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ABSTRACT 

Foliar Photodegradation in Environmental Modeling 

by 

Sean Lyons, Master of Science 

Utah State University, 2021 

 

Major Professor: Kimberly Hageman, Ph.D. 

Department: Chemistry & Biochemistry 

Pesticide fate models are one tool that could help to maintain the benefits of pesticide use 

while minimizing the adverse effects.  Several models exist that predict several processes impacting 

pesticide dissipation, including volatilization, photodegradation, wash-off, and foliar penetration. 

One area these models currently fall short is in the photodegradation component.  Photodegradation 

will be specific to the chemical as well as the light conditions, yet these models use a constant, 

generic rate for all chemicals in all conditions due to the limited amount of data focused on pesticide 

photodegradation on leaves.   

With the goal of improving the photodegradation component in pesticide fate modeling, I 

developed the Pesticide Dissipation from Agricultural Land (PeDAL).  Building off the pre-existing 

volatilization module, the Pesticide Loss via Volatilization (PLoVo) model, I incorporated foliar 

photodegradation by combining reported kinetics data from the literature with Bird’s Clear Sky 

Model, which can predict hourly sunlight intensities for any location on Earth.  A generic foliar 

penetration component was also included in the PeDAL model.  Dissipation studies described in 

the literature were simulated using the PeDAL model. Comparing modeled versus measured times 
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for the pesticide concentration to dissipate to half of its concentration immediately following 

application (DT50) showed that the PeDAL model could accurately describe pesticide dissipation.  

Sensitivity analyses were then conducted on the photodegradation component of the model and it 

was used to predict pesticide emission flux, which could be used in atmospheric transport models, 

and to examine the influence of application timing on pesticide dissipation.  

Due to the limited number of foliar pesticide photodegradation rates reported in the 

literature, the PeDAL model is limited in its use.  I conducted a series of experiments with a solar 

simulator to measure pesticide photodegradation rates on alfalfa leaves.  The active ingredients 

chlorpyrifos, lambda-cyhalothrin, and indoxacarb were tested as pure active ingredient and part of 

a commercial formulation.  Chlorpyrifos exhibited no photodegradation, supporting previous data 

suggesting photodegradation is a minor dissipation pathway for chlorpyrifos.  Lambda-cyhalothrin 

had pseudo-first order rate constants of 0.042±0.017 h-1 and 0.056±0.018 h-1 for the active 

ingredient and formulation, respectively.  Indoxacarb degraded at 0.035±0.018 h-1 and 0.037±0.21 

h-1.        

                             (122 pages) 
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PUBLIC ABSTRACT 

Foliar Photodegradation in Pesticide Environmental Modeling 

Sean Lyons 

The work described here was conducted to better understand how pesticides will behave following 

their application to crops or soil.  This understanding will allow for better use of pesticides which 

will protect the environment and non-target organisms while remaining effective against pests. The 

Pesticide Dissipation form Agricultural Land (PeDAL) model was developed to simulate pesticide 

behavior following application and laboratory experiments focused on the photodegradation of 

select pesticides on alfalfa leaves were conducted to support this model. 
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CHAPTER 1: INTRODUCTION 

 

General Background on Pesticides 

 

The term pesticide refers to any chemical, natural or synthetic, that is used to control 

against a destructive pest.  These pests include insects, weeds, and many other organisms and 

diseases that disrupt the production of food or poses a threat to health and comfort.1  Given the 

number of potential pests, pesticide have been a valuable tool for farmers and society as a whole. 

In the past pesticides have provided humans protection against disease.  The pesticide 

dichloro-diphenyl-trichloroethane (DDT) was used with great success to help combat the spread of 

malaria in the middle of the 20th century.  DDT was also used for insect control in agricultural and 

residential settings and aided in combatting other insect-caused diseases such as typhus.2  

In addition to protecting human health, pesticides are also extremely important for the 

agricultural industry.  By protecting against weeds, pest insects, and disease, pesticides allow for 

the production of larger, higher-quality yields.3  This is especially important given the increasing 

global demand for food caused by the growing human population.  In certain crops, pests have been 

shown to reduce yields by >50%1 and weeds have exhibited reductions of up to nearly 80% in the 

yields of dry land crops.3  However, through the use of pesticides along with higher-yield seeds 

and improved irrigation systems, food grain production nearly quadrupled from 50 million tons in 

1948-1949 to 196 million tons at the end of the century.  Similar growth has been seen for the 

production of wheat in the United Kingdom, corn in the United States, and many other crops 

throughout the world.   Along with this increase in food production is the secondary benefits of 

improved nutrition that generally arises from eating these fruits and vegetables.3,4  Increased food 

production can help to manage malnutrition which is responsible for the deaths of an estimated 12-

15 million children every year.5 



2 

 

From the perspective of human comfort and leisure, pesticides help to maintain turf on 

surfaces such as golf course and other sports fields and are even included in many items 

traditionally found in homes.3,4  For example, fungicides are often included in many items, such as 

plastics, paints, and caulks, to prevent mold from growing. For many of the reasons mentioned 

above, pesticides are often used in supermarkets and in homes to manage pests, protect food 

supplies, and increase human comfort.1 

The economic benefits of pesticide usage cannot be understated and are linked with the 

benefits already mentioned.  With increased crop yields and thus an increase in the food supply, 

the prices for consumers stay low.  The benefits of reduced crop losses from pesticide usage is 

estimated to be worth tens of billions of dollars annually to the agricultural industry of the United 

States alone.5 

Cooper et al. illustrated a more comprehensive set of the primary and secondary benefits 

that arise from pesticide usage in Figure 1.5  Primary benefits are grouped into three areas based 

the intended use of the pesticide while secondary benefits are grouped based on if the benefit applies 

to the local, national, or global scale.  Links between primary and secondary benefits are established 

with lines connecting them in the Figure 1. 
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Figure 1. Primary and Secondary Benefits of Pesticide Usage5 
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Given this wide range of benefits, substantial pesticide usage is expected.  The U.S. 

Environmental Protection Agency (EPA) reported that in 2012, the global usage of pesticides 

totaled nearly 3 billion kilograms with the United States responsible for about 20% of the total 

usage. Within the U.S., the agricultural industry comprised just under 90% of the total usage with 

household usage and other commercial/industrial applications accounting for the remainder.6 

This widespread usage of pesticides becomes controversial when considering their adverse 

effects on the environment, human health and other organisms.  When pesticides reach non-target 

areas or organisms, the benefits are quickly replaced with negative outcomes.1,3,4,7  Indiscriminate 

use of pesticides can also result in the development of pest resistance.  Resistance decreases the 

efficacy and thus the benefits of pesticide use while continuing to pose a threat to the health of the 

environment and exposed humans and other organisms.8  

Pesticides contaminate a variety of matrices, including soil, vegetation, surface water, 

ground water, and the atmosphere, and the extent of this contamination is nearly universal.  A 

United States Geological Survey (USGS) study examining the water quality in river basins 

throughout the country reported over 90% of samples were contaminated with at least one pesticide, 

if not multiple.3  A similar study in India examining the ground water used in wells reported that 

58% of the drinking water samples analyzed had concentrations for organochlorine pesticides 

exceeding the EPA recommendation.3 

Soil, which in some cases may even be the target matrix, can also be negatively impacted 

by the presence of pesticides.  Pesticide usage can reduce populations of microorganisms, like 

bacteria and fungi, which are vital for plant growth through their roles in the nitrogen cycle and 

nutrient profile of soil.3  Similarly, earthworms who have been exposed to pesticides has resulted 

in reduced masses in earthworm populations and decreased reproduction.9  Like bacteria and fungi, 

earthworms provide benefits to the soil by increasing the amount of air and water that can get into 

the soil as well as breaking down organic materials into forms that can be used by plants.10  Given 
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the importance of soil to crop production, the impacts that pesticides have on essential soil 

organisms must be not be overlooked. 

Spray drift is a consequence of pesticide application and results in a portion of the 

application never landing on its intended target.  Depending on the meteorological conditions and 

the equipment being used, spray drift can account for losses in application mass ranging from 2-

25%.3  Atmospheric transport following pesticide volatilization can similarly result in pesticide 

moving through the atmosphere and reaching non-target areas.  Both of these processes can be very 

damaging if the pesticide lands on vegetation it wasn’t intended for, particularly in the case of 

herbicides.  Plant damage caused by unintended pesticide exposure includes the herbicide 

glyphosate reducing seed quality and increasing susceptibility to disease, the herbicide clopyralid 

reducing yields in potato crops, and phenoxy herbicides causing damage to nearby trees and shrubs.  

There are many more examples of these types of negative consequences from unintended exposure 

including the herbicide glyphosate which the EPA considers a threat to dozens of endangered plant 

species.3  Further complicating the use of pesticides is that the process of atmospheric transport can 

carry pesticides thousands of miles to remote areas and areas where these chemicals have never 

been used.11,12  This results in the contamination of high-latitude or high-elevation locales that 

would otherwise be thought of as pristine. 

This ubiquitous contamination of the environment and resulting exposure to humans and 

other organisms is associated with a long list of maladies.  Studies have shown certain pesticides 

like trifluralin are highly toxic to fish and can cause deformities in their vertebrae.3  Similar results 

have been shown in studies examining other studies.  Sub-lethal effects in fish and insects have 

also been shown from pesticide exposure.3,4,13   Neonicotinoids, a commonly used class of 

pesticides, has been shown to have negative impacts on bees and is thought to have some role in 

Colony Collapse Disorder being observed recently.14,15  Exposure to neonicotinoids has also been 
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linked to physiological and reproductive issues in deer in Montana and South Dakota suggesting 

that this class of chemicals could have adverse effects on a wide range of organisms.16 

Humans also experience adverse effects after pesticide exposure with a large set of data 

supporting this relationship.  To briefly highlight some of these exposure side effects, DDT and 

other organochlorine pesticides have been linked with endocrine disorders and negative impacts on 

embryonic development and lipid metabolism among others.7  Exposure to chlorpyrifos, an 

organophosphate pesticide, has been associated with neurological issues in children including 

decreased IQ.17  Serious health effects on the cardiovascular, reproductive, and nervous systems 

have also been associated with exposure to other organophosphate pesticides as well as increased 

risk for dementia.7  The list of negative health consequences from pesticide exposure could go on 

and on. 

One way to attempt to curtail these effects is through regulation.  For example, the U.S. 

EPA issued a series of guidelines restricting the use of DDT beginning in the late 1950s and into 

the 1960s.  In 1973, the U.S. Court of Appeals supported the EPA’s ban on DDT which faces 

opposition from the pesticide industry.18  While regulation can be well-intended, the case of DDT 

highlights the problems with relying solely on regulation.  Passing the necessary legislation 

generally takes a very long time and usually only occurs after adverse effects have already been 

observed.  Despite some scientists raising concerns as early as the 1940s, the use of DDT and its 

impacts on the environment didn’t receive much attention until 1962 when Rachel Carson 

published her book Silent Spring, highlighting many of the adverse effects associated with 

widespread pesticide usage.18  And even after publishing this work, it still took 11 years for DDT 

to be banned.  Chlorpyrifos, originally designed as a less persistent alternative to DDT, is another 

example of the limits of relying on regulation.  The association between chlorpyrifos exposure and 

neurological issues in children led to a ban on most household uses of the product in 2000, however, 

very little was done for the ensuing two decades following this restriction being adopted.  The use 
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of the pesticide did slowly decline over time after the restriction was put in place, but that still 

resulted in about 2000 metric tons of chlorpyrifos being applied in the United States annually by 

2016.17 This is still a substantial amount given chlorpyrifos’s semi-volatile nature and ability to 

undergo atmospheric transport.  The case of chlorpyrifos also illustrates the bipartisan nature of 

attempting to pass regulations with differences in policy and enforcement arising in the EPA as the 

presidency shifted from the Obama administration to the Trump administration.17  Due to the 

reactionary nature of pesticide regulations along with the politics and time associated with it, 

regulatory action isn’t enough to alleviate the negative outcomes of pesticides. 

 

Pesticide Dissipation and Environmental Modeling 

 

A second option to mitigate the negative impacts of pesticide use is through a better 

understanding of pesticide fate following application.  With a better understanding of the processes 

Figure 2. Environmental Processes Impacting Pesticide Fate Following Application19 
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that impact a chemical in the environment, applicators could make more informed decisions about 

their usage.  With accurate predictions of post-application fate, the benefits of pesticides could be 

maintained while minimizing the adverse consequences through reductions in mass of pesticide 

being applied or frequency of applications.  However, this is a difficult task due to the complexities 

of processes impacting a pesticide post-application.  Pesticide dissipation, or the reduction in 

pesticide concentration in a given area, is determined by a variety of processes including 

volatilization from soil and vegetation (followed by subsequent atmospheric transport), 

photodegradation, wash-off from leaves or run-off from soil caused by precipitation, foliar 

penetration, and any other process that the pesticide undergoes.  These processes, along with several 

others that impact pesticide fate, are illustrated in Figure 2.19  

In addition to accounting for all these processes, the extent that each of these processes 

impact pesticide dissipation varies wildly depending on the physicochemical properties of the 

pesticide, the characteristics of the field to which it is applied, and the meteorological conditions to 

which it is subjected.20  Past work has been dedicated to understanding some of these processes 

individually as well as holistically in order to be able to accurately describe pesticide fate. 

Pesticide volatilization modules such as the Pesticide Loss via Volatilization (PLoVo) 

model have been developed previously in the Hageman Research group.21  Using partition 

coefficients to describe the interactions between a pesticide and leaf surfaces or soil and Fick’s Law 

of Diffusion, volatilization from soil or plants could be calculated.  Modules like PLoVo are 

valuable because, once they are evaluated and shown to be satisfactory, they allow for an 

examination of different factors that impact pesticide volatilization in a much cheaper, quicker way 

than conducting actual field experiments and extracting/analyzing samples.  However, with only 

one process included they lack the ability to fully simulate environmental fate except in the 

circumstances where volatilization is the only loss process. 
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Several models have already been developed to better predict pesticide dissipation as a 

whole including the Pesticide Emission Assessment at Regional and Local scales (PEARL) 

model22–24, SURFATM-Pesticides model25,26, and the Pesticide Leaching Model (PELMO)27.  

These models include the ability to simulate volatilization, foliar photodegradation, foliar 

penetration, and include a wash-off component.  The volatilization component in these models is 

chemical-specific by using a similar partitioning method as in PLoVo.  However, in these models, 

photodegradation is modeled using a generic photodegradation rate that is not specific to the 

chemical or the sunlight conditions being experienced.  Despite relatively little information being 

reported in the literature on foliar photodegradation of pesticides, vast differences have already 

been observed in the photoreactivity of the few pesticides that have been investigated.28,29  These 

differences are likely to cause large variations in pesticide dissipation observed in the field and 

modeling techniques that treat photodegradation as a generic component likely will not produce 

accurate results.  To obtain the best modeling results, future models should be developed with a 

chemical-specific, location-specific photodegradation component that adjusts for changing light 

regimes. 

 

Project Objectives 

 

The overall aim of this project was to create a tool that accurately simulates pesticide fate 

following application to planted fields that can be used by applicators to make more informed 

pesticide management decisions.  Objectives of this thesis project were: 

1. Develop an environmental fate model for accurately predicting pesticide dissipation with 

an improved foliar photodegradation component that is chemical- and location-specific 

(Chapter 2). 
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2. Measure photodegradation rates for select pesticides on leaf surfaces that serve as inputs 

for the environmental fate model (Chapter 3). 

