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Abstract 

Bachelor's Thesis 

Tyce J. Kearl 

Department of Biology, Utah State University, Logan, Utah 84322, USA 

Modulation of fast and slow inactivation in 

two cardiac Nav channel isoforms by SDZ 211-939 

Here we report a hitherto unknown effect of a synthetic inactivation inhibitor on 

inactivation in cardiac sodium channels (Navl.5) from two different species : human and bovine. 

SDZ 211-93 9 stabilized the slow inactivated-state in both channels as seen by an increased 

steady-state probability of slow inactivation. SDZ also destabilized the fast-inactivated state and 

increased the amplitude of persistent currents. SDZ modulated conductance parameters , open

state fast inactivation time constants, and activation kinetics of hNavl.5, but not bNavl.5. These 

findings will aid future studies designed to elucidate the binding site and molecular mechanisms 

of inactivation inhibitors such as SDZ 211-939. 
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1. Introduction 

Cardiac voltage-gated sodium channels (Nav 1.5) are responsible for the influx of ionic 

current that initiates myocardial action potentials. From the membrane resting potential, 

depolarization causes the channel to go from a closed (deactivated) state to an open (activated) 

state. Channels inactivate through two distinct mechanisms: fast and slow inactivation. 

Membrane excitability, and therefore action potentials , is regulated by the likelihood of a 

channel being in an inactivated state. The type of inactivation, fast or slow, differentially 

regulates membrane excitability. Cellular modification of both types of inactivation allows 

excitable membrane activity to be controlled. Such modification also suggests a convenient 

method of pharmacological intervention in diseased and/or mutant cells. 

The importance of properly functioning inactivation may be seen by the conditions 

associated with abnormal inactivation activity. Fast [1,2] and slow inactivation [3] in Navl.5 

have both been shown to cause life-threatening arrhytlunias such as Brugada syndrome and 

chromosome 3-linked congenital long-QT syndrome. Another factor pointing to the importance 

of slow inactivation regulation in Navl .5 is the drastic reduction of slow inactivation in cardiac 

channels compared to skeletal channels . Approximately 20% of cardiac channels are slow

inactivated in steady-state protocols [4] versus 80% in skeletal muscle channels [5]. If cardiac 

channels were slow-inactivated to the same extent as in the skeletal muscle isoform, myocardial 

tissue would quickly cease to conduct action potentials. 

Fast inactivation occurs rapidly via structural components on the intracellular side of the 

sodium channel [ 6], with onset and recovery time constants on the order of milliseconds . Slow 

inactivation , however, has time constants on the order of seconds and is homologous with 
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cumulative inactivation [7]. Whereas fast inactivation-kinetics allow membrane excitability to be 

regulated over the course of an action potential, slow inactivation requires sustained or repeated 

depolarizations for its effects to become physiologically relevant. Interestingly, the two states are 

"reciprocally interactive" [8], the probability of one having an inverse relationship with that of 

the other [6,9,10]. 

SDZ 211-939 (SDZ) belongs to a family of membrane permeable synthetic inactivation 

inhibitors typified by DPI 201-106 (DPI) [11]. SDZ acts as a positive inotropic agent by 

prolonging the open-state ofNavl.5 channels through inhibition of fast inactivation [12]. The 

prolonged time spent in the open-state lengthens the duration of the action potential and 

increases the intracellular Na+ concentration. This lessens the concentration gradient driving the 

Na +/Ca2+-exchanger and results in a stronger force of contraction in myocardial tissue due to 

increased intracellular Ca2+ -availability to contractile proteins [ 13]. Because of increased 

contractility, DPI and other synthetic modifiers have been clinically studied to determine their 

therapeutic usefulness in cases of cardiac failure [ 14, 15, 16]. 

Neither the binding site nor the mechanism of action for this family of compounds has been 

identified. Researchers found [17], cloned, and characterized via heterologous expression [12] a 

bovine cardiac sodium chmmel with drastically reduced sensitivity to DPI and its derivative 

SDZ. The bovine cardiac channel (bNavl.5) is 92% homologous to the human cardiac channel 

(hNav 1.5). Both the amount of similarity between the two channels and the unique effect of SDZ 

on the bovine channel make these two channels well suited to studies seeking to determine the 

mechanism and binding site of this family of inactivation inhibitors. 

