression and

Support Vector Machines. At the same time, TSF crossed Random Forest performance by

a comfortable margin, and CNN displayed a slight improvement over Random Forests.

4.1.4 Ensemble Performance

In the above sections, we have analyzed the performance of each classifier and identified

the strengths and areas of improvement. Forming an optimal set of classifiers to overcome

the challenges faced by TSF is our final attempt at improving the TSS of this flare predic-

tion task.
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We know that the major downside of Time Series Forest is producing False alarms;

quite a few CB class flares are being classified as M- class flares. If we can improve the

recall of CB class flares in TSF, we could arrive at a much robust prediction model. Here,

we tried to take advantage of CNN and SVM in this ensemble, exhibiting a good recall of

CB class flares. Simultaneously, we added Random Forest, LSTM, and ANN to maintain a

low false-negative rate for X and M class flares relatively.

However, we followed a backward recursive approach similar to our feature selection

process to identify the best ensemble [43, 44]. We can see in 4.15 that the ensemble with

the top 6 classifiers has bumped up the accuracy to 88.05% from 85.5% and TSS from 0.804

to 0.840. If we look into the confusion matrices 4.7, we can observe that ensemble has

improved its recall for CB and Q class flares consequently, reducing the false alarms for M-

flares.

Fig. 4.7: Above line chart shows us the performance of ensemble with number of classifier
in x-axis. Starting with all the models in ensemble, we removed one by one based on TSS
as priority. We achieved the best TSS with top 6 classifiers in the ensemble.

The comparison made in fig 4.9 shows us the average gain of class-wise performance in
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Flare X M CB Q

X 39 0 0 0

M 1 35 2 0

CB 0 10 26 3

Q 0 1 6 31

Flare X M CB Q

X 39 0 0 0

M 0 35 3 0

CB 0 4 31 2

Q 0 1 4 33

Ensemble: (TSF, CNN, Random Forest, LSTM, ANN, SVM)TSF

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

False Alarms11 4
2 X- and M- Flares Missed 3

Fig. 4.8: Confusion matrix representing the reduced False alarm rate in the ensemble model
classifier.

ensemble across tenfold evaluation. As the F1 score represents the harmonic mean of recall

and precision, we can state that the ensemble’s improvement in CB and Q classes has not

come at the cost of precision. The below table 4.2 shows our top three models with RUS

dataset in this thesis.

Fig. 4.9: The Bar chart clearly shows that ensemble has successfully helped TSF to improve
its performance on CB and Q class flares while X and M class performance is unaffected.
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Metric\Model Ensemble TSF CNN

Accuracy 0.881 0.855 0.831

F1-score 0.880 0.854 0.829

Recall 0.881 0.855 0.831

Precision 0.884 0.859 0.836

HSS1 0.838 0.710 0.661

HSS2 0.761 0.803 0.768

GS 0.737 0.693 0.641

TSS 0.839 0.804 0.769

Table 4.2: Performance analysis of top three models achieved in this thesis using RUS
dataset.

4.1.5 Comparison with previous work

In this final section of the results, let’s compare our results with the latest publications.

The comparison is made even though the previous works are modeled as binary classification

problems, where X- and M- are merged as flaring classes while C/B and Q are considered as

negative classes. Also, not all the works have utilized the same dataset. However, it gives

us a good picture of where our models stand.

TSF model in this work with four classes has comfortably surpassed the latest work of

Ji [8] that has achieved a TSS of 0.75 in detecting non-flaring activity; We think the reason

for betterment is the use of 28 features instead of 2 in Ji’s work. In the works of Wang [9],

and Hamdi [5] they used LSTM and kNN to achieve an exceptional accuracy of 0.95 and

0.97, respectively; but their TSS indicating significant false positive and false negative rate;

especially in the case of LSTM. Our ensemble approach with 0.881 accuracies and TSS of

0.749 looks better than the work of Zheng [35].

Metric\Model Ensemble* TSF* CNN* LSTM Wang kNN Hamdi CNN Zheng TSF Ji

Accuracy 0.881 0.855 0.831 0.945 0.975 0.891 -

HSS2 0.839 0.804 0.769 0.382 0.852 0.759 0.57

TSS 0.838 0.804 0.768 0.681 0.885 0.749 0.75

Table 4.3: Comparison of our top models with literature. Models marked with * are from
current work
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4.1.6 Critical difference diagram

This diagram shows the statistical difference between models tested across different

data sets. Our train and test sets from ten folds of stratified cross-validation are used as

ten different data sets. Two tests are performed to generate this significance diagram. First,

a Friedman test is performed to reject the null hypothesis, and then a post-hoc analysis

is based on the Wilcoxon-Holm method. The model with the lowest score is the most

statistically significant model, and models falling under the same thick black line can be

considered not significantly different. Based on the diagram in 4.10 we can say ensemble

of six classifiers (RUS ensemble) and time series forest are the most statistically significant

models.