 

Background to Chapter 2 

 

Accurate, reliable environmental fate models could be important tools in improving the 

efficacy of pesticide applications against target pests and ensuring good crop yields while 

protecting beneficial insects.  Current models exist that include volatilization, wash-off, foliar 

penetration, and photodegradation.  However, the photodegradation component typically used in 

existing models is a generic, constant rate that is not specific for the pesticide of interest or the 

changing lighting conditions.   To address this area, I developed the pesticide fate model, which 

has been named the Pesticide Dissipation from Agricultural Land (PeDAL) model.  The PeDAL 

model was built off the framework of an existing module for predicting pesticide volatilization 

from soil and plants called the Pesticide Loss via Volatilization (PLoVo) model.21  Volatilization 

was calculated using partition coefficients and Fick’s Law of diffusion while foliar 

photodegradation was incorporated into the model by combining kinetics data reported in the 

literature with a module for predicting the hourly sunlight intensity (Bird’s Clear Sky Model).30  

This improved upon past approaches for modeling photodegradation by making the calculations 

for this process chemical and location-specific.  A generic foliar penetration component was also 

included to make the model more realistic.  While there is little data available on pesticide 

penetration into leaves, including a generic penetration component provides a more accurate 

prediction since pesticide that has penetrated the leaf is unavailable to undergo volatilization or 

photodegradation.31 

Chapter 2 describes the development and evaluation of the PeDAL model in more detail.  

Sensitivity analyses were conducted to highlight the importance and benefits of our new approach 
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for simulating pesticide photodegradation. Different aspects of pesticide dissipation were then 

examined using the PeDAL model.  This chapter is a modified version of my first-author paper in 

Environmental Science & Technology about the PeDAL model.32  Modifications were made to 

include portions of the Supporting Information in the main text to allow for an easier understanding 

of certain aspects of the model.  The only co-author on this paper is Dr. Kimberly Hageman who 

provided feedback on project design and preparation of the manuscript for publication. 

 

Background to Chapter 3 

 

As is highlighted in chapter 2, pesticide dissipation is heavily influenced by the pesticide’s 

photoreactivity on leaf surfaces.  Despite the important role photodegradation plays in overall 

dissipation and the large variation in pesticide photoreactivity on leaf surfaces that has already been 

shown, very few pesticides have photodegradation rates available.  Further complicating the use of 

the limited number of available rates is the fact that only a select few are a result of experiments 

investigating pesticide photodegradation on leaf surfaces.  Most are conducted in solutions of 

organic solvents or glass or use only UV-light.  Due to these reasons, the environmental relevance 

of these studies is limited and thus, the use of this data in the PeDAL model is prohibited.   

To increase the number of foliar photodegradation rates in the literature and expand the 

potential use of the PeDAL model, I conducted laboratory experiments to obtain foliar 

photodegradation rates for select pesticides.  Experiments were conducted using a solar simulator 

to mimic natural sunlight and I measured photoreactivity for three pesticides (chlorpyrifos, lambda-

cyhalothrin, and indoxacarb) on alfalfa leaves.  For all pesticides, the pure active ingredient and the 

chemical as part of a commercial pesticide formulation were examined separately. 
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This chapter is written in the format of a journal article.  This work is unpublished at the 

moment, but in the future will be combined with data from four field dissipation studies I conducted 

on alfalfa at the Greenville Research Farm in Logan, UT in spring and summer 2020.  The 

photodegradation experiments along with the field dissipation studies will allow for the PeDAL 

model to be evaluated and optimized for alfalfa fields. 
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CHAPTER 2: PEDAL MODEL 

 

Introduction 

 

The effectiveness of a pesticide (insecticide, herbicide, fungicide, etc) on a plant surface is 

inherently affected by how long it persists on that surface, i.e. how quickly it dissipates following 

application.33  Pesticide dissipation is governed by the combination of all processes that reduce its 

concentration on foliage; these include volatilization, photodegradation, microbial degradation, and 

wash-off. The dissipation rate thus depends on many factors, including the physicochemical 

properties of the pesticide, the effects of adjuvants in the formulation, meteorological conditions, 

and the characteristics of the plant to which it is applied.20 Pesticide dissipation  is often expressed 

in terms of the time required to reach half of the pesticide’s concentration immediately after 

application (DT50).  

A number of models for predicting pesticide fate, or certain aspects of pesticide fate, 

following application to planted fields have been described. For example, the Pesticide Emission 

Assessment at Regional and Local scales (PEARL) model,22,23,34 the Pesticide Leaching Model 

(PELMO),27 and the SURFATM-Pesticides model25,26 predict pesticide fate post-application by 

incorporating volatilization, photodegradation, foliar penetration, and wash-off into their models.  

In addition to the models described above, Fantke et al. developed a regression-based model for 

predicting pesticide dissipation based on a statistical analysis of a large data set of measured 

pesticide half-lives.35  The Fantke model included parameters related to the chemical substance 

class (e.g. carbamates, triazoles) and properties, plant type, and air temperature.   
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With the exception of the Fantke model, the authors of the pesticide fate models described 

above have indicated that, to at least some degree, chemical- and condition-specific 

photodegradation rates could also be incorporated into their models.  However, only a handful of 

measured pesticide photodegradation rates on leaf surfaces have been published and the models 

described above do not include modules for predicting changing photodegradation rates under 

different light conditions. Instead, users of these models have generally employed a constant, 

generic photodegradation rate (d-1) that is not specific to the pesticide, location, or conditions.25,27,34 

While this is likely better than not including photodegradation at all, this simplistic approach could 

clearly result in significant errors in predicted pesticide dissipation rates, especially for extremely 

photostable or photolabile pesticides.  Illustrating the potential for error, current reported foliar 

photodegradation rates for pesticides range over three orders of magnitude, from 1.37×10-3 h-1 (at 

1000 W m-2) for chlorpyrifos29 to 0.11 h-1 for cycloxydim28 (at 400 W m-2). To best capture the 

effects of photodegradation on pesticide dissipation, models should also incorporate the effects of 

naturally changing light intensities and cloud cover on photodegradation rates.  For example, one 

study reported roughly 90% photodegradation of the organophosphate insecticide Phoxim on tea 

bushes after 4 hours of exposure on a sunny day versus only 60% degradation for Phoxim applied 

to bushes in artificial shade.36,37   

The aim of the study described here was to develop and evaluate an improved approach for 

incorporating foliar photodegradation rates into pesticide fate models.  We accomplished this by 

compiling measured pesticide-specific photodegradation rates on leaf surfaces from the literature 

and developing an hourly light-intensity adjustment factor for these rates.  We used this approach 

in a new pesticide fate model that we introduce here called the Pesticide Dissipation from 

Agricultural Lands (PeDAL) model.  The PeDAL model was designed to predict pesticide DT50 

values, as well as pesticide emission rates to air, following application.  The emission rates can be 

combined with dispersion models, e.g. SCREEN3,38 to predict pesticide concentrations in air.  The 
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PeDAL model incorporates pesticide photodegradation from leaf surfaces, volatilization from 

vegetation and/or soil, and foliar penetration (Figure 3). The photodegradation rates used in the 

PeDAL model are specific to the chemical and are adjusted for location and solar intensity; 

pesticide volatilization is calculated using the approach used in the Pesticide Loss via Volatilization 

(PLoVo) model.21  

To evaluate the PeDAL model, we compiled a list of measured DT50 values, as well as the 

reported field and meteorological conditions obtained during the measurements, from a variety of 

experiments described in the literature.  We used DT50 values for 6 pesticides from 49 different  

 

 

field studies.  We then used the reported field and meteorological conditions as input 

parameters in the PeDAL model and compared the modeled DT50 values to the measured ones.  

Next, we performed a sensitivity analysis on the photodegradation component of the model.  

Finally, we demonstrated how the PeDAL model could be used in practical situations by using it 

to predict how application timing (time of year and time of day) affects pesticide fate in a field and 

Figure 3. Conceptual Diagram of the PeDAL model. 
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to calculate emission fluxes for two separate applications, one with parathion and the other with 

chlorpyrifos, to potato crops in the Netherlands.  

 

Methods 

 

Model Overview 

 

The PeDAL model uses the same standard agricultural field and processes that describe 

pesticide volatilization from plants and soils as the PLoVo model.21,39  While the PLoVo model 

was designed specifically to explore the factors that affect pesticide volatilization from soil and 

plant surfaces, the PeDAL model incorporates additional processes, namely pesticide 

photodegradation from leaf surfaces and foliar penetration.   The incorporation of these additional 

processes allows us to predict DT50 values, which indicate the rate at which pesticide concentrations 

decrease from leaves due to the combined effects of these processes.  While leaf penetration does 

not remove the pesticide from the leaf, it is required to calculate DT50 since pesticide that has moved 

to the interior leaf layers is not available for volatilization or photodegradation.40  Penetration may 

also decrease pesticide exposure to insects that crawl on leaf surfaces, but not to ones that chew or 

consume leaves.  Wash-off of pesticides from leaf surfaces during precipitation is another process 

that decreases pesticide mass on leaf surfaces; however, we have not included this process in the 

current model because the extent of wash-off can vary considerably with the amount of 

precipitation, physicochemical properties of the active ingredient, effects of adjuvants in the 

formulation, and the timing of precipitation relative to the application.41   

The standard agricultural field used in the PeDAL model is composed of soil, plant, and 

turbulent air compartments.21  The soil compartment consists of soil, moisture in the soil, and a 
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soil-air boundary layer.  The plant compartment contains plant material, plant-air boundary layer, 

and water on the plant surface.  We set the volume of water on the plant surface at 25% relative to 

the volume of plant material; the method for selecting this default value was described in Taylor et 

al.21  If the initial pesticide concentrations in the field compartments are known or can be calculated, 

the PeDAL model can be used to predict concentrations in the soil and plant compartments as a 

function of time after application.  In many situations, however, it may be more useful to use the 

PeDAL model to predict the DT50 only since this output parameter is independent of initial 

concentrations due to the assumption that all processes affecting pesticide dissipation are first-

order.  The input parameters in the PeDAL model include ones that describe the pesticide 

physiochemical properties, the field and crop characteristics, and the meteorological conditions.  

 

Specific Processes 

 

Pesticide Volatilization from the Soil and Plant Compartments 

The mass of pesticide that volatilizes from soil and plant compartments was calculated 

according to the multiphase partitioning approach.21  We assume that volatilization from both 

compartments are independent of one another and the concentration in the turbulent air is always 

set to zero due to constant removal of pesticide by wind. Although the assumption is not ideal, the 

effects of this assumption on results are negligible.21 The mass of pesticide that is initially present 

in each compartment is determined by the foliar intercept fraction (%I), which represents the 

percentage of pesticide that lands on leaves and is estimated using the International Union of Pure 

and Applied technical report on the subject.42 
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Pesticide volatilization from soil compartment 

The first step in calculating volatilization from soil was to determine the fraction of 

pesticide in the soil-air boundary layer which was calculated using equation 1.  

𝐹air−boundary(soil) =
1

1+𝐾soil−air(
𝑉soil

𝑉air−boundary(soil)
)+𝐾water−air(

𝑉water(soil)

𝑉air−boundary(soil)
)

         (1) 

where Fair-boudary(soil) is the fraction of pesticide in the air-boundary layer above the soil, Ksoil-

air and Kwater-air are the soil-air and water-air partition coefficients, respectively, and Vsoil, Vwater, and 

Vair-boundary(soil) are the volume of the soil compartment, volume of water in the soil compartment, 

and volume of the air-boundary layer above the soil compartment, respectively. Equation 2 is based 

off of 943 Ksoil-air measurements that included 22 pesticides, two types of soil, and a range of 

environmentally relevant temperatures and relative humidities used to calculate the Ksoil-air from the 

log Koctanol-air, relative humidity (RH), air temperature (T), and fraction organic carbon (foc) in the 

soil.43  

log 𝐾soil−air = −26.2 + 0.714 log 𝐾octanol−air + 8291
1

𝑇
− 0.0128 ∙ 𝑅𝐻 + 0.121 log 𝑓oc        (2) 

Then, the mass of pesticide loss from the soil-air boundary layer to the turbulent air every 

hour was calculated using Fick’s Law of Diffusion (equation 3).44 

𝐽soil = −𝐷air ∙
𝑐air(turbulent)−𝑐air−boundary(soil)

𝑑air−boundary(soil)
            (3) 

where Jsoil is the mass of pesticide lost from the soil-air boundary layer to the turbulent air 

per hour, dair-boundary(soil) is the depth of the boundary layer above the soil (which was fixed at 1 mm) 

and cair(turbulent) and cair-boundary(soil) are the concentrations in the turbulent air and in the soil-air 

boundary layer, respectively. Dair is the air diffusion constant and was determined using equation 

4.24  

𝐷air(T) = 𝐷air(T,ref)(
𝑇

𝑇ref
)1.75                (4) 
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where Dair(T) and Dair(T,ref) are the air diffusion constants at the temperature of interest (T) 

and the reference temperature (Tref). 

 

Pesticide Volatilization from Plant Compartment 

Pesticide volatilization from the plant compartment was calculated in a similar manner to 

the soil compartment.  First, the fraction of pesticide in the boundary layer was calculated using 

equation 5. 

𝐹air−boundary(plant) =
1

1+𝐾plant−air(
𝑉plant

𝑉air−boundary(plant)
)+𝐾water−air(

𝑉water(plant)

𝑉air−boundary(plant)
)

         (5)  

where Fair-boundary(plant) is the fraction of pesticide in the boundary layer surrounding leaves, 

Kplant-air is the plant-air partition coefficient, and Vplant of plant material. Vwater(plant) is the volume of 

water present on the surface of leaves and is calculated according to equation 6. 

𝑉water(plant) = PWP ∙ 𝑉plant                (6) 

where PWP is the plant water percentage relative to the volume of plant material.  PWP 

was set at 25% based on the results obtained by Taylor et al.21 

Vair-boundary(plant) is the volume of the boundary layer surrounding the leaves of the plant and 

was calculated using equations 7 and 8.45  

𝑉air−boundary(plant) = 2 ∙ LAI ∙ 𝐴field ∙ 𝑑air−boundary(plant)            (7) 

𝑑air−boundary(plant) = 0.004√
𝑙leaf

WS
               (8) 

where LAI is the leaf area index, Afield is the area of the field, dair-boundary(plant) is the thickness 

of the boundary layer surrounding the leaves, lleaf is the leaf length, and WS is the wind speed. 
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Taylor et al. obtained a series of Kplant-air predictive equations from the literature.21  These 

equations were based on measurements for polychlorinated biphenyls (PCBs), hexachlorohexanes 

(HCHs), and polycyclic aromatic hydrocarbons (PAHs) so they may not be ideal for predicting the 

environmental behavior of pesticides due to the presence of polar functional groups on many 

pesticides that are absent on PCBs, HCHs, and PAHs.  However, these equations were used because 

pesticide specific predictive plant-air equations are not currently available in the literature.   

Equation 9, which was used previously by Komp and MacLachlan, was then used to correct 

Kplant-air values so it was applicable to the observed temperature.46 

𝐾plant−air(T) = 𝐾plant−air(T,ref) ∙ 𝑒
[
∆𝐻i,plant−air

𝑅
∙(

1

𝑇
−

1

𝑇ref
)]

            (9) 

where Kplant-air(T) and Kplant-air(T,ref) are the plant-air partition coefficients at the temperature 

of interest (T) and the reference temperature (Tref), respectively, ΔHi,plant-air is the enthalpy change 

associated with chemical i transfer from the plant phase to the air, and R is the gas constant. 