The main focus of our study was to ascertain the amount (if any) by which SDZ affects the 

steady-state probability of slow inactivation in cardiac channels. Since the probability of a 
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channel being in the slow-inactivated state is a determinant of myocardial excitability 

modulation of slow inactivation presents a convenient way by which cell excitability may be 

pharmacologically altered. In general, we sought in this study to characterize and compare the 

effects of SDZ on hNavl.5 and bNavl.5 in an effort to better understand the structure/function 

relationship ofNavl.5 . 

2. Materials and Methods 

2.1. Cell Culture 

The cDNA for the ex-subunit of either hNav 1.5 or bNavl.5 (subcloned into pRc/CMV 

vector, Invitrogen, Carlsbad, CA) was transfected into a human embryonic kidney cell line 

(HEK293, ATCC number CRL-1573) using Polyfect Transfection Reagent (Qiagen , Valencia , 

CA). The cDNA for either the CD8 antigen or EGFP (subcloned into pEGFP-C 1 vector , 

Clontech, Palo Alto , CA) was co-transfected in some experiments to aid with identification by 

Dynabeads (M-450 CD8, Dynal , Oslo , Norway) or fluorescence. 24-36 hours after transfection 

and 24 hours before patch clamping , cells were plated onto glass cover slips. Cells were 

maintained at 37°C in a humidified atmosphere with 5% CO2 . 

2. 2. Electrophysiology 

Sodium currents were recorded using the whole-cell patch clamp technique. All 

recordings were done in a chamber containing (in mM): NaCl 140, KCl 4, CaCh 2, MgCh 1, 

HEPES 10, pH 7.4. After fabrication (P-57, Sutter Instruments, Novato, CA), borosilicate patch 

electrodes were coated with dental wax to reduce capacitance. Electrode resistance in the bath 
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solution prior to attachment to the cell was between 1 and 3 MQ. Prior to recordings , the 

electrodes were thermally polished and filled with (in mM) : CsCl 130, NaCl 10, EGTA 10, Mg

ATP 4, Li-GTP 0.4, HEPES 10, pH 7.4. Temperature was maintained at 22± 0.2°C by a Peltier 

device regulated by a temperature controller (HCC-1 00A, Dagan , Minneapolis , MN). Data were 

obtained with an EPC-9 amplifier (HEKA, Lambrecht, Germany) and were software-low-pass

filtered at 5 kHz. Sampling frequency was 50 kHz for slow inactivation protocols and 200 kHz 

for all !I V protocols. Pulse software (HEKA) run on a 04 Macintosh was used to control both 

voltage clamping and pulse protocols. After formation of a ~ l giga-Ohm seal , the seal was 

allowed to stabilize for 30 s. A patch of membrane was excised via intra-electrode suction to 

allow for whole-cell access. No recordings were done until peak current elicited by test pulses 

remained steady (approximately two minutes) . Leak subtraction was performed automatically by 

a p/4 procedure before each pulse protocol. Fast and series resistance were automatically 

compensated such that series resistance was <10 MQ . Holding potential was maintained at -100 

m V between pulse protocols. Data sets with current rundown of greater than 10% were 

discarded. 

Steady-state slow inactivation data were obtained from the following pulse protocol. 

Membrane potential was held at-130 mV for 20 s to recover channels from previously induced 

slow inactivation . A 60 s prepulse ranging from - 130 to - 10 mV was then delivered. Prepulse 

potentials were alternated between high and low sweeps (- 130, -10, -120, -20, etc.) to avoid 

accumulation of slow inactivation during the experiment. After the prepulse, the channels 

recovered from fast inactivation during a 20 ms pulse at -130 m V before a test pulse of 20 ms at 

- 10 mV. 
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Conductance data were obtained as follows. Membrane potential was held at-13O mV 

for 200 ms to insure that the channels were deactivated, stepped to a test pulse voltage (-90 to 40 

mV in 10 mV increments) for 20 ms , and then returned to -130 mV for the next sweep. The test 

pulse voltage was sufficiently long to observe activating and fast-inactivating sodium current. 

After collection of control data, two mL of 2.5 or 25 µM SDZ (from where?, dissolved in 

DMSO) were perfused into the recording chamber. SDZ data were not obtained during the two 

minutes after perfusion, to allow for diffusion of SDZ and its association with the channels. 