Fig. 4.10: Statistical significance diagram of the solar flare prediction classifiers

4.2 Prediction results on SMOTE RUS dataset

Experiments on the SMOTE RUS dataset are trained and evaluated using the top

6 models achieved on the RUS dataset: time series forests, CNN, ANN, LSTM, random

forests, and SVM. In this section, we will analyze the results of these models compared to

models trained using the RUS dataset. This dataset has resulted in significant improvements

in every aspect of the model’s performance. The biggest drawback of not having a good

recall of the M class has been solved with this augmented dataset. The standings of models

are unchanged to the RUS dataset. TSF is still our top performer with a TSS score of

0.92, far better than the RUS ensemble’s TSS of 0.84, while CNN (TSS: 0.88) and random

forests (TSS: 0.88) stand in the following two places. The table 4.4 displays the performance

metrics.
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Fig. 4.11: Classifiers across stratified 10-fold cross validation setting on SMOTE RUS
dataset. Smaller box plots represent more consistent performance of classifier and larger
ones represent the inconsistency in performance in different folds.
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Classifier\Metric Accuracy F1-score Recall Precision HSS1 HSS2 GS TSS

ANN SMOTE 0.899 (0.022) 0.899 (0.022) 0.899 (0.022) 0.898 (0.022) 0.799 (0.043) 0.864 (0.03) 0.777 (0.041) 0.865 (0.03)

CNN SMOTE 0.904 (0.019) 0.903 (0.019) 0.904 (0.019) 0.904 (0.019) 0.807 (0.037) 0.87 (0.026) 0.786 (0.036) 0.87 (0.026)

LSTM SMOTE 0.91 (0.004) 0.909 (0.004) 0.91 (0.004) 0.91 (0.004) 0.82 (0.009) 0.879 (0.006) 0.797 (0.009) 0.879 (0.006)

TSF SMOTE 0.939 (0.003) 0.939 (0.003) 0.939 (0.003) 0.94 (0.002) 0.878 (0.006) 0.918 (0.004) 0.858 (0.006) 0.919 (0.004)

RF SMOTE 0.915 (0.004) 0.915 (0.004) 0.915 (0.004) 0.916 (0.003) 0.83 (0.007) 0.886 (0.005) 0.807 (0.008) 0.886 (0.005)

SVM SMOTE 0.831 (0.007) 0.833 (0.007) 0.831 (0.007) 0.843 (0.007) 0.662 (0.014) 0.772 (0.01) 0.649 (0.012) 0.771 (0.01)

Table 4.4: Classifier Performance Analysis on the SMOTE dataset. Reported values are
the mean of the 10-fold stratified cross-validation test accuracies. Value in the parenthesis
denote the standard error of each measure across the folds.

Performance in terms of skill scores

Time series forest with SMOTE dataset has achieved the highest TSS of 0.92, indicating

that its false-negative rate and false alarm rate have been significantly reduced. Another

area of improvement compared to TSF trained using the RUS dataset is that M- flares have

achieved a recall of greater than 99.5% along with 100% recall of X- flares are making it

a very reliable model. HSS1 and HSS2, which indicate the performance improvement over

random predictions and always predicting a negative class, have also spiked along with TSS,

showing that the models have not been biased. Random forests, LSTM, CNN, ANN, and

SVM, have seen similar behavior in their skill scores as TSF and have also surpassed the

skills scores of RUS ensemble. The box plots in the figure 4.11 show us the big picture

of where each model stands in terms of different skill scores and how each of the models

benefited from more data SMOTE dataset in comparison to the RUS dataset. Another

quality to notice is that the variance in performance across ten-folds is almost negligible,

revealing the consistency of models.

4.2.1 Performance of Neural networks

The neural networks trained using SMOTE dataset, LSTM has pulled the top TSS

of 0.879, with CNN and ANN very close at TSS of 0.870 and 0.865, respectively. Their

consistency across ten folds is exceptional. LSTM has taken an edge over the other two

because of its strength in recalling the Q class flares better. However, LSTM has produced

low tolerance misclassifications more often than CNN, making it slightly less reliable. Con-
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sidering the fact that false alarms can pose unnecessary loss, ANN and LSTM stand behind

CNN. Moreover, ANN has also struggled to classify between X- and M- class flares. Hence

CNN is our winner in the neural networks. The confusion matrices in figure 4.12 make it

succinct the areas of strengths and weaknesses of each neural network.