Second, the mass of pesticide loss from the plant-air boundary layer to the turbulent air 

every hour was calculated using Fick’s Law of Diffusion (equation 10).44  

𝐽plant = −𝐷air
𝑐air(turbulent)−𝑐air−boundary(plant)

𝑑air−boundary(plant)
           (10) 

where Jplant is the hourly mass of pesticide lost from the plant-air boundary layer to the 

turbulent air and cair-boundary(plant) is the concentration of pesticide in the plant-air boundary layer. 

  A predicted emission flux value from both compartments was calculated for each one-

hour time step (equation 11). 

𝐽i,total =
𝐽i,plant+𝐽i,soil

𝐴field
              (11) 
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where Afield is the area of the field and Ji,total represents the combined emission flux from the soil 

and plant compartments.  The soil compartment will be largely ignored here except when 

demonstrating the model’s ability to predict an emission flux following pesticide application. 

 

Pesticide Photodegradation 

To incorporate photodegradation into our model, we first compiled available pesticide 

photodegradation rates from the literature29,47–50 that met the following criteria.  First, all 

photodegradation rates we included were measured on the surface of a leaf or leaf proxies, such as 

paraffin wax or extracted leaf wax.  We did not use pesticide photodegradation rates measured in 

solution or on other surfaces (such as glass, fruit wax, and soil) since these rates are not expected 

to accurately represent those on leaf surfaces.51 We also did not consider photodegradation of 

pesticide present inside water droplets on the plant surface since no data is available about this 

process.  Second, only photodegradation rates that were determined in laboratory experiments were 

included.  We used this criterion since laboratory experiments, when compared to experiments in 

the field, result in more accurate photodegradation rates and apply to specific radiation levels, 

specific application concentrations, and control for losses from another process, such as 

volatilization. Third, all rates were measured with solar simulators set to produce light that closely 

matches the spectrum produced by the sun and received at Earth’s surface.  This means that results 

from experiments using wavelengths below ~280-300 nm (i.e. in the ultraviolet C range) were not 

used.  We found photodegradation rates that met these criteria for fifteen pesticides; however, the 

field dissipation rate had also been measured for only the following six pesticides, which were 

included in our model evaluation exercise: 2,4-dichlorophenoxyacetic acid (2,4-D), azadirachtin, 

chlorothalonil, chlorpyrifos, fenitrothion, and parathion (Table A1).  In all cases, the 

photodegradation rates we used were obtained with experiments conducted at a constant radiation 

intensity and using the active ingredients (without adjuvants) rather than a commercial formulation.  
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To incorporate the effects of radiation intensity on pesticide photodegradation in the 

PeDAL model, we linked it to Bird’s Clear Sky Model30,52 (BCSM). BCSM is a broadband 

algorithm based on a series of algebraic expressions with various inputs (Table A2) that can be 

altered by the user to provide estimates for the hourly clear sky solar radiation for any location. The 

solar radiation estimations provided by BCSM were then adjusted by a cloud coverage factor.  This 

factor was developed based on the work of Matuszko in Krakow, Poland.53  Matuskzo measured 

the intensity of sunlight on the Earth’s surface as it changed with the height of the sun above the 

horizon and degree of cloudiness.  Cloudiness was measured in terms of octas with one octa 

representing one-eighth of the sky covered.  Matuskzo’s data were then normalized with respect to 

the intensities for zero octas.  This was done so that zero octas could serve as a baseline and then 

the rest of the data could be used to develop an equation to represent how clouds increase or 

decrease the intensity of solar radiation at the Earth’s surface.  This was especially useful since it 

allows for the easy alteration of the estimation made by BCSM, which applies to a scenario when 

no clouds are in the sky.  We used equation 12 to correct for cloud coverage. 

𝐼act = (−0.0008 ∙ CC4 + 0.0121 ∙ CC3 − 0.0629 ∙ CC2 + 0.0666 ∙ CC + 1.0026) ∙ 𝐼BCSM      (12) 

where Iact and IBCSM are the actual solar radiation intensity (used in the PeDAL model) and 

the solar radiation intensity predicted by BCSM, respectively, and CC is the cloud coverage in 

octas.  Percent cloud coverage is coverted to that in octas by dividing the percent value by 12.5.  

Equation 12 results in a minimal change to Iact compared to IBCSM for cloud coverage values <20% 

and a decrease to ~40% of the IBCSM when there is 100% cloud coverage.  The data used to produce 

equation 12 was collected in Krakow, Poland and may not be perfectly suitable for all locations 

and the type of clouds may also play a role in the amount of radiation reaching plants on the Earth’s 

surface We used the hourly radiation intensities to calculate hourly photodegradation rates with 

equation 13, which is based on that used by Wolters et al.27 
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 𝑘photo(act) =
𝑘photo(ref)

𝐼ref
× 0.75𝐼act             (13) 

where kphoto(ref) and Iref were the reference photodegradation rates and associated light intensities 

obtained from the literature studies (Table A1), kphoto(act) is the actual photodegradation rate after 

adjustment for the light conditions in the field, and Iact is the actual solar radiation intensity obtained 

either from BCSM (equation 12) or from field measurements.  The factor of 0.75 was used in 

equation 13 to account for the angle of the light hitting the surface of the leaves.  This factor was 

needed because in laboratory photodegradation experiments, the radiation is perpendicular to the 

leaf surfaces whereas in the field, this angle varies due to the changing position of the sun and 

movement of leaves with the wind.  We trialed several values ≤1 and found that 0.75 provided the 

best fit between modeled and measured DT50 values; however, the optimal value could vary with 

crop species, depending on orientation of the crop’s leaves.  

The mass of pesticide ‘i’ lost from leaf surfaces due to photodegradation (mi,photo) was 

calculated for each one-hour time step using equation 14: 

𝑚i,photo = 𝑚i,plant(av) × (1 − 𝑒−𝑘i,photo(act))            (14) 

where mi,plant(av) is the mass of pesticide ‘i’ in the plant compartment that is available to undergo 

photodegradation (i.e. the mass on the leaf surface only, not including that in the leaf interior). 

 

Pesticide Penetration into Leaves 

Foliar penetration of pesticides is dictated by the properties of the pesticide active 

ingredient and formulation components, weather conditions, and characteristics of the leaf.25  Due 

to the limited available data regarding penetration rates (kpen), we used a generic value of 0.002 h-

1, which we selected from the range of values discussed by Houbraken et al.23 Penetration differs 

from the other processes included in the PeDAL model because it is not considered a loss process.  
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Whereas volatilization removes pesticide from the system and photodegradation transforms it into 

another chemical, penetration simply reduces the amount of pesticide available on the leaf surface.  

Once the pesticide penetrated into the leaf, we considered it unavailable for volatilization or 

photodegradation.40 The mass of pesticide “i” undergoing penetration into the leaf during a one-

hour time step (mi,pen) was calculated with equation 15: 

𝑚i,pen = 𝑚i,plant(av) × (1 − 𝑒−𝑘i,pen)            (15) 

 

Model Evaluation 

 

We evaluated the PeDAL model by comparing modeled and measured DT50 values.  This 

was accomplished by first compiling a list of 49 DT50 values measured during field studies; these 

values were obtained from 36 publications. We also compiled the parameters describing the crop, 

field, and meteorological data for these studies (Tables A3-5).  We only considered DT50 values for 

the six pesticide active ingredients for which we found both photodegradation rates (Table A1) and 

DT50 values in field studies.  The DT50 values we obtained were measured on 25 different plant 

surfaces, experiments were conducted during a wide range of weather conditions from locations at 

latitudes ranging from 52.5°N to 45.6°S, and applications took place in eight different months. The 

criteria we used to select the data for model evaluation, and the approach we used to determine 

measured DT50 values, are included in the Appendix (Section A1). 

In this exercise, we did not consider photodegradation or volatilization from the soil 

compartment because details about the soil compartment were not included in most of the literature 

sources that reported DT50 values. Thus, we set the foliar intercept fraction to 100% in all cases. 

All other input values, and references to support their selection, are included in Tables A3-5. 
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We used a constant temperature (Tinput) to calculate plant-air partition coefficients (equation 

16). 

𝑇input =
𝑇avg+𝑇max

2
                (16) 

where Tavg was the average temperature reported and Tmax was the maximum temperature reported 

for the field experiment.  Tinput was used because the literature reports didn’t include detailed hourly 

weather data and since volatilization increases exponentially with temperature, Tavg would have 

likely underestimated volatilization.46 

The plant-air partition coefficient equation used in all simulations was the equation 

determined by Komp and McLachlan for clover (equation 17).54  We used the clover equation 

because plant-air partition coefficients for the actual plants used in the field experiments aren’t 

available in the literature. 

𝐾plant−air = 10(0.7 log 𝐾octanol−air+0.15)            (17) 

To determine the effect of adding foliar photodegradation and penetration to our model, 

scenarios used in the evaluation were modeled using a variety of process combinations (e.g. 

volatilization and photodegradation, volatilization and penetration, volatilization only, 

photodegradation with penetration, and photodegradation only). 

 

Sensitivity Analysis 

 

To determine the effects of photodegradation on DT50 values for pesticides with a wide 

range of physicochemical properties, DT50 values were modeled for over 3000 hypothetical 

chemicals using three rates for pesticide photodegradation on leaf surfaces.  Sensitivity analysis for 

other aspects of the model, i.e. ones not concerning photodegradation, have been conducted 
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previously.16,17 To represent fast photodegradation, the rate for 2,4-D47 was used (2.90x10-2 h-1 @ 

320 W m-2) while the rates for parathion50 (2.22x10-2 h-1 @ 500 W m-2) and chlorpyrifos29 (1.37x10-

3 h-1 @ 1000 W m-2) were used to represent moderate and slow photodegradation, respectively.  The 

results were displayed on chemical space diagrams depicting the log Kplant-air against the log Kwater-

air, with the magnitude of the cumulative percent loss in 24 h (CPL24h) displayed using contoured 

background shading.  All input parameters used in this exercise are provided in Table A6. 

In addition, we investigated the effects of photodegradation on DT50 by modeling the 

behavior of a selected pesticide (the insecticide parathion) applied to a clover using default 

conditions (Table A7) and various light intensity regimes based on the chosen sites’ latitudes and 

elevations.  Modeled concentrations were obtained for diurnal light regimes representing those 

during the Spring Equinox and Summer Solstice for two extremes; one on the equator (Quito, 

Ecuador) and the other at a high latitude (Fairbanks, AK, USA).  In addition to those extremes, 

three sites within the continental United States were chosen: Orlando, FL; Logan, UT; Duluth, MN.  

We compared the modeled DT50 values generated under these situations to that obtained when a 

constant photodegradation rate of 0.0222 h-1 (i.e. the rate obtained with continuous irradiation at 

500 W m-2) was used since this simpler approach is often used in pesticide fate models. Parathion 

was selected because its photodegradation rate falls in the middle of the range found for pesticides 

used in the model evaluation.  Volatilization was excluded in this exercise so that the 

photodegradation component of the PeDAL model could be examined alone.  We defined the 

‘photodegradation DT50’ as the amount of time needed for the pesticide concentration to decrease 

to half of the original concentration when losses were due to photodegradation alone. 

 

 



27 

 

Using PeDAL to Explore Aspects of Pesticide Dissipation 

 

We investigated how application timing, both in terms of season and time of day, affects 

pesticide dissipation.  This was accomplished by first modeling a spring and summer application 

in Logan, Utah, USA, for the six pesticides used in model evaluation.  Second, we modelled 

pesticide concentrations when the application occurred a 6am, noon, and 6pm for the same spring 

and summer conditions.  Input parameters for the investigation of application timing are included 

in Table A8.  

We also used the PeDAL model to estimate pesticide emission fluxes from sprayed fields.  

We used input data designed to replicate the weather and crop conditions during two field studies 

described in the literature.  In these studies, parathion55 and chlorpyrifos40 were applied to potato 

fields in The Netherlands.  We defined our emission flux as the mass of pesticide loss per time from 

the system due to volatilization; we included volatilization from both the soil and plant 

compartments since volatilization has been shown to be slower from soil than from plants.56,57  %I 

was estimated using the value for potatoes reported in the International Union of Pure and Applied 

Chemistry’s (IUPAC) technical report.42  Input parameters for the prediction of emission flux for 

these scenarios, including field and meteorological conditions, are provided in Table A9. 

 

Results and Discussion 

 

Model Evaluation 

 

Measured DT50 values from the literature are compared to modeled values generated for 

the same environmental and field conditions in Figure 4. The descriptive parameters (slope of 0.92, 
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y-intercept of 0.06, R2 of 0.76, and root mean square error (RMSE) of 0.94 days) indicate overall 

robust model design and effectiveness at predicting pesticide dissipation rates.  The full list of 

pesticide-plant combinations, along with measured and modeled DT50 values for each of the 49 

cases is available in Table A10.  Considering that the modeled DT50 values are strongly affected by 

the input values used, we hypothesize that an even better match between modeled and measured 

results would have occurred if more specific data related to the actual meteorological conditions 

and plant characteristics had been available in the literature sources from which we obtained the 

measured DT50 values.  In addition, the available photodegradation rates (Table A1) were not 

necessarily measured on the same plant species as the measured DT50 values.  For example, the 

available photodegradation rate for chlorpyrifos was measured on soft shield fern (Polystichum 

setiferum)29 (Table A1) whereas the associated DT50 values were measured on the leaves of several 

other plants (Chinese cabbage, collards, cotton, kale, orange, potato, purple tansy, and rose) (Table 

A10).  Information about the degree to which pesticide foliar photodegradation rates vary among 

plant species is limited; however, a previous report indicated that the photodegradation half-life of 

the insecticide fenthion varied by nearly a factor of five depending on the type of fruit wax to which 

Figure 4. Measured versus Modeled DT50 Values.  The solid line represents the trend line for modeled 

versus measured DT50 values(n=49, RMSE=0.94 days).  The dashed line represents the 1:1 line. The green 

squares represent DT50 values from two studies with chlorothalonil and the purple triangle represents the 

DT50 value for the study with chlorpyrifos on purple tansy. 
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it was applied.58  This suggests that photodegradation rates used for modeling purposes should be 

determined on the pesticide-crop surface combination that is being modeled whenever possible. 

Another likely source of error in the modeled DT50 values in Figure 4 is our use of the 

Kplant-air predictive equation developed for clover even though other plants were used in the field 

experiments.  While there is evidence that plant-air partitioning varies among plant species,46,54,59 

we used the clover equation since equations for the plants actually used in the field studies are not 

available.  Another limitation is that the Kplant-air values and photodegradation rates we used in the 

model were measured for pure active ingredients rather than formulations.  The adjuvants in 

formulations can effect pesticide volatilization rates from soils, glass, and other surfaces60–63 and 

formulated epoxiconazole has been shown to penetrate into the leaf tissue more readily than pure 

epoxiconazole.31 However, the potential effects of formulation adjuvants on pesticide volatilization 

from leaf surfaces are extremely limited in the literature.31  Differences in photodegradation kinetics 

for pure versus formulated active ingredients have been reported in a few cases, with the 

formulation photodegrading significantly quicker in some cases.64–66  

An interesting observation is that the modeled DT50 values for the fungicide chlorothalonil 

were much lower than the measured ones obtained following application to peanuts67 and Chinese 

cabbage68 (green squares in Figure 4), and that these correlations were notably worse than those for 

the other five pesticides investigated in the evaluation.  We found that removing the two data points 

for chlorothalonil improved the slope of the fitted line (from 0.92 to 0.96), the correlation 

coefficient (from 0.76 to 0.83), and the RMSE (from 0.94 to 0.79 days). The fitted line without 

these points was y=0.96x + 0.09.  This may indicate that better input parameters for describing 

chlorothalonil’s behavior on foliage are needed. 