2. 3. Data Analysis 

Data were analyzed in PulseFit (HEKA) and IgorPro (Wavemetrics, Lake Oswego , OR) 

software . Steady-state slow inactivation curves were obtained from normalized data averaged 

and fitted with the modified Boltzmann equation: 

Illmax = (I1 - h) / [1 + exp(-zeo(Vm - Vi12))/(kT)] + h (1) 

where Imax is the maximum peak current measured , 11 and h are respectively the maximum and 

minimum values fitted, z is the apparent valence (slope factor), e0 is the elementary charge , Vm is 

the prepulse potential , Vi12 is the midpoint potential , k is the Boltzmann constant, and Tis the 

absolute temperature. The maximum probability of steady -state slow inactivation was reported as 

1/lmax at the most depolarized voltage of the curve and will be referred to as 'probability of slow 

inactivation'. 

Conductance data were obtained from 1/V curves using the equation: 

G = fmaxf(Vm-Erev) (2) 
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where G is conductance, Erev is the reversal potential derived from minimizing error in G, and 

other variables as stated above. Normalized conductance curves were then averaged and fitted 

with the modified Boltzmann equation: 

I I lmaz = 11/[l + exp(-zeo(Vm - Vi12))/(k1)] (3) 

where the variables are the same as those for equation 1 with the exception of Vm being the test 

pulse potential. 

Open-state fast inactivation time constants were obtained by fitting the current decay 

portion of the 1/ V curves to the single exponential equation: 

J(t) =Ip+ a1 exp(-t/'r) (4) 

where I(t) is current amplitude as a function oft (time), Ip is the plateau amplitude , a1 is the 

amplitude at t = 0 (time of peak current) , and Tis the time constant. 

lp1a1eau:lp eak ratios were analyzed as follows: Ip eak (peak current amplitude) was fit with a 

6th order polynomial function. /pl ateau (plateau current amplitude) was derived by fitting the 

sustained current amplitude with a horizontal line . The sustained current amplitude was defined 

by the current after 15-20 ms of the 20 ms test pulse; by 15 ms , current amplitudes in all 

experiments had reached a plateau and remained steady to the end of the test pulse. 

Ip1a1eau:lp eak ratios and fast inactivation time constants were graphed using Excel 

(Microsoft, Redmond , WA). All other graphs were made in Igor Pro. 

All statistical values were obtained using the Student ' s t-test , or, when indicated by a 

significant difference is standard deviations , Welch ' s alternate t-test using Instat software 

(GraphPad Software , Inc., San Diego, CA). Two-tailed p-values are reported. Significant 

difference was accepted at p<0.05. Statistical values are given as mean± standard error of the 

mean (SEM). Throughout the text, n refers to the number of experiments. 
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3. Results 

3. I. SDZ affects plateau current in hNavf.5 and bNavf.5 

The primary effect of synthetic inactivation inhibitors, such as SDZ appears to be to 

destabilize the fast-inactivated state and thus create a plateau ( or persistent) current. A greater 

amount of destabilization results in an increased plateau current. 

To determine the effect of SDZ on plateau (or persistent) current, we measured the 

lp1a1eau:lp eak ratio at the end of a depolarizing test pulse. A 20 ms test pulse to -10 m V elicited 

currents after a conditioning pulse at - 130 m V for 200 ms. This protocol was sufficiently long to 

display both peak and plateau currents. 

As shown in Figure 1, hNavl.5 and bNavl.5 had similar lplateau:lpeak ratios in the absence 

of SDZ (p< 0.57). Application of 2.5 µMand 25 µM SDZ resulted in a concentration-dependent 

increase of lp1a1eau :lp eak ratios for both channel isoforms, although there was virtually no 

difference in response to SDZ between the two isoforms . 

3. 2. SDZ modulat es open-state fast inactivation time constants and activation kinetics of hNavl . 5 

but not bNaJ 5 

Open-state fast inactivation time constants are illustrated in Figure 2 for voltages at 

which large sodium currents were observed (-20 mV to 40 mV). Although SDZ affected bNavl.5 

by either increasing (25 µM) or decreasing (2.5 µM) the time constants, the effect was not 
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significant at either concentration. For hNavl.5, however, a significant increase was seen at the 

voltages 0, 10, 20, and 30 m V following the perfusion of 25 µM SDZ. 

Activation kinetics ( data not shown) were obtained by measuring the current rise time 

( defined as the rising portion of the current trace between 10% and 90% of the peak current 

amplitude) during test pulses to -10 m V. 

