
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

12-2021 

Achieving a Sequenced, Relational Query Language with Log-Achieving a Sequenced, Relational Query Language with Log-

Segmented Timestamps Segmented Timestamps 

M. A. Manazir Ahsan 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ahsan, M. A. Manazir, "Achieving a Sequenced, Relational Query Language with Log-Segmented 
Timestamps" (2021). All Graduate Theses and Dissertations. 8227. 
https://digitalcommons.usu.edu/etd/8227 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8227?utm_source=digitalcommons.usu.edu%2Fetd%2F8227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


ACHIEVING A SEQUENCED, RELATIONAL QUERY LANGUAGE WITH

LOG-SEGMENTED TIMESTAMPS

by

M A Manazir Ahsan

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Curtis Dyreson, Ph.D. Dan Watson, Ph.D.
Major Professor Committee Member

Nick Flann, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2021



ii

Copyright © M A Manazir Ahsan 2021

All Rights Reserved



iii

ABSTRACT

Achieving a Sequenced, Relational Query Language with Log-Segmented Timestamps

by

M A Manazir Ahsan, Master of Science

Utah State University, 2021

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

In a period-timestamped, relational temporal database, each tuple is timestamped with

a period. The timestamp records when the tuple is “alive” in some temporal dimension.

Sequenced semantics is a special semantics for evaluating a query in a temporal database.

The semantics stipulates that the query must, in effect, be evaluated simultaneously in each

time instant using the tuples alive at that instant. Previous research has proposed changes

to the query evaluation engine to support sequenced semantics. In this paper we show how

to achieve sequenced semantics without modifying a query evaluation engine. Our technique

has two pillars. First we use log-segmented timestamps to record a tuple’s lifetime. A log-

segmented timestamp divides the time-line into segments of known length. Any temporal

period can be represented by a small number of such segments. Second, by taking advantage

of the properties of log-segmented timestamps, we translate a sequenced relational algebra

query to a non-temporal relational algebra query, using the operations already present in

an unmodified, non-temporal query evaluation engine. The primary contribution of this

paper is how to implement sequenced semantics using log-segmented timestamped tuples

in a generic DBMS, which, to the best of our knowledge, has not been previously shown.

(56 pages)



iv

PUBLIC ABSTRACT

Achieving a Sequenced, Relational Query Language with Log-Segmented Timestamps

M A Manazir Ahsan

In a relational temporal database, typically each row of each table has a period times-

tamp to indicate the lifetime of that row. In order to evaluate a query in a temporal

database, sequenced semantics comes into play. The semantics stipulates that the query

must be evaluated simultaneously in each time instant using the data rows available at that

point of time. Existing researches have proposed changes in the query evaluation engine to

achieve sequenced semantics. In this paper we show a way to support sequenced seman-

tics without modifying the query engine. We propose a noble construction log-segmented

label to represent the lifetime and replace the period timestamp from each row with a log-

segmented label that signifies when the tuple is alive. Then we translate a sequenced query

to a non-temporal query by utilizing the properties of log-segmented label. The translated

query has only operations already available in a typical relational database making the

query readily executable in an unaltered installation of the database. Thus the sequenced

query inevitably runs and retrieve data without changing query evaluation engine. Fi-

nally our implementation using Java language, ANTLR parser generator and PostgreSQL

database demonstrates the feasibility of the proposed mechanism, which, to the best of our

knowledge, has not been previously shown.



v

We will come back to it soon...



vi

ACKNOWLEDGMENTS

My supervisor helped me at each stage of this research. I gratefully acknowledge it.

I am also grateful to all those people whose helping hands made my life easier so that I

could concentrate on my research. Above all, total planner is the key reason behind all the

blessings I have.

M A Manazir Ahsan



vii

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 LOG-SEGMENTED TIMESTAMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 RELATIONAL ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 SEQUENCED PROJECTION . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 SEQUENCED SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 SEQUENCED CARTESIAN PRODUCT . . . . . . . . . . . . . . . . . . . 12
4.4 SEQUENCED UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 SEQUENCED INTERSECTION . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 SEQUENCED DIFFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.7 SEQUENCED GROUPING AND AGGREGATION . . . . . . . . . . . . . 16
4.8 COST ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 QUERY TRANSFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 SEQUENCED PROJECTION . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 SEQUENCED SELECTION . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 SEQUENCED CARTESIAN PRODUCT . . . . . . . . . . . . . . . 26
5.1.4 SEQUENCED UNION . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.5 SEQUENCED INTERSECTION . . . . . . . . . . . . . . . . . . . . 27
5.1.6 SEQUENCED DIFFERENCE . . . . . . . . . . . . . . . . . . . . . 28
5.1.7 SEQUENCED AGGREGATION AND GROUPING . . . . . . . . . 30