A second notable observation is that the modeled DT50 for the insecticide chlorpyrifos 

applied to purple tansy69 was considerably higher than the measured one (purple triangle in Figure 

4). In this experiment, the application took place when winds were calm, but the wind speed 
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increased dramatically soon after application such that the average wind speed was 5.9 m/s during 

the 6-h period following application and averaged 8.2 m/s during the 4th hour after application. We 

hypothesize that the large discrepancy between modeled and measured DT50 values in this case 

mainly resulted from fast volatilization of ‘just-applied’ pesticide in windy conditions. Previous 

studies have reported that the binding strength between pesticides and leaf surfaces increases during 

the hours immediately after application.41   

Finally, Table 1 and Figure A1 show how the DT50 correlation parameters varied when we 

incorporated different combinations of processes in the model.  Most importantly, we found that 

the full PeDAL model produced the best overall results, highlighting the value of including as many 

dissipation processes as possible.  Nonetheless, the correlation was nearly as good when only 

volatilization and photodegradation were included, with the additional inclusion of foliar 

penetration improving the correlation only to a small degree.  All process combinations that did not 

include both volatilization and photodegradation resulted in poor correlation, also demonstrating 

that these two processes should be prioritized in modeling efforts.   

 

Table 1. Descriptive Parameters for Measured versus Modeled DT50 Values when Various 

Combinations of Processes were used in the PeDAL Model. Correlation plots are provided in 

Figure A1. CI indicates confidence interval. 

Processes Equation R2 

RMSE 

(days) 

95% CI 

for slope 

95% CI for 

y-intercept 

All (full PeDAL model) y = 0.92x + 0.06 0.76 0.95 ±0.15 ±0.40 

Volatilization & Photodegradation y = 0.74x + 0.22 0.74 0.97 ±0.11 ±0.42 

Volatilization & Penetration y = 1.45x + 1.33 0.30 4.69 ±0.64 ±1.73 

Volatilization only (PLoVo model) y = 1.37x + 1.23 0.28 4.50 ±0.64 ±1.72 

Photodegradation & Penetration y = 0.79x + 6.40 0.09 7.48 ±0.73 ±1.94 

Photodegradation only y = 0.72 x + 5.54 0.08 6.65 ±0.7 ±1.89 
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Sensitivity Analysis 

 

The influence of the photodegradation rate on the CPL24h for chemicals with a wide range 

of partitioning properties is illustrated in the chemical space diagrams in Figure 5.  The size of the 

red area shows the degree to which the dissipation rate changes as the photodegradation rate 

increases for chemicals with different properties.  Plots like these could help drive the direction of 

future research on pesticide photodegradation.  For example, chemicals that fall near the bottom 

left of these diagrams (i.e. those with relatively low Kplant-air and Kwater-air values) tend to volatilize 

rapidly under most conditions; thus, measuring precise photodegradation rates for them is less 

important.  Instead, research attention should be directed towards measuring the photostability of 

chemicals whose fate is most sensitive to photodegradation rates, such as those that fall in the area 

that is dark blue in Figure 5a, but red/yellow in Figure 5c.  Figure 5c also shows that it is less 

important to measure precise partition coefficients for chemicals that photodegrade quickly.  

Understanding how CPL24h is affected by various parameters and field conditions is an important  

 

Figure 5. Chemical Space Diagrams showing CPL24h values (%) for an Application to a Generic Plant 

under Default Conditions with Three Levels of Photodegradation. (a) slow photodegradation 

(kphoto(ref)=1.37x10-3 h-1 and Iref=1000 W m-2); (b) moderate photodegradation (kphoto(ref)=2.22x10-2 h-1 and 

Iref=500 W m-2); and (c) fast photodegradation (kphoto(ref)=2.90x10-2 h-1 and Iref=320 W m-2).  
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component of precision agriculture development since rapid pesticide dissipation may mean 

minimal crop protection whereas persistence at low concentrations may result in increased 

development of pest resistance to pesticides. It is important to note that the shading positions in 

Figure 5 change when the meteorological conditions and crop details change; for example, such 

variations are illustrated in Figure A2 (using input parameters from Table A6). 

An example scenario demonstrating photodegradation DT50 sensitivity to location and time 

of year is shown in Figure 6. In this scenario, modeled DT50 values for the insecticide parathion are 

shown for the situation in which volatilization is excluded, all other default values (Table A7) are 

used, and the light conditions (with diurnal variations) represent those at five example locations on 

the Northern Hemisphere Spring Equinox (i.e. in March) and Summer Solstice (i.e. in June).  In 

the constant photodegradation example, we used a solar radiation intensity of 500 W m-2 since this  

 

 

Figure 6. Photodegradation Sensitivity Analysis for Parathion using Default Input Parameters and the 

Light Intensity Conditions, with Diurnal Variation, at Five Locations during Two Seasons, as well as 

with a Constant Irradiation of 500 W m-2
.  Volatilization was excluded here so all pesticide dissipation 

is due to photodegradation. 
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is the generic reference intensity used in some pesticide fate models;25,27,34 this intensity resulted in 

a constant photodegradation rate of 0.0222 h-1.50 The differences between spring and summer 

photodegradation DT50 values increased with distance from the equator, with differences of 0.8 and 

2.1 days being observed for Quito, Ecuador (latitude 0.18 ⁰S) and Duluth, MN (latitude 46.79 ⁰N), 

respectively.  A dramatic difference in modeled DT50 values was observed for Fairbanks, Alaska 

(latitude 64.84⁰N), where the DT50 varied from 10.2 to 3.1 days between seasons. The constant 

irradiation example demonstrates the degree to which use of a generic photodegradation rate 

constant could lead to inaccurate predictions for DT50.  Altogether, these results demonstrate that 

pesticide fate models should ideally include modules for estimating photodegradation rates that are 

specific to the light intensity conditions representing those for the timing and location of interest. 

 

Using PeDAL to Explore Aspects of Pesticide Dissipation 

 

Question 1: How is DT50 affected by the season of application? 

Figure 7 shows how the PeDAL model can be used to investigate practical questions, such 

as how the season of application could affect DT50 values.  For each of the investigated pesticides, 

dissipation was clearly more rapid during summer than spring and this was due to a combination 

of higher summer temperatures leading to increased volatilization and longer, more intense summer 

light regimes leading to increased photodegradation. The relative contributions of each process are 

provided in Figure A3 for the insecticide parathion.  Among the six investigated pesticides, the 

difference in DT50 between seasons was most dramatic for chlorpyrifos (Figure 7) due to it being 

the most photostable and due to the lower temperatures in spring resulting in very little 

volatilization.  The other five pesticides had modeled DT50 values of <5 days for both sets of 

conditions, with much shorter DT50 values in the summer.  These results show, for example, how  
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the PeDAL model could be used to calculate condition-specific Reentry Intervals for field workers 

and Pre-Harvest Intervals for food crops.   

Question 2: How is DT50 affected by application time of day? 

Figure 7 also shows how the time of application affects modeled DT50 values for the six 

investigated pesticides.  The time of day had less of an affect than season of application; however, 

the DT50 values were always the lowest for noon applications and longest for 6pm applications. For 

example, the DT50 values for 2,4-D, azadirachtin, and parathion were 16 hours longer when applied 

at 6pm compared to noon in the spring.  This occurred because pesticides applied at 6pm 

encountered lower temperatures and less time with intense sunlight than did those applied at noon. 

Under summer conditions, the predicted DT50 values for 2,4-D, fenitrothion, and azadirachtin were 

1, 11, and 15 hours longer when applied at 6pm compared to noon. These results show that the 

application timing could have significant effects on pesticide efficacy and demonstrates how the 

PeDAL model could be employed in refining pesticide application strategies.  For example, the 

Figure 7. Comparison of Modeled DT50 Values of Selected Pesticides at Different Application Times 

when Applied to Clover under Typical Conditions in Logan, Utah, USA in Spring and Summer.  Input 

parameters for these scenarios are found in Table A8. (A) Spring and (B) Summer. 
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longer persistence of pesticides applied in the evening could result in increased efficacy against 

pests that are active at night and therefore lead to an overall reduced quantity of pesticide applied. 

Question 3: Can the PeDAL model accurately estimate pesticide emission flux? 

Two initial fluxes were reported by van den Berg et al. for parathion emission from a potato 

field: 1.40 mg m-2 h-1 when calculated using the aerodynamic method and 2.62 mg m-2 h-1 when 

using the Bowen ration method.55  When we used input parameters in the PeDAL model designed 

to replicate van den Berg’s field experiment (Table A9), we obtained a modeled emission flux of 

1.69 mg m-2 h-1, which is remarkably similar to the average of the measured values.  Leistra et al. 

conducted a similar field experiment and reported chlorpyrifos emission rates from a potato field 

using four different methods: the aerodynamic method, energy balance method, relaxed eddy 

accumulation method, and the plume dispersion method.40  Depending on the method used, the 

initial emission flux varied between 2.74 and 6.72 mg m-2 h-1.  When using input parameters 

designed to replicate this field experiment (Table A9), we obtained a modeled flux of 1.16 mg m-2 

h-1.  In this case, the modeled flux was lower than the range of measured fluxes but within the same 

order of magnitude.  Although more experiments should be conducted to evaluate the model’s 

ability to predict an emission flux, these results show that the PeDAL model could become a useful 

tool for estimating pesticide-specific, condition-specific emission fluxes for use in atmospheric 

dispersion and transport models that predict pesticide concentrations in air in the vicinity of 

agricultural fields. The advantage of the PeDAL-model approach is that it is significantly faster, 

easier, and cheaper than other methods typically used to estimate pesticide fluxes from agricultural 

fields. 
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Conclusion 

 

The work presented here shows that the PeDAL model is capable of simulating pesticide 

dissipation following application to a planted field with the newly developed photodegradation 

component that is specific to the chemical and conditions being modeled.  A limitation is that it is 

currently designed to estimate pesticide dissipation for pesticide that lands on the outer canopy of 

plants; with additional field work, additional complex processes such as pesticide behavior in 

deeper portions of foliage that receive less sunlight and wind, could be included.  Additional 

laboratory foliar photodegradation experiments would allow for expanded use by providing more 

pesticide photodegradation rates on leaves.  Future studies should include experiments to determine 

Kplant-air values, foliar photodegradation rates, and penetration rates into leaves that are specific to 

the pesticide-plant combination that is being modeled in order for these inputs to be as accurate as 

possible.  Ideally, these studies would also examine the influence of adjuvants so that any 

formulation effects can be accounted for in the PeDAL model. Similarly, extensive studies focused 

on the influence of precipitation on pesticide wash-off would make the model more widely 

applicable.  Without the inclusion of a wash-off component, the PeDAL model should only be used 

for scenarios without rainfall or scenarios when rainfall does not occur for several days following 

application. 
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CHAPTER 3: PESTICIDE FOLIAR PHOTODEGRADATION EXPERIMENTS 

 

 

Introduction 

 

Pesticide usage enables growers to produce larger and higher-quality crop yields that can 

be used to feed larger numbers of people which results in economic benefits for growers and 

consumers.  Estimates suggest that the use of pesticides prevents the U.S. agricultural industry from 

losing tens of billions of dollars per year due to crop losses caused by pests.5  It is unsurprising, 

therefore, that the Food and Agricultural Organization of the United Nations has estimated that 

global use of pesticides for agricultural use totaled nearly 6 billion kilograms in 2018.70  However, 

this large use becomes problematic when considering the negative effects that pesticides can have 

on humans, other organisms, and the environment when reaching non-target areas.  Pesticides have 

been linked to a variety of diseases in humans and contamination of surface and ground water, soil, 

and vegetation has the potential for further harm to any organisms that come in contact with those 

contaminated areas.3 

To continue to reap the benefits of pesticides while minimizing their potential for harm, 

environmental fate models that accurately simulate pesticide behavior following application must 

be developed and utilized.  Ideally, these types of models will promote decreased, but more 

effective usage of pesticides that maintains the benefits of crop protections while minimizing the 

associated risk.  One such model is the Pesticide Dissipation from Agricultural Land (PeDAL) 

model.32  Using relevant meteorological inputs, the chemical properties of the pesticide, and the 

physical properties of the plants and soils to which the pesticide is applied, the PeDAL model 

simulates the environmental fate of pesticides following their application. Multiphase partitioning 

and Fick’s Law of Diffusion are used to predict volatilization.  Foliar photodegradation is calculated 
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in the model using chemical-specific photodegradation rates from the literature which are modified 

based on the intensity of sunlight predicted in the field (sunlight intensity is estimated in the PeDAL 

model by linking it with Bird’s Clear Sky Model30).  The PeDAL model also includes a generic 

foliar penetration component.  While the volatilization component of the model has been previously 

evaluated21, the photodegradation component is a limiting factor in the expanded use of the model.  

Despite the importance of foliar photodegradation to the chemical fate of applied pesticides, there 

are few measurements of these photodegradation rates for pesticides.  The need for using pesticide-

specific foliar photodegradation rates in predicting chemical fate is exemplified by the large 

difference in the photoreactivity of select pesticides; chlorpyrifos29 has a rate of 1.37x10-3 h-1 at 

1000 W m-2 while cycloxydim28 has a rate of 0.11 h-1 at 400 W m-2 while on leaf surfaces.  The 

majority of studies that have investigated foliar photodegradation are further limited by their use 

of extracted waxes instead of intact leaves.  Of the 18 pesticide photodegradation rates on leaf 

surfaces reported in the literature, only one has been measured on intact leaves.29 The other 17 have 

used extracted waxes from leaves or other wax types, such as paraffin wax, to simulate leaf 

surfaces.  In addition to potential surface differences between these waxes and intact leaves, 

fenthion has been shown to have a photodegradation rate that can vary by a factor of up to 5 

depending on the type of fruit wax it is irradiated on.58  This suggests that photodegradation rates 

used in predicting pesticide behavior should be obtained on the same surface being modeled 

whenever possible, although initial PeDAL model validation indicated that this is likely not a large 

source of deviation between modeled pesticide dissipation and what is measured in the field.32  

Similarly, the presence of adjuvants in pesticide formulations could impact pesticide 

photodegradation.  This influence has been examined in the past with varying degrees of difference 

in photoreactivity between the pesticide active ingredient and formulated product. 

A series of experiments were conducted to obtain foliar photodegradation rates for 

pesticides commonly used on alfalfa (active ingredients: chlorpyrifos, lambda-cyhalothrin, 
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indoxacarb) on the surface of alfalfa leaves.  Differences in photodegradation were examined for 

these chemicals as pure active ingredient dissolved in solvent and as part of commercial pesticide 

formulations like would be applied in agricultural fields.  Finally, these new obtained rates were 

used as inputs in the PeDAL model to model conditions reported in published field 

dissipation/persistence studies for these chemicals.  Finally, the use of these newly measured rates 

was demonstrated by modeling the conditions reported in the literature for two field 

dissipation/persistence studies. 