2.5 µM SDZ significantly decreased the activation time constants (dT) of hNavl.5 from 

397 ± 26 µs (15) to 301 ± 22 µs (10) (p< 0.02). The application of 25 µM SDZ to hNavl.5 

slightly increased dT to 435 ± 50 µs (15); however, the increase in dT was not statistically 

significant (p< 0.51). The dT ofbNavl.5 followed the same trends as hNavl.5 in that 2.5 µM 

SDZ decreased dT from 378 ± 26 µs (18) to 314 ± 40 µs (6) and 25 µM SDZ increased dT to 438 

± 34 µs (6). These changes in dT were not statistically significant, (p <0.22 and 0.18 , 

respectively). 

3. 3. SDZ differentially modulates conductance parameters 

The most visible example of differential modulation by SDZ is seen by the effect of the 

compound on the voltage-dependence of the channels (see conductance curves in Figure 3). SDZ 

caused large, significant shifts to more hyperpolarized potentials in hNavl.5, whereas such shifts 

in activation voltage-dependence were not seen for bNavl.5. 

The midpoint potential (V 112) ofhNavl.5 was shifted-22.0 mV by 2.5 µM SDZ (p< 

0.0001). No additional increase in this effect was seen at the higher concentration of SDZ (25 

µM) where V 112 was shifted-13.6 mV (p< 0.003). The effect on V 112 was not concentration

dependent in isoforms from both species as the effects on V 112 by the two concentrations were 
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not significantly different (p< 0.05 1). Additionally, the control V 1/2 measurements from each 

isoform were very different with bNavl.5 having a V 112 28.9 mV more hyperpolarized than 

hNavl .5. 

3. 4. SDZ increases the steady-state probability of slow inactivation of hNavl. 5 and bNavl. 5 

Previous studies using SDZ did not examine its effects on slow inactivation. Due to the 

large effect of SDZ on fast inactivation [12] and the coupling between fast and slow inactivation 

[5], we sought to determine the extent to which SDZ might affect the probability of slow 

inactivation in Na vl.5. The channel isoforms hNavl.5 and bNavl.5 were used for two reasons. 

First , slow inactivation parameters of hNav 1.5 have been previously studied and abnormal slow 

inactivation function implicated in several medical conditions [22,23]. Second , bNavl.5 has been 

shown to be minimally affected by SDZ compared to this channel isoform in other species 

[ 12, 17); differential effects betwe en the two isoforms might thus reveal important information 

about the mechanisms and structur es underlyin g the effects of SDZ. 

Figure 4 shows the steady-state slow inactivation curves for both channel types . The 

maximum probability of slow inactivation for both hNavl.5 and bNavl.5 was significantly 

increased by application of 25 µM SDZ (p< 0.0003 and p < 0.04 , respectively). Data showing the 

effect of SDZ on the midpoint (Vi 12) and the apparent valence (z) were also measured and are 

summarized in Table 1. Interestingly, although SDZ affected the probability of slow inactivation , 

no significant effects were observed for Vi12, and the apparent valence was affected by SDZ only 

in bNavl.5 (p< 0.01). 



4. Discussion 

Our data demonstrate that, besides the well-studied effect of synthetic modifiers such as 

DPI on the stability of fast inactivation [18,19,20], one member of this class of drugs, SDZ, also 

affects the stability and probability of slow inactivation. We have additionally shown that SDZ 

differentially modulates the conductance parameters and open-state fast inactivation time 

constants hNavl.5 and bNavl.5. 

Single channel recordings show that fast-inactivated channels undergo "bursting" during 

prolonged depolarizations. Bursting activity occurs when channels briefly recover from fast 

inactivation, allowing conductance of sodium current as the channels are in the activated open

state, and then re-enter the fast-inactivated open-state [21]. The /p 1ateau:/" eak ratios we observed are 

likely due to bursting channels . Bursting activity represents the relative stability of the fast 

inactivated-state; bursting increases as the stability of the fast-inactivated state decreases . 

Because our pulse protocols ensured nearly complete fast inactivation (verified by control data) , 

the SDZ-induced increase in /p 1ateau: /p eak ratio represents a decrease in stability of the fast 

inactivated-state. For our control experiments , fplateau values are two orders of magnitude smaller 

than I peak• With the addition of 25 µM SDZ, fp1at ea u values increased by an order of magnitude 

compared to f peak• 

Understanding SDZ modulation of slow inactivation is difficult since the underlying 

mechanisms by which channels slow inactivate are poorly understood [22,23]. However, several 

studies have shown an inverse relationship between the probabilities of fast and slow inactivation 

[ 4,9 , 1 O]. Given our results showing a decrease of fast inactivation stability and an increase of 
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slow inactivation stability, it appears that SDZ may exert its effects on the two types of 

inactivation via their intrinsic coupling. 