Flare X M CB Q

X 386 0 0 0

M 1 382 3 0

CB 0 13 330 43

Q 0 1 71 312

Flare X M CB Q

X 386 0 0 0

M 0 384 2 0

CB 1 14 329 42

Q 0 4 57 325

Flare X M CB Q
X 386 14 0 0

M 6 377 3 0

CB 0 16 322 48

Q 0 4 73 309

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

CNN_SMOTE LSTM_SMOTE ANN_SMOTE

Fig. 4.12: Class confusion matrix of the neural networks in median performing fold

4.2.2 Performance of Time series forests

TSF is the only classifier experimented with SMOTE dataset in the time series classi-

fiers. As we know that TSF is the best performer with the RUS dataset; let’s see how the

TSF with SMOTE has reached the near operational level model. The most crucial factor to

consider in determining the model’s feasibility in the solar flare prediction task is its ability

to recall all the X- and M- class flares. TSF has managed to recall 99.8% of the X and

M class flares, with only one or zero misses across the different folds. The second factor

to consider is how less often the model is raising false alarms. TSF has achieved a 99.82%

precision for X class flares and 98% precision for M class flares. TSF with SMOTE has

well-satisfied both factors and brought us to an almost perfect flare occurrence prediction.
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Flare X M CB Q

X 386 0 0 0

M 0 386 0 0

CB 0 5 353 28

Q 0 0 61 325

Flare X M CB Q
X 39 0 0 0

M 1 35 2 0

CB 0 10 26 3

Q 0 1 6 31

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

TSF_SMOTE TSF_RUS

Fig. 4.13: Class confusion matrices comparison of TSF between SMOTE and RUS datasets.

4.2.3 Performance of Random Forest and SVM

These are the two baselines experimented with SMOTE dataset. As the neural networks

and TSF, random forest, and SVM have also shown improved performance and consistency

across ten folds. Random forests managed to recall flares with near perfection, but they

have raised too many false alarms, which affected its TSS (0.88). On the other hand, though

SVM has been gained from SMOTE dataset, it is not close to the performance of neural

networks or TSF. The number of misses and false alarms is too many to consider as a

potential flare prediction model.

Flare X M CB Q

X 386 0 0 0

M 0 384 1 1

CB 1 17 332 36

Q 0 2 60 324

Flare X M CB Q
X 386 14 0 0

M 13 314 59 0

CB 6 52 305 23

Q 0 2 95 289

Right Predictions

Misclassifications with low impact

Misclassifications with low tolerance (False Alarms)

Misclassifications with low tolerance (Flares missed)

Random Forests_SMOTE SVM_SMOTE

Fig. 4.14: Class confusion matrix of the random forests and SVM in median performing
fold
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4.2.4 Comparison with previous work

In this section, the top three classifiers, Time-series forests, CNN, and Random forests,

have been compared with the latest work published on this solar flare prediction task. Al-

though we compare previous work, which has modeled the study as a binary problem, and

our classifiers modeled as 4-class classification, our models have still achieved performance

on par with the established state-of-the-art performance. In terms of TSS, our TSF and

random forests have surpassed the work of [5] comfortably. The results of Wang [9], and

Hamdi [5] have exceptional accuracies, but their relatively low TSS indicates that their

models are prone to false alarms and false negatives. Our models have maintained less

gap between accuracy, HSS, and TSS, exhibiting the unbiased nature of models. All our

neural networks, TSF, and random forests with SMOTE have outperformed the works of

Zheng [45] and Ji. Table 4.5 shows us the statistical comparison of our classifiers with

previously published research.

Metric\Classifier Accuracy HSS2 TSS

TSF SMOTE* 0.939 0.918 0.919

CNN SMOTE* 0.905 0.870 0.870

RF SMOTE* 0.915 0.885 0.886

LSTM SMOTE* 0.910 0.878 0.879

LSTM Wang 0.945 0.382 0.681

kNN Hamdi 0.975 0.852 0.885

CNN Zheng 0.891 0.759 0.749

TSF Ji - 0.57 0.75

Table 4.5: Statistical comparison of our top four classifiers with previous literature. Note
that classifiers with * are from this thesis.

4.2.5 Critical difference diagram

According to the diagram, we can say time series forest is the most statistically sig-

nificant classifier, followed by random forests with a margin of 1.1. CNN and LSTM are

under the same bracket of statistical significance and are in third and fourth. Among the
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six classifiers trained using SMOTE dataset, ANN and SVM are on the left most part of

the diagram ending up as the relatively insignificant models.