 

Materials & Methods 

 

Chemicals & Reagents 

 

Standards of chlorpyrifos (98%, Millipore Sigma), lambda-cyhalothrin (99.5% purity, 

Fisher Scientific), indoxacarb (97.9%, LGC Dr. Ehrenstorfer), chlorpyrifos-d10 (>97.5%, Fisher 

Scientific), tertbuthylazine-d5 (99.5%, CDN Isotopes), p-nitroanisole (>98%, Fisher Scientific), 

and pyridine (99%, anhydrous, Fisher Scientific) were purchased from various manufacturers. 

Commercial formulations containing the active ingredients chlorpyrifos, lambda-

cyhalothrin, and indoxacarb were obtained from local agricultural stores. More information on the 

chosen pesticides is included in Table 2. 
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Table 2. Pesticide Active Ingredient and Formulation Information 

Active 

Ingredient 

Chlorpyrifos Lambda-cyhalothrin Indoxacarb 

Formulatio

n name 

Drexel® Chlorpyrifos 

4E-AG 

Warrior II with Zeon 

Technology® 

Steward® EC 

Pesticide 

class 

Insecticide Insecticide Insecticide 

Active 

ingredient 

content % 

(w/w) 

44.9% 22.8% 15.84% 

Active 

ingredient 

structure 

  
 

Other 

ingredients 

No information 

available 

Titanium dioxide, 

petroleum solvent, other 

(concentration 

unavailable) 

Octanol (1-5%), alkyl 

sulfonate salt (5-10%), other 

(69.16-78.16%) 

 

 

High-performance liquid chromatography (HPLC)-grade reagent alcohol (89-91% 

ethanol), and Optima-grade hexane, ethyl acetate and acetone were purchased from Fisher 

Scientific.  HPLC-grade acetonitrile was purchased from Thermo Scientific.  Purified water was 

produced using a Milli-Q water system.   

Graphitized carbon black (ENVI-Carb Packing) was purchased from Sigma Aldrich and 

Florisil (60-100 mesh size) was purchased from Thermo Fisher. 
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Experimental Procedures 

 

Leaves 

Alfalfa (Medicago sativa) leaves were obtained from the Greenville Research Farm 

(Logan, Utah) on the same day that experiment was conducted.  Experiments were performed in 

the August and September with fully grown alfalfa leaves.  Individual leaves had their stems 

threaded through a slit that was cut into the polytetrafluoroethylene septa of gas chromatography 

(GC) vial caps which were then screwed onto GC vials that contained deionized water (Figure 8).  

This setup aided in preserving leaf condition for the length of the experiment and in positioning the 

samples prior to irradiation.  During trial runs, leaves became dried and discolored without the 

presence of water.  After the necessary number of samples were prepared, each GC vial was taped 

to the sample tray so that the alfalfa leaf was positioned parallel to the sample tray of an Atlas 

SunTest CPS+ solar simulator.  This ensured that the leaves remained in a constant position for the 

duration of the experiment.  In order to correct for any contamination of the leaves prior to 

collection, several leaves were collected and analyzed as field blanks. 

Figure 8. Alfalfa Leaf Setup for Photodegradation Experiments.  For real experiments the stem 

of the leaf was threaded through the cap further so that the leaf was in a more stable position. 
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Pesticide Application 

A Hamilton syringe was then used to apply the appropriate mass of the chemical being 

studied.  Application solutions were prepared by dissolving the pure active ingredient or 

commercial formulation in ethyl acetate.  Typical field applications involve dissolving the 

formulation in water prior to application, however, ethyl acetate was used instead because it had 

the necessary solubility for the chosen pesticides but did not take as long to evaporate as water 

would have.  Applications were made so that the initial application on each leaf was 2800 ng/cm2, 

336 ng/cm2, and 1230 ng/cm2 for chlorpyrifos, lambda-cyhalothrin, and indoxacarb, respectively.  

These values were chosen to represent concentrations that would be expected when making a field 

application according to the recommend application rates on the commercial formulation labels 

(Table 3).  

 

Table 3. Application Rates Based on Recommendations of Commercial Formulations 

Pesticide formulation Active ingredient 

conc. (g/L) 

Formulation 

application rate 

(L/acre) 

Experimental 

application rate 

(ng/cm2) 

Drexel® Chlorpyrifos 

4E-AG 

479 0.24 2800 

Warrior II with Zeon 

Technology® 

249 0.06 336 

Steward® EC 150 0.33 1230 
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The average surface area of a dozen alfalfa leaves was determined to be 2.2 cm2 and that 

area was used to calculate the pesticide mass needed to achieve the above application rates.  

Representing field conditions is important due to previous evidence that suggests extremely high 

application rates can result in increased rates of photodegradation.64,66  Following application to 

each leaf, solvent was evaporated in the dark prior to irradiation for 15 minutes.  Application 

reproducibility was examined and found to be consistent.  With triplicate applications chlorpyrifos, 

lambda-cyhalothrin, and indoxacarb had relative standard deviations percentages of 5.1%, 10.0%, 

and 12.6%, respectively. 

Irradiation 

The spectrum of light produced by the SunTest CPS+, shown in Figure 9, was obtained 

using an Apogee PS-300 Spectroradiometer.  Filters were used to cutoff wavelengths <280 nm to 

closely mirror the spectrum of sunlight that would be observed at the surface of the Earth.71  The 

SunTest has previously been shown to be an effective mimic of natural sunlight.72 

 

 

Figure 9. Spectrum of Light Produced by Atlas SunTest CPS+ Solar Simulator. I and I0 represent the 

intensity of light at that wavenlength and the peak intensity for a single wavelength. 
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Following solvent evaporation, the sample tray was then placed back into the solar 

simulator which was set at 550 W m-2.  Samples were irradiated for up to 8 hours with samples 

being removed from the solar simulator at t= 0, 1, 2, 4, 6, and 8 hours.  When samples were removed 

from the solar simulator, individual leaves were stored in glass vials at -20ºC until analysis.  Dark 

controls were used to account for losses due to processes other than photodegradation, such as 

volatilization.  The dark controls were also kept in the solar simulator; however, they were covered 

by aluminum foil to prevent them from being hit by the light produced.  Similarly, to ensure that 

there was no transfer of pesticide from one leaf to another within the solar simulator, a leaf that 

received no pesticide was placed in the sample area and served as a blank.  Cross-contamination in 

the solar simulator was not an issue for any of the experiments. 

Actinometry 

The p-nitroanisole/pyridine (PNA/pyridine) chemical actinometer was used to monitor 

fluctuations in light intensity during experiments.73  Stock solutions of PNA in acetonitrile (10 mM) 

and pyridine in Milli-Q water (1 M) were made.  In a dark environment prior to each experiment, 

these stock solutions were used to make one solution containing 10 µM PNA and 1 mM pyridine.  

This solution was then poured into quartz cuvettes which were placed in the solar simulator.  An 

actinometry sample was removed from the solar simulator each time leaf samples were removed.  

A dark control was used for the actinometry samples by covering one cuvette in aluminum foil for 

the duration of irradiation. 

PNA/pyridine samples were analyzed on a Shimadzu Prominence-i LC-2030C 3D with an 

Agilent Poroshell 120 EC-C18 column (4.6 mm x 100 mm x 2.7 µm).  The mobile phase was 50:50 

acetonitrile:water with a flow rate of 0.75mL/min. Peak areas were measured at 314 nm and the 

decrease in peak areas with respect to irradiation times were then used to monitor the intensity of 

light. 
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The PNA/pyridine actinometer used to monitor variations in light intensity showed that the 

light being produced within the solar simulator was consistent throughout all experiments at 550 

W m-2.  The equations used for these calculations can be found in Laszakovits et al.73  

Extraction 

Prior to extraction, a solution containing isotope-labelled surrogate compounds was spiked 

onto each leaf at a concentration equal to the pesticide application to account for any losses 

throughout the extraction process.  Chlorpyrifos-d10 was used as the surrogate for chlorpyrifos 

samples and tertbuthylazine-d5 was used as the surrogate for lambda-cyhalothrin and indoxacarb 

samples.  10 mL of reagent alcohol was then added to each glass vial and the vials were sonicated 

for 15 minutes using a Branson 1510 Ultrasonic Cleaner.  The extracts were then concentrated to 

1-2 mL under a gentle stream of nitrogen using an Biotage TurboVap II. 

The extracts were a dark green color and required additional cleanup.  15 cm glass pipettes 

were packed with glass wool and then 0.6 grams of Florisil and 0.1 grams of graphitized carbon 

black (GCB).  The packed columns were conditioned with 5 mL of hexane and then 5 mL of 4:1 

hexane:acetone immediately prior to their use.  The concentrated extracts were then added and 

eluted with an additional 15 mL of 4:1 hexane:acetone.  Then the collected eluent was concentrated 

to ~300 µL using the Biotage TurboVap II.  Spike and recovery experiments showed chlorpyrifos, 

lambda-cyhalothrin, and indoxacarb had recoveries of 78.9±4.0%, 85.9±8.6%, and 96.8±12.2% for 

the total extraction process, process. 

GC-MS 

Pesticides were quantified using a Thermo Fisher Scientific Trace 1310 Gas 

Chromatograph (GC) coupled to a TSQ 8000 Evo triple quadrupole mass spectrometer (MS).  

Separation was performed on a Phenomenex ZB-5MSplus (30 m long x 0.25 mm i.d. x 0.25 µm 

film thickness) fused silica capillary column with a 10-m deactivated guard column (Thermo Fisher 

Scientific).  The inlet temperature was 300°C and injections were conducted in splitless mode.  The 
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oven temperature program for chlorpyrifos was: 90°C (hold 0.5 min), ramp to 300°C at 15°C/min, 

hold at 300°C for 10 minutes.  For lambda-cyhalothrin and indoxacarb, the oven temperature 

program was: 90°C (hold 0.5 min), ramp to 170°C at 15°C/min, ramp to 300°C at 9°C/min, hold at 

300°C for 10 minutes. The MS was operated in electron ionization-selective reaction monitoring 

(EI-SRM) mode for chlorpyrifos and indoxacarb and in electron ionization-single ion monitoring 

(EI-SIM) for lambda-cyhalothrin. Target analyte retention times and SRM transitions are provided 

in Table 4.  Concentrations were determined based on the ratio of the target analyte peak area to 

the corresponding surrogate peak area. An eight-point calibration curve was prepared from the peak 

area ratios of the target analyte to the corresponding surrogate for each pesticide 

. 

Table 4. Target Analyte Retention Times and Monitored Ions/Ion Transitions. 

Compound Retention 

time (min) 

MS Quantitation 

ion/ion transition 

MS Confirmation 

ion/ion transition 1 

MS Confirmation 

ion/ion transition 2 

Chlorpyrifos 11.16 314.0 / 258.0 286.0 / 257.9 316.0 / 259.9 

Lambda-cyhalothrin 18.17 197.0 181.0 208.0 

Indoxacarb 21.69 218.0 / 203.1 264.0 / 176.1 203.0 / 134.1 

Chlorpyifos-d10 11.10 324.0 / 259.9 326.0 / 196.9 326.0 / 262.0 

Tertbuthylazine-d5 10.46 178.0 / 143.0 219.0 / 137.0 219.0 / 76.0 

 

 

Calculating photodegradation rates 

The concentration of pesticide present on leaves, normalized against the initial 

concentration, with respect to irradiation time will be graphed and fit with an exponential line of 

the form in equation 18. 

𝑐𝑡 = 𝑐𝑜𝑒−𝑘photo𝑡               (18) 
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where ct is the pesticide concentration at time t, c0 is the initial pesticide concentration, kphoto is the 

pseudo-first order photodegradation rate constant, and t is irradiation time.  We use the term 

‘pseudo-first order’ when describing the rates because the nature of the decay is going to be 

dependent on the reaction conditions.74 

 After calculating these pseudo-first order rates, statistical analysis was conducted to 

determine if the rates for the active ingredient and formulation of each pesticide were statistically 

difference (with 95% confidence intervals). 

 

Using Measured Photodegradation Rates in the PeDAL Model 

 

The measured rates were used in the PeDAL model to further highlight the necessity for 

chemical-specific and location-specific photodegradation in environmental modeling.  Since 

chlorpyrifos was used in the initial model evaluation, no further of this chemical occurred here. 

Research on the dissipation of lambda-cyhalothrin and indoxacarb on leaves is limited, so 

only one scenario for each pesticide was modeled.  A study by Seenivasan et al. that measured 

lambda-cyhalothrin residues on tea leaves in India was modeled to evaluate the lambda-cyhalothrin 

foliar photodegradation rate value.75 This scenario used two locations in Tamil Nadu, India and 

each location used three plots with different application rates totaling six field trials.  Since the two 

locations used were close to one another,  DT50 values were calculated individually for all six field 

trials according to the guidelines of the Forum for the Coordination of pesticide fate models and 

their Use (FOCUS)76 and were then averaged to obtain a DT50 that served as the measured value 

(Section A1).  

A study by Sdeek et al. measuring pesticide residues on sugar beet leaves in the Giza 

Governorate of Egypt at different times after application was modeled to evaluate the indoxacarb 



48 

 

foliar photodegradation rate values found here.77 Three plots at the same site had indoxacarb 

applied at different rates so the DT50 for each application was calculated and the average was used 

as the measured value. 

For modeling both scenarios/pesticides, the obtained foliar photodegradation rate for the 

commercial formulation was used rather than the active ingredient. All input parameters related to 

meteorological and field conditions for all modeled scenarios are listed in Table A11. Input values 

 for related to the chemical properties of the pesticide are located in Table A1.  Both of 

these scenarios were also modeled using no photodegradation to highlight the importance of this 

process and the need for future research attention in this area. 

 

Results 

 

Chlorpyrifos 

 

The sample chamber was kept at a consistent 21ºC for the tests of the active ingredient and 

the commercial formulation; however, this still was not cool enough to prevent a large amount of 

volatilization.  The dark controls for the active ingredient and the formulation contained <40% of 

the initial chlorpyrifos present (Figure 10). There was no statistical difference between the 

irradiated samples and the dark controls that were both removed from the solar simulator at the end 

of the experiment (t = 8 h).  This demonstrates that photodegradation on alfalfa leaf surfaces is not 

be a major dissipation pathway for chlorpyrifos, which will be dominated by volatilization. This is 

supported by Walia et al. who observed only 30% degradation of chlorpyrifos on a soft-shield fern 

(Polystichum setiferum) after receiving 9 hours per day of simulated sunlight at a constant 1000 W 

m-2 for 25 days (dark control still had 95% of initial chlorpyrifos mass present).29  Future modeling 
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for chlorpyrifos would likely be improved by using the rate that can be obtained from the data 

reported by Walia et al. since some degree of photodegradation is likely to place.  However, 

ignoring photodegradation for chlorpyrifos would likely still lead to accurate results in most 

scenarios.  This may be untrue for extreme scenarios with unusually strong sunlight and unusually 

low temperatures, preventing volatilizatio 

Figure 10. Foliar photodegradation of Chlorpyrifos on Alfalfa Leaves. (A) active ingredient 

and (B) formulation. Blue squares represent irradiated samples while orange circles represent 

the dark controls.  Error bars represent the standard deviation of the triplicate measurement. 
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Lambda-cyhalothrin 

The results of the photodegradation experiments for the lambda-cyhalothrin active 

ingredient and formulation are shown in Table 5 and Figure 11.  The formulation did  

 

 

 

 

photodegrade slightly faster, however, there was no statistical difference between the formulation 

and the active ingredient.  The dark concentrations in the dark controls were >90% the 

concentration of the samples that received no irradiation (t = 0 h) indicating the losses experienced 

in the irradiated samples can be predominantly attributed to photodegradation. 