5.2 TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A SQL Listing for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



viii

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



ix

LIST OF TABLES

Table Page

3.1 Some example labels for the time-line 0. . .15 . . . . . . . . . . . . . . . . . . 8



x

LIST OF FIGURES

Figure Page

1.1 Query to compute the difference between two tables . . . . . . . . . . . . . 2

1.2 Example relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Log segments on a time-line . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Example log-segmented relations . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Log segments for the times in the relations in Figure 1.2 a) and b) . . . . . 9

4.1 Example Employee relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Example Departments relation . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 After sequenced duplicate are eliminated . . . . . . . . . . . . . . . . . . . . 13

4.4 The (non-temporal) projection of the Dept attribute, need to eliminate se-
quenced duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Example sequenced Cartesian Produce of the Employee relation with itself . 13

4.6 Sequenced projection of the Departments relation . . . . . . . . . . . . . . 14

4.7 Example of a union operation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.8 Some tuples in P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.9 Employee difference relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.10 The during tuples in computing the difference . . . . . . . . . . . . . . . . . 16

4.11 Result of the sequenced difference of Figure 4.1 and Figure 4.9 . . . . . . . 16

4.12 Example relation for grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.13 Fragments of lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.14 Long-lived tuple are potential group members . . . . . . . . . . . . . . . . . 17

4.15 Union of the original relation, Figure 4.13 and Figure 4.14 with the aggregate
computed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



xi

4.16 Sequenced count of Employees grouped by Dept . . . . . . . . . . . . . . . 19

5.1 System Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Transformation of Sequenced Projection . . . . . . . . . . . . . . . . . . . . 25

5.3 Transformation of Sequenced Selection . . . . . . . . . . . . . . . . . . . . . 25

5.4 Transformation of Sequenced Cartesian Product . . . . . . . . . . . . . . . 26

5.5 Transformation of Sequenced Union . . . . . . . . . . . . . . . . . . . . . . 27

5.6 Transformation of Sequenced Intersection . . . . . . . . . . . . . . . . . . . 28

5.7 Temporal Difference between two labels. . . . . . . . . . . . . . . . . . . . . 29

5.8 Transformation of Sequenced Set Difference . . . . . . . . . . . . . . . . . . 30



CHAPTER 1

INTRODUCTION

A tuple-timestamped, temporal relational database is a relational database in which

each tuple is annotated with a period timestamp, that is, a period of time from some start

time to some end time. The timestamp is metadata about the tuple; it records when the

data was “live” in some temporal dimension.

Temporal relational database management systems (TDMBSs) provide special han-

dling for time metadata in queries. For instance, the timeslice operation retrieves the data

that is alive at a specified time. TDBMSs typically support a wide range of temporal

query operations but the most important is arguably sequenced semantics [1]. Informally,

sequenced semantics states that the meaning of a sequenced query is that it is equivalent

to the (non-temporal) query applied to every snapshot of the data, effectively sequenced se-

mantics is akin to running the query simultaneously in every snapshot in the data’s history.

We previously showed that sequenced semantics can be leveraged to support other kinds of

semantics [1, 2], nonsequenced semantics [3].

The history of data can span many instants so it is infeasible to actually run a query

on each and every snapshot. To support sequenced semantics a TDBMS must evaluate a

sequenced query in some other way. Generally sequenced semantics is implemented by mod-

ifying the query evaluation engine c.f., [4]. Previously it was thought not possible to perform

sequenced queries on an unaltered relational database management system (RDBMS), e.g.,

using an unaltered installation of MySQL or Postgres.

To illustrate what makes sequenced query evaluation challenging, consider the SQL

query given in Figure 1.1 which computes the difference between the dept attribute in two

relations, storesGoldCoast and storesRobina shown in Figure 1.2. The query evaluates

when there were departments in a storesGoldCoast relation and no departments with the

same name in the storesRobina relation (Robina is a small area within the Gold Coast in



2

SELECT dept

FROM storesGoldCoast

WHERE dept NOT IN (SELECT dept FROM storesRobina)

Fig. 1.1: Query to compute the difference between two tables

Data Metadata Data Metadata
Dept Time Dept Time
Shoe [1,11] Shoe [2,3]

Shoe [5,6]

(a) Relation storesGoldCoast (b) Relation storesRobina

Data Metadata
Dept Time

Shoe [1,1]

Shoe [4,4]

Shoe [7,11]

(c) Result of sequenced evaluation of query in Figure 1.1.