Previous studies have shown 1) that of swine, goat , and cattle, only cattle exhibited 

reduced sensitivity to SDZ [17], and 2) that SDZ is markedly less effective in bNavl .5 compared 

to rNavl.5 [12]. Based on these studies we hypothesized that the primary effect of SDZ, 

inactivation inhibition, on hNavl.5 would be more similar to rNavl.5 than bNavl.5 (which had 

been the only identified channel with reduced sensitivity to SDZ). Our plateau current results 

show that SDZ destabilizes inactivation in hNavl.5 and bNavl.5 to the same extent and 

contradict the hypothesis. However, Denae et al. (2002) expressed bNavl.5 and rNavl.5 in 

Xenopus oocytes, whereas we expressed our channels in HEK293 cells. Different expression 

systems have been shown to affect the biophysical properties of sodium channels and it is 

possible that the inactivation destabilization effect of SDZ is altered by the expression system 

[24]. 

The main area of structural difference between bNavl.5 and other chaimel-isoforms lies 

in the cytoplasmic linker connecting domains II and III. Although the bovine and human 

isoforms have DII-DIII linkers of the same length , the amount of conserved primary sequence in 

only 82% in the DII-DIII linker compared with 92% for the entire sequence. Interestingly , 

mutations found in the human DII-DIII linker have effects similar to those of SDZ on persistent 

currents although the wildtype sequence at these amino acids is conserved between the bovine 

and human isoform. The polymorphism Sl 103Y has been correlated with an increased risk of 

cardiac arrhythmias and was identified in 13.2% of African-Americans [25] and in a white 

family [26]. A997S, associated with Sudden Infant Death Syndrome, also displays increased 

fplateau [27]. 

12 



The bovine amino acid residue corresponding to position 1103 in hNav 1.5 is conserved, 

but the residue corresponding to position 997 in hNavl.5 is not conserved. The residue at this 

position (1002) is serine, corresponding to the f plateau-altering human polymorphism A997S. 

However, this does not imply that a serine at the position universally increases lp1ateau or is 

involved in SDZ binding. In addition to demostrating similar /p 1ateau:Jpeak ratio responses to SDZ 

when compared with hNavl .5, bnavl .5 still displays the low level of I plateau characteristic of wild

type cardiac channels and not the increased level observed for A997S [27]. Further studies are 

needed to elucidate the role of that position on inactivation stability. 

The mechanism by which SDZ affects sodium channels is unclear. Considering the 

increased plateau current amplitudes in S 1103 Y and A997S, and hNav 1.5 + SDZ compared to the 

wild-type isoform, it appears that SDZ might destabilize fast inactivation by inducing a 

conformational change. These factors also lead to the hypotheses that the DII-DIII linker is 

involved in fast-inactivation stability, and that the linker may be the binding site for SDZ and 

related compounds. Whether SDZ modulates slow inactivation directly or via a fast-slow 

inactivation coupling remains to be determined. The DII-DIII linker has not, however, been 

previously associated with the control of slow inactivation , suggesting an indirect effect of SDZ 

on slow inactivation. Thus, the stabilization of slow inactivation, as suggested by the increase in 

its maximum probability (Fig. 4), may be an indirect consequence of the destabilization of fast 

inactivation , as suggested by the increase in time constants of hNavl.5 (Fig. 2) and the increase 

in persistent current in both isoforms (Fig. 1 ). 

In summary, we have shown that SDZ differentially affects hNavl.5 and bNavl.5, and 

that an inactivation inhibitor not only modulated fast inactivation but also the probability of slow 

inactivation. These results may serve as a basis for future studies aimed at elucidating the 
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molecular mechanism of SDZ and the structure/function relationships of sodium channels. 