 

 

Figure 11. Foliar Photodegradation of Lambda-cyhalothrin on alfalfa leaves. Blue squares and the blue 

dotted line represent the active ingredient.  Orange circles and the orange dashed line represents the 

commercial formulation.  Error bars represent standard deviations on triplicate measurements and follow 

the same color code. 
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Table 5. Pseudo-first Order Roliar Photodegradation Rates for Lambda-cyhalothrin and Indoxacarb 

on Alfalfa Leaves with 95% Confidence Intervals 

 Pseudo-first order foliar photodegradation rate constants (h-1) 

Chemical Active ingredient Formulation 

Lambda-cyhalothrin 0.042±0.017 0.056±0.018 

Indoxacarb 0.035±0.018 0.037±0.021 

 

 

Indoxacarb 

The results of the photodegradation experiments for the indoxacarb active ingredient and 

formulation are shown in Table 5 and Figure 12.  There was no statistical difference between the  

 

 

 

Figure 12. Foliar Photodegradation of Indoxacarb on Alfalfa Leaves. Blue squares and the 

blue dotted line represent the active ingredient.  Orange circles and the orange dashed line 

represents the commercial formulation.  Error bars represent standard deviations on 

triplicate measurements and follow the same color code. 
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rate of photodegradation for the active ingredient when compared to the commercial formulation.  

For both experiments the dark control contained over 90% of the original pesticide mass indicating 

that there were minimal losses due to processes other than photodegradation. 

 

Using Measured Photodegradation Rates in the PeDAL model 

 

Seenivasan et al. measured lambda-cyhalothrin residues following its application to tea 

leaves in two adjacent locations in Tamil Nadu, India.75  Three application rates were used at each 

location.  The DT50, which was calculated according to the guidelines of FOCUS, was determined 

to be between 0.69-1.82 days depending on location and application rate.  This is in good agreement 

with the modeled results produced by PeDAL for the same scenario.  PeDAL predicted a DT50 of 

1.20 days when using the photodegradation rate determined for the lambda-cyhalothrin formulation 

(DT50=1.07-2.11 days when using the range reported for the photodegradation rate in Table 5). 

Indoxacarb residues were measured by Sdeek et al. on sugar beet leaves following 

application in Dokki, Egypt.77  The DT50 values that were calculated from the concentrations Sdeek 

et al. reported ranged from 1.23-1.67 days depending on the application rate used with an average 

DT50 value of 1.45 days.  When the PeDAL model was used to simulate this same scenario, a DT50 

value of 2.18 days (1.21-6.08 days when using the photodegradation rate range reported in Table 

5) was predicted.  

Deviation between modeled and measured results could be due to differences in the 

formulation composition used in each study. The presence of adjuvants/surfactants have been 

shown to impact pesticide fate processes, such as volatilization61–63,78, photodegradation64,65, and 

leaf penetration31, when compared to the pure active ingredient. Given these effects, it is reasonable 

to suspect that differences in the adjuvants/surfactants used in different commercial formulations 
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could cause differences in photodegradation rates.  The type of fruit wax used has also been shown 

to impact the rate of pesticide photodegradation by as much as a factor of five.58 Similarly, 

differences in the surfaces of the alfalfa leaves used to determine the foliar photodegradation rate 

compared to the tea and sugar beet leaves used in the dissipation studies could also explain some 

of the discrepancy between modeled and measured results.  Ideally, all photodegradation rates 

would be obtained on the same surface that is being modeled. 

However, since the range of DT50 values predicted by the PeDAL model overlaps with the 

range of measured values for both scenarios, there appears to be good agreement between measured 

and modeled results.  This is particularly encouraging for these two pesticides given that the 

predicted losses were attributed almost entirely to photodegradation with losses due to 

volatilization in the modeled scenarios totaling 0.3% and 0.0% for lambda-cyhalothrin and 

indoxacarb, respectively. When excluding photodegradation while modeling these scenarios, these 

pesticides would be expected to persist for an extremely long time. This illustrates the need for 

condition-specific photodegradation in modeling and suggests that the obtained foliar 

photodegradation rates for lambda-cyhalothrin and indoxacarb can be utilized as inputs in the 

PeDAL model to more accurately predict their post-application fate on leaves.  

 

Conclusions 

  

The measured pesticide foliar photodegradation rates for lambda-cyhalothrin and 

indoxacarb possess valuable potential in terms of their use in environmental fate models, such as 

the PeDAL model.  These are some of the first pesticide photodegradation rates measured on the 

surface of actual leaves and thus, should offer more relevance in terms of environmental modeling 

than previously reported rates on extracted waxes.  The results of the experiments with chlorpyrifos 
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support previous data suggesting that photodegradation is not a major dissipation process for the 

chemical.  Future research should be directed towards expanding the list of pesticides 

photodegradation rates measured on leaf surfaces as this study appears to be one of less than a half 

dozen.  Additionally, determining photodegradation products is also an important area to focus on 

since the photodegradation product could still be toxicologically relevant.  This is particularly 

important to ensure that the photodegradation product is not more toxic than the parent pesticide. 
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CHAPTER 4: CONCLUSIONS 

 

General Conclusions 

Understanding pesticide fate following application to planted fields will allow for 

successful management of pests, protection of beneficial insects, and thus, hopefully, increased 

crop yields with minimal adverse effects on the environment.  The environmental fate of a pesticide 

is going to depends heavily on its own physicochemical properties, the characteristics of the field 

to which it is applied, and the meteorological conditions it is subjected to following application. 

The Pesticide Dissipation from Agricultural Land (PeDAL) model was developed to 

accurately simulate pesticide fate.  I developed this model by incorporating a foliar 

photodegradation component that was chemical- and location-specific to a pre-existing module for 

calculating pesticide volatilization from plants and/or soil, the Pesticide Loss via Volatilization 

(PLoVo) model.  The photodegradation component includes a module (Bird’s Clear Sky Model) 

for predicting hourly sunlight intensities for any location on Earth.30  These radiation predictions 

combined with kinetics data from the literature on pesticide photodegradation on leaf surfaces 

allows for factors related to the pesticide and location/timing to be considered when estimating 

foliar photodegradation. This allows for a more realistic prediction of environmental fate than what 

is achieved using previous environmental fate models.  The volatilization component is based on 

multiphase partitioning and Fick’s Law of Diffusion.  A generic foliar penetration component was 

also added to the PeDAL model. 

The model calculates the time required to reach half of the pesticide’s concentration 

immediately after application (DT50).  Other outputs include estimated pesticide concentrations in 

the soil and plant compartments with respect to time after application, emission flux values that can 

be used for atmospheric modeling purposes, and specified contributions by volatilization and 

photodegradation to the overall dissipation. 
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I evaluated the model by simulating scenarios described in pesticide dissipation studies in 

the literature and then comparing the DT50 values predicted by the PeDAL model with the measured 

values that had been reported.  There was good agreement between modeled and measured DT50 

values (n = 49, R2 = 0.76, RMSE = 0.94 days).  Various aspects of pesticide dissipation were then 

examined using the PeDAL model. 

First, I conducted two separate sensitivity analyses to examine the influence of 

photodegradation on pesticide dissipation.  The first sensitivity analysis was a simulation for over 

3000 hypothetical chemicals with three degrees of photodegradation.  Using chemical space 

diagrams and the results of these simulations, I was able to highlight the region of chemicals that 

will have their overall dissipation most dependent on their photoreactivity.  The second sensitivity 

analysis was used to highlight the benefits of the newly developed foliar photodegradation 

component, specifically relative to the traditional method for computing pesticide 

photodegradation on leaves in environmental modeling.  Two application timings for five locations 

were used to illustrate how dissipation can vary widely depending on the location and timing of the 

application, two factors often overlooked in past modeling efforts.  This analysis also demonstrated 

the degree to which using a generic, constant photodegradation rate can incorrectly predict 

photodegradation. 

Questions related to the impact of application timing on pesticide dissipation were then 

examined.  Simulations showed that the time of day and time of year of application both can have 

impacts on the pesticide dissipation rate and DT50. Finally, the ability of the PeDAL model to 

accurately predict an emission flux was evaluated by comparing modeled and measured fluxes for 

two scenarios reported in the literature.  The results of this comparison suggested the PeDAL model 

has the potential to be a valuable resource that can predict emission fluxes as inputs for an 

atmospheric dispersion model.  
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Due to the lack of chemical-specific data related to pesticide photodegradation on leaf 

surfaces, the PeDAL model is limited in its applicability.  To expand its potential usage, I conducted 

a series of pesticide photodegradation experiments using an Atlas SunTest CPS+ solar simulator.  

Due to our source of funding, these experiments were carried out on alfalfa leaves with alfalfa-

related pesticides (active ingredients = chlorpyrifos, lambda-cyhalothrin, and indoxacarb). 

The first step of these experiments was to determine the intensity of light being produced 

in the solar simulator and to make sure it was consistent and representative of natural sunlight.  The 

spectrum of light produced was measured using a spectroradiometer and I monitored the intensity 

with the p-nitroanisole/pyridine (PNA/pyridine) chemical actinometer.  The actinometry samples 

were analyzed using HPLC-UV/Vis and indicated that the light was consistent at 550 W/m2. 

I also conducted spike and recovery experiments to ensure efficient recovery of analytes.  

The extraction method utilized sonication in methanol, external column clean-up, and concentration 

under a stream of nitrogen.  Isotopically labelled surrogates were used to account for analyte loss 

during the entire extraction process. 

Irradiation experiments were then conducted for each of the pesticides listed earlier.  

Experiments were run for each pesticide as pure active ingredient and as part of a commercial 

formulation like what would be sprayed by farmers.  The chlorpyrifos experiments indicated that 

photodegradation will be a very minor dissipation process.  This supports previously reported data 

that demonstrated that chlorpyrifos foliar photodegradation is a relatively slow process that has a 

negligible impact on dissipation.29  Pseudo-first order foliar photodegradation rates were obtained 

for the active ingredient and commercial formulation of lambda-cyhalothrin and indoxacarb.  

Lambda-cyhalothrin had rates of 0.042±0.017 h-1 and 0.056±0.018 h-1 for the active ingredient and 

formulation, respectively.  Pure indoxacarb degraded at a rate of 0.035±0.018 h-1 while formulated 

indoxacarb had a photodegradation rate of 0.037±0.021 h-1.  For both lambda-cyhalothrin and 
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indoxacarb there was no statistically significant difference between the photodegradation of the 

pure chemical and the formulated version. 

These foliar photodegradation rates were then used as inputs in the PeDAL model to 

simulate two dissipation studies reported in the literature.  Once again, there was a good agreement 

between the modeled and measured DT50 values. 

 

Recommendations 

 

Currently the major limiting factor in the potential use of the PeDAL model is the lack of 

photodegradation rates for pesticides on leaf surfaces reported in the literature.  As I have shown, 

foliar pesticide photodegradation is a critical process to account for in predicting pesticide 

dissipation following application. Without more of these rates, proper environmental fate modeling 

cannot be performed for most pesticides used.  Thus, the area I would suggest future research focus 

on is obtaining more foliar photodegradation rates.  Ideally, these experiments would be conducted 

on the same type of leaf surface that is being modeled to account for any potential surface-related 

effects on photodegradation.  Similarly, these experiments should be performed using the 

commercial formulation that is being sprayed so that the influence of adjuvants and other 

ingredients can be accounted for.  The results of the sensitivity analysis discussed in Chapter 2 can 

drive the focus of which pesticides to study by identifying the minimally or non-volatile pesticides 

that will have their dissipation dominated by photodegradation. 

The PeDAL model itself also needs to be further evaluated to ensure its ability to predict 

pesticide dissipation.  Due to the necessity to estimate many input parameters during the model 

evaluation, dissipation studies with more specific input parameters should be conducted to allow 
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for the better examination of the model’s performance.  Ideally these studies would use a variety 

of locations, timings, and pesticides to evaluate the model under a wide range of conditions. 

To improve the model’s ability to accurately predict volatilization, more plant-pesticide 

combination specific plant-air equations should be measured.  Conducting experiments that would 

allow for foliar penetration to be changed from a generic component to a chemical-plant specific 

process would also likely improve the accuracy of the PeDAL model.  However, given that 

penetration is a minor process compared to volatilization and photodegradation, this work should 

not be prioritized.  Instead, it would likely be better to spend resources in the pursuit of adding 

additional components to the model, such as a wash-off module.  Currently the model is only 

designed to work in scenarios with no precipitation but adding a wash-off module would allow for 

expanded applicability of the model. 

Finally, to allow for farmers to protect beneficial insects while effectively managing pests, 

toxicity thresholds should be input into the model.  This will allow pesticide applicators to have a 

better idea of how long their pesticide is effective against the given pest and when it would be safe 

to introduce beneficial insects, like pollinators, into the field. 
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Table A1. Pesticide physicochemical input parameters 

Pesticide kphoto,ref  

(h-1) 

Ref. Iref  

(W m-2) 

Ref. Log  

Koctanol-

water
a 

Log  

Kair-

water
a 

Vapor 

Pressurea  

(Pa at 25°C) 

2,4-D 2.90 x10-2 47 320 47 2.81 -5.839 1.52 x10-1 

Azadirachtin 4.33 x10-2 48 500 48 1.09 -11.395 3.08 x10-3 

Chlorothalonil 2.71 x10-3 49 500 49 3.66 -4.087 1.27 x10-2 

Chlorpyrifos 1.37 x10-3 29 1000 29 4.96 -3.922 3.99 x10-3 

Fenitrothion 1.11 x10-2 50 500 50 3.30 -4.420 7.20 x10-3 

Indoxacarb 3.70 x10-2 b 550 b 4.60 -10.954 1.17 x10-10 

Lambda-

cyhalothrin 

5.50 x10-2 b 550 b 7.00 -4.218 1.50 x10-9 

Parathion 2.22 x10-2 50 500 50 3.83 -4.914 8.91 x10-4 
aindicates value was obtained from EPI Suite79; bindicates value was obtained from 

experiments described in chapter 3. 

 

Table A2. Input parameters for Bird’s Clear Sky Model 

Input Value 

Ozone thickness (cm) 0.4 

Water vapor thickness (cm) 6.5 

Aerosol optical depth @ 500 

nm 

0.5 

Aerosol optical depth @ 380 

nm 

0.5 

Forward scattering 0.85 

Albedo 0.25 
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Table A3. Plant input parameters for plants used in PeDAL model evaluation 

Plant Leaf 

Area 

Indexa 

Ref. Leaf 

lengthb 

(m) 

Ref. Leaf 

thicknessb 

(m) 

Ref. 