Fig. 1.2: Example relations

Australia). The result of the sequenced evaluation of the query is shown in Figure 1.2(c).

What makes the computation complicated is that no single pairing of tuples from the

relations computes each tuple in the result, it cannot be produced by a Cartesian product of

the two relations. For instance, we can only figure out the timestamp of the second tuple in

the result [4,4] by determining that [2,3] and [5,6] leaves a gap of [4,4] within [1,11]

and that there is no other tuple in storesRobina that overlaps [4,4]. When moving to

the extended relational algebra or SQL, (sequenced) temporal grouping and aggregation,

and some subqueries, NOT IN subqueries, are similarly problematic.

In this research we show how it is possible to translate a sequenced query into a non-

temporal query. The translation uses a kind of timestamp that we describe in chapter 3. We

focus on relational algebra as an example of a complete query language that is widely-known,

easy to describe, has a procedural semantics, and provides the basic operations to implement

an SQL query evaluation engine. We give a translation of sequenced relational algebra to

non-temporal relational algebra in chapter 4. We describe how to translate sequenced SQL



3

queries into non-sequenced SQL and report on some experiments that measure the cost in

the same. We present our implementation details in the chapter 5.



CHAPTER 2

RELATED WORK

This paper extends previous research in the area of temporal query languages, There are

many temporal extensions of query languages, c.f., [5–10]. These extensions are designed

to add to, rather than change or modify, the prior syntax and semantics of a language. The

extensions have been broadly characterized in various ways. Sequenced vs. nonsequenced

distinguishes extensions, in part, by whether the time metadata is manipulated implicitly or

explicitly. Temporal languages have also been characterized as abstract vs. concrete based

on whether their syntax and semantics depends on a specific representation of the time

metadata [11].

Two implementation approaches are common for SQL-like temporal query languages.

A stratum-approach adds a source-to-source translation layer to translate a query in a

temporal extension into an equivalent query in the original, non-extended language [12,13].

Some constructs prove not possible to translate using period timestamps, e.g., sequenced

outer join, so the only feasible approach is to extend the DBMS itself [4]. In general,

sequenced semantics cannot be directly supported in standard SQL because some of the

needed operations are not part of SQL, hence the second strategy extends the DBMS to

support additional operations for sequenced semantics. A related approach is to translate

to a non-standard variant of SQL [14]. To the best of our knowledge this is the first

paper to implement sequenced semantics by translating to standard relational algebra. The

translation supports implementation in garden-variety, unaltered relational DBMSs, e.g.,

MariaDB, Postgres, etc.

Researchers accumulated a wide range of concepts of temporal databases interest along

with their definitions, explanations and discussion of the given names [15]. They identified

three primary kinds of time: transaction, valid, and user-defined time. Transaction time

defines the time in which an event is alive in a database. More precisely, the database time



5

in between insertion and deletion of an entity is the transaction time. Valid time is the

time of existence of an event in the real world. Both the transaction and the valid time are

the example of metadata that means, they are data about a data stored in a database. On

the contrary, user-defined time is a piece of data of time type. This is a time value of an

event, in other words, it is a data that happens to be time. An example could draw a fine

line between their differences.

Consider, the fact that Jack Sparrow was born in 1988, had started undergrad education

at Utah State University from 2006 to 2009. The university inserted his information into

the database in 2008 after adopting a new information system and continued to keep his

data for life long. One way to model the information system that contains Mr. Sparrow’s

study records is to define the transaction time which is the span of his undergrad study

[2008-until changed], since the data has been inserted on 2008 and not yet been deleted [16].

On the other hand, the valid time of study which is real world time is [2006-2009]. Besides,

birthday will be a piece of information about Mr. Sparrow which happens to be a time

and we call it user defined time. User defined time is an attribute of an entity but the

transaction and/or valid time are the metadata that changes the semantics of data and

the way we executes any operation over the data. Despite their difference, any event could

happen monetarily, i.e., all the three times could be represented with the same starting and

ending timestamps (like, time of a financial transaction).