Importantly, an understanding of the molecular mechanisms of both inactivation inhibitors and 

sodium channel activity will aid the rational design of novel drugs for chronic cardiac failure, a 

possibility that has not been adequately explored [16,12]. In light of recent studies showing the 

expression of "neuronal" sodium channel isoforms in the heart [28,29], it will also be important 

to study the effects of SDZ on these isoforms to gain a complete understanding of the 

compound's effects on cardiac function. 
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Table 1 Slow Inactivation, Conductance, and 1111a,eau:lp eak data 

slow inactivation conductance fplc11ea11: fpeak 

-----·--
channel SDZ 

level(%) apparent valence (z) Y,n (mV) apparent valence (z) Y,n (mV) 
application 

hNav 1.5 none (control) 70 ± 2 (8) -2.5 + 0.2 (8) -80.9 ± 2.1 (8) 33 ± 0.3 ( 15) -18 .5 ± 2.0 (15) 0.042 ± 0.012 ( 15) 

2.5 µM SDZ - - - 4.6 ± 0.5 (10)' -40.5 ± 1.8 ( 10)" 0 120 ± 0.024 (10)' 

25 µM SDZ 85 ± 2 (7)' -2.5 ± 0.2 (7) -77.4 ± 4.0 (7) 43 ± 0.5 (15) -32.1 ± 3.6 ( 15)" 0.496 ± 0.046 ( 15)' 

bNav 1.5 none (control) 78 + 3 (5) -3.6 ± 0.2 (5)' -9 LO± 4.7 (5)' 3.5 ± 0.3 (18) -47.4 ±3. 1 ( 18)' 0.034 ± 0.008 ( 18) 

2.5 µM SDZ - - - 3.1±0.2(6) -503 ± 4.6 (6) 0.093 ± 0.021 (6)6 

25 µM SDZ 88±1(4)6 -2.5 ± 0.2 (4)6 -83.9 ± 2.6 (4) 4.5 ± 0.5 (9) -48.2 ± 2.4 (9) 0.449 ± 0.073 (9)6 

All slow inactivation and conductance values were obtained from Boltzmann fits to individual data sets (as described in Materials 
and Methods). Data are presented as means± SEM (n). •p < 0.05 versus hNav 1.5 control. b P < 0.05 versus bNav 1.5 control. 



Fig. 1. A. Sodium current traces showing the effect of SDZ on plateau current and an 

illustration of the pulse protocol used to obtain fp1ateau:lpeak ratios and conductance data 

(presented in Table 1). B. Graph and table of lp1ateau:lpeak ratios for hNavl.5 and bNavl.5 

with and without SDZ. Obtained from the protocol described in Figure 2. alp1a1eau:lp eak 

ratios of hNavl.5 significantly increased with 2.5 and 25 µM SDZ (p< 0.004, 0.0001). 

b lp1ateau:lpeak ratios of bNav 1.5 increased similarly upon application of 2.5 and 25 µM SDZ 

(p< 0.004, 0.0005). 

Fig. 2. The time constant of fast inactivation in hNav 1.5 is differentially affected by 

SDZ. Panel A shows the time constants of fast inactivation, derived from an exponential 

function fit to the decay of current during a test pulse to the voltages shown on the X

axis , in hNav 1.5 in the absence (light gray circles) and presence of SDZ (2.5 µM; dark 

gray triangles, and 25 ~tM; black squares) . Panel B shows the time constants of fast 

inactivation in bNav 1.5 in the absence (light gray circles) and presence of SDZ (2.5 µM; 

dark gray triangles , and 25 µM ; black squares) . 

Fig. 3. A. Conductance curves ( obtained from the protocol illustrated in Fig . 1) for 

hNavl.5 (light gray) , hNavl.5 + 2.5 µM SDZ (medium gray), and hNavl.5 + 25 µM SDZ 

(black). B. Conductance curves for bNavl.5 (light gray), bNavl.5 + 2.5 µM SDZ 

(medium gray), and bNavl.5 + 25 µM SDZ (black). Conductance curves shown above 

were fitted with a modified Boltzmann equation (see Materials and Methods). a P < 0.05 

versus hNavl .5 control midpoint. bp < 0.05 versus hNavl .5 apparent valence. No 



significant differences were seen for SDZ-perfused bNavl.5 compared to bNavl .5 

control. 

Fig. 4. Average steady -state slow inactivation curves fitted with a modified Boltzmann 

equation. A. Curves for hNavl.5 (light gray) and hNavl.5 + 25 µM SDZ (black). B. 

Curves for bNavl.5 (light gray) and bNavl.5 + 25 µM SDZ (black). Inset shows pulse 

protocol (see Materials and Methods for details). Data were not gathered for 2.5 µM 

SDZ. 
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