Alfalfa 6.1 80 0.02 Measuredc 0.000150 81 

Apple 6.0 82 0.06 83 0.000150 84 

Aspen 2.3 85 0.08 86 0.000173 (A)d 

Birch 2.7 87 0.08 88 0.000173 89 

Cauliflower 5.0 90 0.20 (B)d 0.000200 (B)d 

Chinese 

cabbage 

2.8 91 0.20 92 0.000200 93 

Citrus/Orange 4.3 94 0.10 81 0.000245 95 

Collards 5.0 (C)d 0.20 (C)d 0.000300 (C)d 

Cotton 5.0 96 0.11 83 0.000209 95 

Fir 19.2 97 0.03 98 0.001600 98 

Green bean 5.5 99 0.10 83 0.000263 95 

Kale 5.0 100 0.20 101 0.000300 101 

Lettuce 4.7 102 0.12 103 0.000720 95 

Maple 9.2 104 0.10 105 0.000175 106 

Peach 14.0 107 0.15 108 0.000152 95 

Peanut 8.5 109 0.03 83 0.000215 110 

Plum 5.0 111 0.08 112 0.000200 113 

Poplar 7.3 114 0.15 115 0.000173 (A)d 

Potato 2.0 116 0.03 117 0.000225 118 

Purple tansy 6.1 (D)d 0.02 119 0.000150 (D)d 

Rose 5.0 120 0.10 121 0.000150 95 

Spinach 5.0 122 0.15 123 0.000400 124 

Spruce 25.2 97 0.03 125 0.001600 125 

Timothy grass 11 126 0.25 127 0.000175 128 

Vineyard 2.1 129 0.15 130 0.000215 (E)d 
a If a single value was reported, that value was used.  If a range of values were given, the 

maximum value is shown here. 

b If a single value was reported, that value was used.  If a range of values were given, the 

average value is shown here. 

c “Measured” indicates that we obtained the value by measuring the leaf length of 15 

leaves collected from a plot near Logan, Utah; the average is reported.  

d When values were not available in the literature, we used measurements reported for 

similar plants. “A” indicates the value for birch was used. “B” indicates the value for 

Chinese cabbage was used. “C” indicates the value for kale was used. “D” indicates the 

value for alfalfa was used. “E” indicates the value for peanut was used. 
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Table A4. Application input parameters for scenarios used in PeDAL model evaluation 

Scenario Ref

. 

Date of 

Applicati

on 

Spra

y 

time

a 

Latitud

e 

(North 

is 

positiv

e) 

Longitu

de  

(East is 

positive) 

Elevati

on (m) 

Tim

e 

Zon

e 

Field 

Area 

(m2)b 

Mass 

of a.i. 

applie

d (g)c 

2,4-D on 

timothy 

grass 

131 June 15 12:0

0 

PM 

42.44° -76.50° 123 -5 36 8 

Azadirachti

n on aspen 

132 June 26 8:00 

AM 

46.38° -84.02° 192 -5 10000 100 

Azadirachti

n on peach 

133 August 

15 

12:0

0 

PM 

39.36° 9.00° 58 +1 10000 188 

Azadirachti

n on spruce 

134 June 13 9:00 

AM 

46.38° -84.02° 192 -5 10000 60 

Azadirachti

n on spruce 

132 June 26 8:00 

AM 

46.38° -84.02° 192 -5 10000 100 

Chlorothalo

nil on 

Chinese 

cabbage 

68 October 

27 

12:0

0 

PM 

33.14° 119.79° 45 +8 45 6 

Chlorothalo

nil on 

peanut 

67 August 3 12:0

0 

PM 

31.45° -83.51° 108 -5 10000 1260 

Chlorpyrifo

s on 

68 October 

27 

12:0

0 

PM 

33.14° 119.79° 45 +8 45 6 
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Chinese 

cabbage 

Chlorpyrifo

s on 

collards 

135 August 1 12:0

0 

PM 

38.20° -84.87° 155 -5 81 9 

Chlorpyrifo

s on cotton 

136 August 9 12:0

0 

PM 

32.44° -111.22° 607 -7 62 7 

Chlorpyrifo

s on cotton 

137 July 17 12:0

0 

PM 

32.44° -111.22° 607 -7 124 34 

Chlorpyrifo

s on cotton 

138 July 12 12:0

0 

PM 

32.44° -111.22° 607 -7 124 34 

Chlorpyrifo

s on kale 

135 August 1 12:0

0 

PM 

38.20° -84.87° 155 -5 81 9 

Chlorpyrifo

s on orange 

139 October 

27 

12:0

0 

PM 

40.39° 16.72° 26 +1 1200 84 

Chlorpyrifo

s on potato 

40 June 25 12:0

0 

PM 

52.85° 4.97° -3 +1 10000 679 

Chlorpyrifo

s on purple 

tansy 

69 January 8 8:00 

AM 

-45.23° -160.70° 500 +12 12600 200 

Chlorpyrifo

s on rose 

140 May 15 7:00 

AM 

32.11° 76.54° 1472 +5 10000 100 
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Fenitrothion 

on apple 

141 April 1 12:0

0 

PM 

51.45° -2.59° 11 0 10000 230 

Fenitrothion 

on apple 

141 April 23 12:0

0 

PM 

51.45° -2.59° 11 0 10000 110 

Fenitrothion 

on apple 

141 April 23 12:0

0 

PM 

51.45° -2.59° 11 0 10000 230 

Fenitrothion 

on apple 

141 May 1 12:0

0 

PM 

51.45° -2.59° 11 0 10000 90 

Fenitrothion 

on apple 

141 May 4 12:0

0 

PM 

51.45° -2.59° 11 0 10000 60 

Fenitrothion 

on birch 

142 May 26 12:0

0 

PM 

46.33° -65.50° 19 -4 10 0.5 

Fenitrothion 

on birch 

142 June 5 12:0

0 

PM 

46.33° -65.50° 19 -4 10 0.5 

Fenitrothion 

on fir 

143 June 14 12:0

0 

PM 

46.52° -66.29° 19 -4 404700

0 

11400

0 

Fenitrothion 

on green 

bean 

144 May 11 12:0

0 

PM 

30.46° 30.94° 229 +2 40 5 
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Fenitrothion 

on maple 

145 May 30 12:0

0 

PM 

45.96° -66.64° 17 -4 4047 86 

Fenitrothion 

on poplar 

142 May 26 12:0

0 

PM 

46.33° -65.50° 19 -4 10 0.5 

Fenitrothion 

on poplar 

142 June 5 12:0

0 

PM 

46.33° -65.50° 19 -4 10 0.5 

Fenitrothion 

on spruce 

145 May 30 12:0

0 

PM 

45.96° -66.64° 17 -4 4047 86 

Fenitrothion 

on spruce 

143 June 14 12:0

0 

PM 

46.52° -66.29° 19 -4 404700

0 

11400

0 

Fenitrothion 

on spruce 

146 May 13 12:0

0 

PM 

45.60° -76.50° 167 -5 1000 34 

Fenitrothion 

on vineyard 

147 August 

28 

12:0

0 

PM 

39.28° 22.82° 3 +2 186 14 

Parathion 

on alfalfa 

148 July 2 8:00 

AM 

40.46° -109.53° 1624 -7 295420 4139 

Parathion 

on apple 

149 June 6 12:0

0 

PM 

40.81° -81.94° 304 -5 10000 100 

Parathion 

on 

cauliflower 

150 February 

1 

12:0

0 

PM 

28.61° 77.21° 216 +5 38.5 2 
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Parathion 

on citrus 

151 April 5 12:0

0 

PM 

28.09° -81.72° 53 -5 10000 100 

Parathion 

on citrus 

151 June 4 12:0

0 

PM 

28.09° -81.72° 53 -5 10000 100 

Parathion 

on cotton 

152 July 12 12:0

0 

PM 

32.44° -111.52° 607 -7 231 26 

Parathion 

on cotton 

153 July 10 12:0

0 

PM 

32.88° -111.52° 450 -7 4047 453 

Parathion 

on cotton 

154 August 6 12:0

0 

PM 

32.88° -111.52° 450 -7 4047 453 

Parathion 

on cotton 

155 July 28 12:0

0 

PM 

34.37° -89.52° 154 -6 100000 2800 

Parathion 

on lettuce 

156 June 15 12:0

0 

PM 

38.54° -121.74° 16 -8 4047 340 

Parathion 

on peach 

157 July 10 12:0

0 

PM 

37.66° -120.99° 27 -8 80937 9071 

Parathion 

on peach 

157 August 3 12:0

0 

PM 

37.66° -120.99° 27 -8 80937 18142 
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Parathion 

on peach 

158 August 

14 

12:0

0 

PM 

47.42° -120.31° 237 -8 10000 100 

Parathion 

on plum 

159 August 

21 

12:0

0 

PM 

36.61° -119.53° 105 -8 3200 704 

Parathion 

on potato 

55 August 

18 

1:00 

PM 

52.53° 5.60° -3 +1 24960 2496 

Parathion 

on spinach 

160 June 15 12:0

0 

PM 

38.54° -121.74° 16 -8 4047 340 

a12:00pm was used as the default spray time unless  an actual spray time was specified in the 

literature.   bA default field area of 10,000 m2 was used as the default unless dimensions were 

specified in the literature.  cA default mass of 100 grams was used for the mass of active ingredient 

applied unless more specific application information was specified in the literature
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Table A5.  Meteorological input parameters for scenarios used in PeDAL model 

evaluation 

Scenario Ref

. 

Study 

Location 

Tem

p. 

(°C)a 

Win

d 

Spee

d 

(m/s

)b 

Cloud 

Covera

ge (%)c 

Relativ

e 

Humidi

ty (%) 

Timeanddate.c

om location 

used 

2,4-D on 

timothy 

grass 

131 Ithaca, NY 26.4 3.1z 60 71z Binghamton 

Regional 

Airport 

Azadirachti

n on aspen 

132 Laird 

Township, 

Ontario, 

Canada 

24z 2.7z 55 73z Sault Ste. 

Marie 

Azadirachti

n on peach 

133 San Sperate, 

Italy 

28.9z 4.0z 25 68z Cagliari/Elmas 

Azadirachti

n on spruce 

134 Laird 

Township, 

Ontario, 

Canada 

23.2 2.7z 55 80 Sault Ste. 

Marie 

Azadirachti

n on spruce 

132 Laird 

Township, 

Ontario, 

Canada 

24z 2.7z 55 73z Sault Ste. 

Marie 

Chlorothalo

nil on 

Chinese 

cabbage 

68 Jiangsu, 

China 

21.3 2.2z 35 74z Nanjing 

Chlorothalo

nil on 

peanut 

67 Tifton, GA 30.8 1.8z 50 76z Valdosta 

Regional 

Airport 

Chlorpyrifo

s on 

Chinese 

cabbage 

68 Jiangsu, 

China 

21.3 2.2z 35 74z Nanjing 

Chlorpyrifo

s on 

collards 

135 Frankfort, 

KY 

28z 1.8z 45 66 Frankfort 

Chlorpyrifo

s on cotton 

136 Marana, AZ 33.5 3.1z 20 46z Davis-

Monthan Air 

Force Base 

Chlorpyrifo

s on cotton 

137 Marana, AZ 34.4 3.6z 25 40z Davis-

Monthan Air 

Force Base 



96 

 

Chlorpyrifo

s on cotton 

138 Marana, AZ 35.5 3.6z 25 40z Davis-

Monthan Air 

Force Base 

Chlorpyrifo

s on kale 

135 Frankfort, 

KY 

28z 1.8z 45 66 Frankfort 

Chlorpyrifo

s on orange 

139 Metaponto, 

Italy 

21.6 1.6 40 66 n/a 

Chlorpyrifo

s on potato 

40 Slootdorp, 

Netherlands 

20.3 3.0 70 77z Amsterdam 

Schipol 

Airport 

Chlorpyrifo

s on purple 

tansy 

69 Ida Valley, 

New 

Zealand 

18.9 5.3 55 58 n/a 

Chlorpyrifo

s on rose 

140 Palampur, 

India 

27.3 2.2z 60 27 Lucknow/Ama

usi 

Fenitrothion 

on apple 

141 Bristol, 

England 

11.7z 4.9z 60 74z Filton Private 

Fenitrothion 

on apple 

141 Bristol, 

England 

11.7z 4.9z 60 74z Filton Private 

Fenitrothion 

on apple 

141 Bristol, 

England 

11.7z 4.9z 60 74z Filton Private 

Fenitrothion 

on apple 

141 Bristol, 

England 

14.2z 4.9z 70 74z Filton Private 

Fenitrothion 

on apple 

141 Bristol, 

England 

14.2z 4.9z 70 74z Filton Private 

Fenitrothion 

on birch 

142 Moncton, 

N.B., 

Canada 

13.1z 4.5z 50 73z Moncton 

Fenitrothion 

on birch 

142 Moncton, 

N.B., 

Canada 

18.1z 4.0z 50 76z Moncton 

Fenitrothion 

on fir 

143 Priceville, 

N.B., 

Canada 

19.4z 3.1z 60 72z Fredericton 

Fenitrothion 

on green 

bean 

144 El 

Menofiya, 

Egypt 

25 4.0z 10 49z Cairo Airport 

Fenitrothion 

on maple 

145 Fredericton, 

N.B., 

Canada 

19.4z 3.1z 60 72z Fredericton 

Fenitrothion 

on poplar 

142 Moncton, 

N.B., 

Canada 

13.1z 4.5z 50 73z Moncton 

Fenitrothion 

on poplar 

142 Moncton, 

N.B., 

Canada 

18.1z 4.0z 50 76z Moncton 
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Fenitrothion 

on spruce 

145 Fredericton, 

N.B., 

Canada 

19.4z 3.1z 60 72z Fredericton 

Fenitrothion 

on spruce 

143 Priceville, 

N.B., 

Canada 

19.4z 3.1z 60 72z Fredericton 

Fenitrothion 

on spruce 

146 Shawville, 

Quebec, 

Canada 

15.6z 2.7z 60 67z Petawawa 

Fenitrothion 

on vineyard 

147 Nea 

Aghialos, 

Greece 

22.7z 2.7z 15 66 Skiathos Island 

Parathion 

on alfalfa 

148 Vernal, UT 24.7z 3.1z 35 33z Rock Springs 

Parathion 

on apple 

149 Wooster, 

OH 

23.1z 2.7z 55 72z Wayne County 

Airport 

Parathion 

on 

cauliflower 

150 New Delhi, 

India 

20.5 1.8z 25 66z New Delhi 

Parathion 

on citrus 

151 Lake Alfred, 

FL 

25.6z 3.1z 45 62z Lakeland 

Regional 

Parathion 

on citrus 

151 Lake Alfred, 

FL 

30z 2.2z 50 71z Lakeland 

Regional 

Parathion 

on cotton 

152 Marana, AZ 34 3.6z 25 57 Davis-

Monthan Air 

Force Base 

Parathion 

on cotton 

153 La Palma, 

AZ 

36.8 1.8z 25 28z Phoenix Sky 

Harbor 

International 

Airport 

Parathion 

on cotton 

154 La Palma, 

AZ 

35.8 1.8z 20 32z Phoenix Sky 

Harbor 

International 

Airport 

Parathion 

on cotton 

155 Oxford, MS 30.6z 2.7z 45 72z Oxford 

Parathion 

on lettuce 

156 Davis, CA 27.2z 3.6z 10 50z Sacramento 

International 

Airport 

Parathion 

on peach 

157 Modesto, 

CA 

30.3z 3.6z 15 40z Modesto 

Parathion 

on peach 

157 Modesto, 

CA 

29.5z 3.1z 10 42z Modesto 

Parathion 

on peach 

158 Wenatchee, 

WA 

26.9z 3.6z 45 40z Pangborn 

Memorial 

Airport 
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Parathion 

on plum 

159 Parlier, CA 30.3z 1.8z 10 51z Visalia 

Municipal  

Parathion 

on potato 

55 Biddinghuiz

en, 

Netherlands 

20.0 2.0 60 79z Amsterdam 

Schipol 

Airport 

Parathion 

on spinach 

160 Davis, CA 27.2z 3.6z 10 50z Sacramento 

International 

Airport 

Any input parameter without a superscript next to it was taken directly from the literature 

source.  

a Information about the time and height at which temperatures were measured were not 

provided in the literature sources. Temperatures shown here were calculated with equation 

5 from them main manuscript.  

b Information about the time and height at which wind speeds were measured were not 

provided in the literature sources. Wind speeds shown here are the average of values 

reported in literature sources.  

 cAll input parameters for cloud coverage were estimated with data provided by 

eclipsophile.com.161   

z Indicates the input parameter was estimated using the climate data section from 

timeanddate.com162 for the nearest location to the spray site, which is listed in the 

rightmost column.  
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Section A1. Selection of literature sources and determination of measured field DT50 values 

used in PeDAL model evaluation 

 

For inclusion in model evaluation, we only used studies from the literature that met the 

following criteria: 

1. Measured pesticide concentration was determined on leaves (not fruits, roots, other 

parts of the plant, the plant as a whole, or soil). 