Fig. 4.15: Statistical significance diagram of the solar flare prediction classifiers
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CHAPTER 5

Conclusion and Future scope

5.1 Conclusion

The astrophysics community does not have any particular physical theory explaining

the mechanism behind the occurrence of solar flares, which constrains the attempts to fore-

cast and classify them. [46] Though several groups of physicists are researching to unfold

the definitive theory to forecast the flares, plausibility is low. With AI and machine learn-

ing advancing at a quick pace, our best hope is to take a data-driven approach by using

the Active region parameters observed by the solar dynamics observatory. The aim is to

develop a model which could find an empirical relationship between AR parameters and

flare occurrences.

In our thesis, we attempted to predict the occurrence of flare based on 28 AR time-

series features with a look-back of 12 hours. We successfully tested nine different Machine

learning models in the quest to find the most suitable prediction model. Based on our

results, the time series forest has achieved the state-of-the-art 0.92 TSS for the first time in

a solar flare prediction problem modeled as a 4 class problem. The TSF was able to recall

all the X- and M- flares with 98.87% average precision.

Our first challenge is the huge class imbalance in the dataset with less than 2% flaring

samples; it makes sense as the flares are rare. To tackle this problem, we prepared two

balanced data sets called RUS and SMOTE RUS. RUS is prepared by employing random

under-sampling on majority classes and the SMOTE RUS by oversampling the minority

class by generating synthetic data with Synthetic minority oversampling technique. We

then preprocessed the data, got rid of outliers, imputed the missing values, and standard-
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ized the data sets.

Once the data sets were ready, our first objective was to find the optimal set of features

that makes our multivariate time series(MVTS) sample. We implemented a feature selection

pipeline to rate features based on scores of linear correlation, mutual information, and

random forest tests. We identified our optimal MVTS with 28 features using backward

recursive feature elimination. Each feature has 60 instances; our MVTS dataset dimension

was 28 x 60. We implemented all the machine learning models with the same feature set

to be consistent while comparing the models. The major contributions of this thesis are as

follows:

1. Established the baseline performance of nine different classifiers using the same datasets,

enabling the critical comparison between classifiers. Also, for the first time, a mul-

tivariate time series dataset with AR parameters as many as 28 has been utilized to

perform solar flare prediction.

2. Tackled the class imbalance problem with two derived datasets from the actual data

partition based on random under-sampling and synthetic minority oversampling. The

latter has given us well-trained and better-generalized models.

3. Identified that computationally inexpensive time series forest as a potential model

that can be improved to an operational level. It has achieved the best performance

with an exceptional TSS of 0.92 and decent skill scores. Also, the results of neural

networks with the SMOTE RUS dataset are comparable or even better than the

recently published work using LSTM, TSF, kNN, and CNN.

4. Explored shapelet transforms, though not among the top performers for this clas-

sification task, they revealed discriminative shapelets which could lay the path for

interpretability studies in the future.
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The main difference in the results between the classifiers trained on RUS and SMOTE RUS

data sets is the spike in recall of M- class flares. This is solely because of accommodating

more samples for M- class in the later dataset. As we have over-sampled only X- class data

one can not argue that the synthetic samples have made the classifier biased to M- class.

At the same time the recall for X- class flares on time series forest with both the data sets

is same, ruling out the possibility of synthetic samples causing bias to X- class. Hence we

can justify that the improvement of models with SMOTE RUS dataset is only because of

additional data accommodated.

5.2 Future scope

In our future research, we would like to experiment using weighted cost functions, as

this helps us maintain the class imbalance even while training. However, as the imbalance

is huge, we can’t overlook the sampling process for training the models. Another way to

investigate the robustness of models is to train and test using data from different years of

solar cycle and see if there is any temporal dependency. For example, we can train the

models with data from 2012 - 2014 and try to predict the 2015 data. In light of CNN and

LSTM’s success, one potential model we could experiment with in the future is CONV-

LSTM, which can learn spatio-temporal relationships [47–50]. To improve the skill scores

of flare prediction, we plan to perform research in the direction of points mentioned above.

The research in this thesis will serve as a baseline for comparing the results obtained

with new experiments and techniques. The entire code base of preprocessing, feature se-

lection, and machine learning implementations are delivered as an easy-to-use component,

saving researchers crucial time. We can reuse shapelet algorithm implementations to mine

more greedily to extract the shapelets with the highest discriminative power. Mapping

shapelets back to the original features could help make the classification process more in-

terpretable.
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