Even though the information stored in a database continues to grow with the addition

of new data, these growth is are considered as modifications to the state, with outdated data

being updated or deleted from the database. Thus the content of the database illustrates

the current state or the snapshot of the business being modelled. In contrast, temporal

represents the progression of states of a business over a period. Hence, in temporal database,

changes are considered as additions to the information in the database without deletion

or modification of existing content. Meaning that temporal database preserves multiple

snapshot of a business over time. Due to having multiple snapshots the extraction of data

from a temporal database requires a query language with special syntax and semantics [8].



6

Several languages of that kind are available in the literature, TQuel, Statement Modifiers

are a few of them. Some researchers designs and implements the temporal query for OLAP

(On Line Analytics Processing) [17,18].

Temporal database researchers codifies a set of requirements (desiderata) that directly

defines the syntax and semantics of temporal extension of any non-temporal query language.

One research group introduces the concept of Statement Modifiers that shows a way of

systematically adding temporal feature to an arbitrary non-temporal query language [19].

Statement modifiers are applicable to all data retrieval statement, modification statement,

integrity checking statements, or other data and metadata manipulation statements.

It proposed saptio-temporal data model and query language with a view to minimizing

the required extensions in a relational language. The cornerstone of the article are the di-

rected triangulation representation and point based representation for spatial data temporal

data respectively. In order to achieve efficiency in this model, it defined conceptual and

physical representations and a mapping between them. User defined function/aggregator,

in addition to syntactic and semantic notions available in the modern query language, is

necessary for the implementation of the spatio-temporal query. Nonetheless, user defined

function makes the implementation relatively slower and the model needs to extend the

existing SQL engine [5].



CHAPTER 3

LOG-SEGMENTED TIMESTAMPS

Most temporal database research and implementation uses period timestamps to anno-

tate data with temporal metadata [10]. Period timestamping appends a timestamp to each

data item to represent its lifetime. Research has also explored coalesced period timestamp-

ing in which value-equivalent tuples must have maximally disjoint periods [20]. Another way

to represent a coalesced timestamp is with a temporal element, which is a set of disjoint

periods [21]. Since a temporal element is a set, it can only be directly stored in a non-

1NF data model. A variation of tuple-timestamped models is attribute timestamping where

timestamps are appended to each attribute in a tuple rather than to the entire tuple [22].

Period timestamps are a poor fit for architectures which need to partition large data

sets into smaller shards to process, e.g., mapreduce architectures. Consider, for instance

a join operation. Hash-join is usually a good strategy for mapreduce. The mapreduce

hash-join maps data items that have the same join values to a common shard, and then

joins the items in the shard. The strategy is efficient since it ensures that only data items

that actually will join are put into a shard. A sequenced (temporal) join adds a further

condition that two data items join only on the times at which they are both alive. For

period timestamps this is computed as the temporal intersection of the timestamps. If the

intersection is empty, the items do not join since they do not coexist at any point in time.

The problem is that periods cannot be directly mapped to shards in a way that ensures

that the items within a shard temporally intersect. Consider the periods [1,2], [8,9], and

[0,10]. [1,2] and [8,9] should be placed in different shards since they do not intersect,

and hence, never represent data that coexists. But [0,10] intersects both, it has to be

placed into both. Since a period of size n has n(n+1)
2 sub-periods that could intersect, every

period potentially needs to belong to many shards.

To address this challenge we developed a log-segmented timestamp [23]. The timestamp



8

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3.1: Log segments on a time-line

Label Period tx ty

1 0 – 15 0 15 = 0 + (24 − 1)
10 0 – 7 0 = 0 ∗ 24 8 = 0 + (23 − 1)

110 8 – 11 8 = 1 ∗ 23 11 = 8 + (22 − 1)
1101 10 – 11 10 = 1 ∗ 23 + 1 ∗ 21 11 = 10 + (21 − 1)

10011 3 – 3 3 = 1 ∗ 21 + 1 ∗ 20 3 = 3 + (20 − 1)

Table 3.1: Some example labels for the time-line 0. . .15

uses a labelling scheme for pre-determined periods on a time-line. A label is a binary number

that has the following meaning.

Definition 1: [Log-segmented Label] Let a (discrete) time-line consist of the times

t0, . . . , tn, where n = 2k−1. Note that n can be represented using a binary number of length

k with each digit set to 1. A label is a binary number, b0. . .bj , and b0 is always 1. The label

1b1. . .bj , j ≤ k, represents the time period tx to ty where tx = b12k−1 + b22k−2 + . . . bj2
k−j

and ty = tx + (2k−j − 1).