2. Application occurred in the field rather than a greenhouse. 

3. Studies took place when there was no rainfall (exceptions for this were made if the 

rainfall was of limited quantity and/or occurred late enough after application that 

its impact on DT50 was deemed negligible).  This was done because the PeDAL 

model does not currently model wash-off caused by precipitation. 

4. Timing and location of study was clearly specified.  Ideally, exact day and location 

of application was provided, but month and general location were needed at a 

minimum. 

5. Dissipation study used an active ingredient that had a reported foliar 

photodegradation rate available in the literature. 

6. An accurate DT50 value could determined from the information in the literature 

using the method outlined below. 

DT50 values were recalculated according to the suggestions made by the Forum for Co-

ordination of Pesticide Fate Models and their Use (FOCUS) to ensure their accuracy.76  The 

only modification we made to the suggestions of FOCUS was to reduce the required 

number of data points to three to expand the number of studies included in the evaluation 

of the PeDAL model.  

Reported residual concentrations were used for determining measured field DT50 values 

when they were available.  In the case that penetrated and dislodgeable residues were 

reported separately, these values were summed to represent the total amount of pesticide 

remaining.  In cases in which specific values weren’t reported, graphs included in the 

literature were used to estimate concentrations.  Initially all available values were used and 

data was then fit with a curve using equation A1: 

𝑐i,t = 𝑐i,o𝑒−𝑘diss𝑡         

 (A1) 

where t is the time since pesticide application, ci,t is the concentration of pesticide i at time 

t after application, ci,o is the original concentration of pesticide i immediately following 

application, and kdiss is the first-order dissipation rate constant, which incorporates all 

dissipation processes. 

According to the suggestions of FOCUS, clear outliers or data points in the “lag phase” 

were eliminated to improve the fit of the curve and improve the accuracy of the DT50.
76 
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DT50, which is analogous to the first half-life (t1/2), was then calculated according to 

equation A2: 

DT50=t1/2=
0.693

kdiss
          

 (A2) 

In cases in which the effects of different formulations on a.i. dissipation were studied, each 

formulation had its DT50 calculated individually.  The DT50 values for all formulations 

were then averaged and this average DT50 was used as a representative value for evaluation 

purposes.  However, if different formulations were applied on different days then each of 

those scenarios were treated as individual data points in model evaluation. 

 

Table A6. Input parameters used to produce data for chemical space diagrams 

Parameter Input for Figure 5 (and A2) Input for Figure A2 

Month June March 

Day 20 20 

Temperature (°C) 27 10 

Wind speed (m/s) 2 2 

Cloud coverage (%) 25 25 

Relative humidity (%) 100 100 

Latitude 41.76°N 41.76°N 

Longitude 111.81°W 111.81°W 

Time zone (Coordinated 

Universal Time) 

-7 -7 

Elevation (m) 1412 1412 

Field area (m2) 10000 10000 

Spray time (24-h clock) 12 12 

Mass applied (g) 100 100 

%I 100 100 

LAI 4.0 4.0 

Leaf length (m) 0.10 0.10 

Leaf thickness (m) 0.0002 0.0002 

Chemical space diagrams were produced using R Studio Version 1.1.456. Simulations 

were run for >3000 hypothetical chemicals using the two sets of conditions shown in Table 

A6.  Each set of simulations was repeated three times using different sets of input 

parameters for Iref and kphoto(ref).  The Iref and kphoto(ref) values listed in Table A1 for 

chlorpyrifos, parathion, and 2,4-D were used to represent slow, moderate, and fast 

photodegradation, respectively. 
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Table A7. Input parameters for photodegradation sensitivity analysis 

Location Latitude Longitude Elevation (m) 

Quito, Ecuador 0.18°S 78.47°W 2850 

Fairbanks, Alaska 64.84°N 147.72°W 136 

Orlando, FL 28.54°N 81.38°W 25 

Logan, UT 41.76°N 111.81°W 1412 

Duluth, MN 46.79°N 92.10°W 214 

For these simulations, the plant properties of clover were used.  Parathion’s 

photodegradation rate in these simulations was based on the rate in Table A1; however, the 

log Koctanol-water and log Kair-water were set to 14 and -14, respectively.  This was done to 

eliminate volatilization so that photodegradation could be examined alone.  Default values 

were used for all other input parameters. 

 

Table A8.1.  Input parameters for typical spring and summer application conditions in 

Logan, Utah, USA 

Parameter Spring Summer 

Month March June 

Day of Month 20 20 

Wind speed (m/s) 1.6 1.1 

Cloud coverage (%) 25 10 

Relative Humidity (%) 30 50 

Latitude 41.74 41.74 

Longitude -111.83 -111.83 

Time Zone (Coordinated Universal Time) -7 -7 

Elevation (m) 1412 1412 

Field area (m2) 10000 10000 

spray time (24-h clock) 6, 12, or 18 6, 12, or 18 

Mass applied (g) 100 100 

%I 100 100 

Kplant-air equation generic generic 

LAI 4 4 

leaf length (m) 0.1 0.1 

leaf thickness (m) 0.0002 0.0002 

The modeled DT50 value with constant photodegradation was obtained by overriding the 

BCSM intensity predictions and setting it at a constant intensity25,27,34 of 500 W m-2, which 

resulted in a constant photodegradation rate50 of 2.22 x 10-2 h-1 .  
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Table A8.2. Hourly temperatures used for simulating typical spring and summer 

application conditions in Logan, Utah, USA  

Time (24-h clock) Spring temperature (°C) Summer temperature (°C) 

0 3.4 18.0 

1 3.1 17.0 

2 2.5 15.7 

3 2.1 14.9 

4 1.7 14.7 

5 1.1 14.2 

6 0.8 14.7 

7 1.2 17.1 

8 2.4 19.0 

9 3.5 20.8 

10 4.8 22.7 

11 6.4 24.6 

12 7.5 26.0 

13 8.4 27.1 

14 8.8 28.1 

15 8.9 28.7 

16 8.8 29.2 

17 8.5 29.3 

18 7.8 28.6 

19 6.5 26.7 

20 5.4 23.7 

21 4.6 21.4 

22 1.2 20.0 

23 2.5 19.0 
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Table A9. Input parameters for generating emission flux values 

Parameter Parathion 

study55 

Chlorpyrifos 

study40 

Month August June 

Day 18 25 

Temperature (°C) 20 20.3 

Wind speed (m/s) 2 3 

Cloud coverage (%) 60 70 

Relative humidity (%) 79 77 

Latitude 52.53°N 52.85°N 

Longitude 5.60°E 4.97°E 

Time zone (Coordinated Universal 

Time) 

+1 +1 

Elevation (m) -3 -3 

Field area (m2) 24960 10000 

Spray time (24-h clock) 13 12 

Mass applied (g) 2496 679 

%I 80 80 

LAI 2 2 

Leaf length (m) 0.03 0.03 

Leaf thickness (m) 0.000225 0.000225 

All inputs match those used for model evaluation except for %I based on the IUPAC’s 

technical report on plant interception of pesticide.42  Not doing so would have lead to an 

artificially high emission flux since volatilization occurs more readily from vegetation 

than soil.56,163   
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Table A10.  Measured and modeled DT50 values used in PeDAL model evaluation  
Pesticide Plant Location Ref

. 

Measure

d DT50 

PeDA

L DT50 

1 2,4-D Timothy 

grass 

Ithaca, NY 131 1.29 1.13 

2 Azadirachtin Aspen Laird Township, 

Ontario, Canada 

132  

0.85 

 

1.36 

3 Azadirachtin Peach San Sperate, Italy 133 1.69 1.79 

4 Azadirachtin Spruce Laird Township, 

Ontario, Canada 

134  

1.39 

 

1.34 

5 Azadirachtin Spruce Laird Township, 

Ontario, Canada 

132  

1.20 

 

1.34 

6 Chlorothalo

nil 

Chinese 

cabbage 

Jiangsu, China 68 

3.63 

 

0.60 

7 Chlorothalo

nil 

Peanut Tifton, GA 67 

2.78 

0.27 

8 Chlorpyrifos Chinese 

cabbage 

Jiangsu, China 68 

4.71 

 

4.94 

9 Chlorpyrifos Collards Frankfort, KY 135 4.62 5.18 

10 Chlorpyrifos Cotton Marana, AZ 136 0.47 0.81 

11 Chlorpyrifos Cotton Marana, AZ 137 0.35 0.66 

12 Chlorpyrifos Cotton Marana, AZ 138 0.51 0.55 

13 Chlorpyrifos Kale Frankfort, KY 135 3.09 5.18 

14 Chlorpyrifos Orange Metaponto, Italy 139 6.65 8.03 

15 Chlorpyrifos Potato Slootdorp, Netherlands 40 0.39 1.37 

16 Chlorpyrifos Purple tansy Ida Valley, New 

Zealand 

69 

0.63 

2.21 

17 Chlorpyrifos Rose Palampur, India 140 2.99 1.70 

18 Fenitrothion Apple Bristol, England 141 0.66 1.01 

19 Fenitrothion Apple Bristol, England 141 0.83 1.01 

20 Fenitrothion Apple Bristol, England 141 0.70 1.01 

21 Fenitrothion Apple Bristol, England 141 0.98 0.77 

22 Fenitrothion Apple Bristol, England 141 1.63 0.76 

23 Fenitrothion Birch Moncton, N.B., Canada 142 1.28 0.53 

24 Fenitrothion Birch Moncton, N.B., Canada 142 1.79 0.29 

25 Fenitrothion Fir Priceville, N.B., 

Canada 

143 

4.47 

5.13 

26 Fenitrothion Green bean El Menofiya, Egypt 144 0.99 0.46 

27 Fenitrothion Maple Fredericton, N.B., 

Canada 

145 

1.29 

1.08 

28 Fenitrothion Poplar Moncton, N.B., Canada 142 2.19 1.77 

29 Fenitrothion Poplar Moncton, N.B., Canada 142 2.03 1.06 

30 Fenitrothion Spruce Fredericton, N.B., 

Canada 

145 

5.57 

5.96 
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31 Fenitrothion Spruce Priceville, N.B., 

Canada 

143 

6.13 

5.91 

32 Fenitrothion Spruce Shawville, Quebec, 

Canada 

146 

8.53 

7.12 

33 Fenitrothion Vineyard Nea Aghialos, Greece 147 2.59 0.27 

34 Parathion Alfalfa Vernal, UT 148 0.86 0.60 

35 Parathion Apple Wooster, OH 149 0.96 1.21 

36 Parathion Cauliflower New Delhi, India 150 1.97 3.13 

37 Parathion Citrus Lake Alfred, FL 151 0.70 1.21 

38 Parathion Citrus Lake Alfred, FL 151 0.85 0.96 

39 Parathion Cotton Marana, AZ 152 0.41 0.44 

40 Parathion Cotton La Palma, AZ 153 0.47 0.42 

41 Parathion Cotton La Palma, AZ 154 0.58 0.49 

42 Parathion Cotton Oxford, MS 155 0.15 0.88 

43 Parathion Lettuce Davis, CA 156 1.75 1.92 

44 Parathion Peach Modesto, CA 157 1.69 1.17 

45 Parathion Peach Modesto, CA 157 1.88 1.30 

46 Parathion Peach Wenatchee, WA 158 1.80 1.93 

47 Parathion Plum Parlier, CA 159 1.49 0.89 

48 Parathion Potato Biddinghuizen, 

Netherlands 

55 

0.63 

1.05 

49 Parathion Spinach Davis, CA 160 1.41 1.45 
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Figure A1.  Evaluation graphs of modeled versus measured DT50 values using various 

combinations of dissipation processes  

 

(A) Complete PeDAL model with all processes; (B) Volatilization and photodegradation; 

(C) Volatilization and penetration; (D) Volatilization only (PLoVo model); (E) 

Photodegradation and penetration; (F) Photodegradation only 

Dashed lines represent the 1:1 line and solid lines display the line of best fit.  In some cases, 

excluding processes resulted in several data points not reaching their DT50 after 14 days.  

In those instances, 14 days was used as the modeled value which means the fit would be 

even worse than what is reported for those graphs (C-F).  The same scale was used for each 

graph for easier comparison. 
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Figure A2. Chemical space diagrams  

 

Two sets of chemical space diagrams showing CPL24h values (%) for an application to a 

generic plant under two sets of meteorological conditions (Table A1) with the top panel 

representing conditions in June (also identical to Figure 5) and the bottom panel 

representing those in March. The hree levels of photodegradation are (a) slow 

photodegradation (kphoto(ref)=1.37x10-3 h-1 and Iref=1000 W m-2); (b) moderate 

photodegradation (kphoto(ref)=2.22x10-2 h-1 and Iref=500 W m-2); and (c) fast 

photodegradation (kphoto(ref)=2.90x10-2 h-1 and Iref=320 W m-2). 
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Figure A3.  Pesticide loss contributions from individual processes for parathion applied 

to a clover crop under two sets of conditions in Logan, Utah, USA 

 

Input parameters used for these scenarios are located in Table A8. 
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Table A11. Input parameters for modeled scenarios using lambda-cyhalothrin and 

indoxacarb 

Input Lambda-cyhalothrin scenario75 Ref. 

 Site 1 Site 2  

Month January January 75 

Day of month 15th 15th  d 

Temperature (°C) 20 20 162 

Wind speed (m/s) 1.5 1.5 162 

Cloud coverage (%) 10 10 161 

Relative Humidity (%) 69 69 162 

Latitude 10.33°N 11. 50°N g 

Longitude 76.96°E 76.49°N g 

Time zone (+ is E of 

GMT) 

+5 +5 g 

Elevation (m) 1140 1150 g 

Spray time (24-h clock) 12 12 d 

%I 100 100 d 

Leaf area index 4 4 d 

Leaf length (m) 0.1 0.1 d 

Leaf thickness (m) 0.000200 0.000200 d 
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Input Indoxacarb scenario77 Ref. 

Month March 77 

Day of month 15th d 

Temperature (°C) 23 77 

Wind speed (m/s) 4.0 162 

Cloud coverage (%) 10 161 

Relative Humidity (%) 73 77 

Latitude 30.04°N g 

Longitude 31.09°E g 

Time zone (+ is E of 

GMT) 

+2 g 

Elevation (m) 23 g 

Spray time (24-h clock) 12 d 

%I 100 d 

Leaf area index 5 164 

Leaf length (m) 0.2 164 

Leaf thickness (m) 0.000267 165 

gindicates the latitude, longitude, or elevation wasn’t reported in the paper so these values 

were estimated by using google.com 

dindicates the default value listed in the List of Abbreviations was used because precise 

value couldn’t be determined. 
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