The log segments for a time-line from 0 to 15 are depicted in Figure 3.1. The chronons

in the time-line are numbered at the bottom of the figure. Each gray rectangle in the figure

is a segment. A label for a segment is the concatenation of 1’s and 0’s along the path from

the root to a segment. Some example labels are shown in Table 3.1. Note that only 2n− 1

of the n2 possible periods in the timeline are labelled.

A log-segmented timestamp is the minimal set of segments that spans a given period.

For example, the log-segmented timestamp representing the period [3,11] is {10011, 101,



9

Data Metadata Data Metadata
Dept Time Dept Time
Shoe 10001 Shoe 1001

Shoe 1001 Shoe 10101

Shoe 101 Shoe 10110

Shoe 110

(a) Relation storesGoldCoast (b) Relation storesRobina

Fig. 3.2: Example log-segmented relations

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1-11

2-3

1

Times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-6

Fig. 3.3: Log segments for the times in the relations in Figure 1.2 a) and b)

110} (naming the periods {[3,3], [4,7], [8,11]}, respectively). The log-segmented

timestamps for the times in the relations in Figure 1.2 a) and b) is graphically depicted in

Figure 3.3. Figure 3.2 shows the log-segmented tuples for the relations in Figure 1.2.

Log-segmented timestamps have the following properties.

• Comprehensive - A time-line of size n has at most 2n − 1 labels. Each label will

have a maximum length of 1 + dlog2(n)e bits. So a label of 64 bits (the size of a

long long scalar in C++) can represent a time-line of 263 − 1 time values, which

encompasses a time-line longer than current estimates of the lifetime of the universe

to the granularity of microseconds [24].

• Compact - The maximum number of segments in a log-segmented timestamp for a

period, [tx,ty], is dlog2((1 + ty) − tx)e. So assuming 64 bit labels, a log-segmented

timestamp has at most 64 labels.



10

• Efficient for temporal predicates - Predicates in Allen’s algebra can be quickly com-

puted. For example for overlaps, given two labels, L1 and L2,

overlaps(L1, L2) =


L1 if L2 is a prefix of L1

L2 if L1 is a prefix of L2

nothing otherwise

• Groups - In temporal aggregation a membership-constant period is a period of time

when some data items, and only, those data items, belong to a group. In a log-

segmented timestamp, a label and all prefixes/suffixes of it describe a membership-

constant period. So, assuming a timestamp of length 4 the membership-constant

period 1001 includes data timestamped with any prefix. Said differently, if we want

to compute an aggregate for the period 1001, we use the data timestamped with

1001, 100, 10, and 1. So for a time-line of size n there are dlog2(n)e segments for a

membership-constant period.



CHAPTER 4

RELATIONAL ALGEBRA

In this section we describe a complete set of relational algebra operators for sequenced

semantics with log-segmented timestamps. The algebra is defined in terms of non-temporal

relational algebraic operators.

4.1 SEQUENCED PROJECTION

Log-segmented, sequenced projection, πT , for some set of attributes A on relation r is

defined as follows.

πT
Ā

(r) = Φ(πĀ,r.T (r))

Φ is the sequenced duplicate elimination operator, which is needed because projection in

relational algebra produces a set of tuples, unlike SQL where the underlying model is a

bag of tuples. Sequenced duplicate elimination is simple to define for log-segments since

for any pair of value-equivalent tuples, t and v, if t’s timestamp is temporally during v’s

timestamp, then t can be removed because it is a duplicate. The sequenced duplicate

elimination operator is defined below, where ρ is the relation renaming operator (to give a

copy of a relation a unique name), D(t1, t2) is the timestamp during predicate, r.T (s.T ) is

the timestamp for a tuple in relation r (s), r.V (s.V ) is the list of non-temporal attributes

in r (s), and ./r.V =s.V is a value-equivalent equi-join, the timestamps are ignored in the

join, only the non-temporal values are used.

Φ(r) = r − πr.V,r.T (σD(r.T,s.T )(r ./r.V =s.V ρs(r)))

As an example, consider the relation shown in Figure 4.1 and the query

πTDept(Employees).



12

Data Metadata
Name Dept Time

Joe Shoe 10

Fred Shoe 1001

Jennifer Shoe 101

Fig. 4.1: Example Employee relation

Data Metadata
Dept Floor Time

Shoe 2 10

Shoe 2 111

Photo 1 101

Fig. 4.2: Example Departments relation

First we project the Dept attribute, as well as the timestamp metadata yielding a relation

with three tuples as shown in Figure 4.4. Next we eliminate sequenced duplicates, yielding

the result in Figure 4.3. The sequenced duplicate elimination removes the second and third

tuples because they are during the first tuple’s timestamp and are value-equivalent to the

first tuple.

4.2 SEQUENCED SELECTION

The next operation is log-segmented, sequenced selection, where P is a predicate for

deciding if a tuple is in the result relation.

σTP (r) = σP (r)

Sequenced selection is straightforward it is the same as non-temporal selection; duplicate

elimination is not needed since the relation being selected does not contain duplicates, hence

the result of a selection cannot have duplicates.

4.3 SEQUENCED CARTESIAN PRODUCT

Sequenced Cartesian product similarly cannot produce duplicates, but result tuples

only exist at the time given by the intersection of two tuples. In the definition, O(r.T, s.T )

is the overlaps temporal predicate, I(r.T, s.T ) is the temporal intersection constructor, and

r.V (s.V ) is the list of non-temporal attributes in tuple r (s). Note that the projection

operator in the definition is a generalized projection since it constructs a timestamp value

not present in the operand relations.



13

Data Metadata
Dept Time

Shoe 10

Fig. 4.3: After sequenced duplicate
are eliminated

Data Metadata
Dept Time

Shoe 10

Shoe 1001

Shoe 101

Fig. 4.4: The (non-temporal) projection of the
Dept attribute, need to eliminate sequenced
duplicates

Data Metadata
Name Dept Name Dept Time

Joe Shoe Joe Shoe 10

Fred Shoe Joe Shoe 1001

Jennifer Shoe Joe Shoe 101

Joe Shoe Fred Shoe 1001

Fred Shoe Fred Shoe 1001

Joe Shoe Jennifer Shoe 101

Jennifer Shoe Jennifer Shoe 101

Fig. 4.5: Example sequenced Cartesian Produce of the Employee relation with itself

r ×T s = πr.V,s.V,I(r.T,s.T )(σO(r.T,s.T )(r × s))

As an example if we take the Cartesian product of the relation in Figure 4.1 with itself, we

end up with the relation in Figure 4.5.

4.4 SEQUENCED UNION

Log-segmented, sequenced union adds duplicate elimination to the result of a non-

temporal union.

r ∪T s = Φ(r ∪ s)

As an example, consider the union of the Departments relation shown in Figure 4.2 with

the Employees relation in Figure 4.1 (or rather the projection of each on the Dept attribute)

as follows.

πTDept(Departments) ∪T πTDept(Employees)

The projection of the Employees relation is in Figure 4.3 and the projection of the Departments

relation is shown in Figure 4.6. The result of the union is shown in Figure 4.7.



14

Data Metadata
Dept Time

Shoe 10

Shoe 111

Photo 101

Fig. 4.6: Sequenced projection of the
Departments relation

Data Metadata
Dept Time

Shoe 10

Shoe 111

Photo 101

Fig. 4.7: Example of a union operation

4.5 SEQUENCED INTERSECTION

Sequenced intersection can be expressed using sequenced Cartesian product, selection,

and sequenced projection.

r ∩T s = πTr.V (σr.V =s.V )(r ×T s))

Intersection can be computed by first taking the sequenced Cartesian product. From this, for

all tuples that have value-equivalent pairs in the underlying relation, it takes the sequenced

projection of r’s attributes. As an example, consider the intersection of the Employee

relation with itself. First we take the Cartesian product as shown in Figure 4.5. Next the

selection restricts the result to the first, fifth, and seventh tuples since these tuples have

the same departments and employee names. Finally the sequenced projection produces the

result shown in Figure 4.1.

4.6 SEQUENCED DIFFERENCE

The problem of sequenced, relational difference was described in chapter 1. Log-

segmented, sequenced relational difference is somewhat complicated. The operation is de-

fined below assuming C(t1, t2) is the temporal contains predicate, O(t1, t2) is the temporal

overlaps predicate, and E(t1, t2) is the temporal equals predicate.

r −T s = Φ(rc ∪ (rd − (rd nr.V =s.V ∧ (C(rd.T,s.T ) ∨ E(rd.T,s.T )) s)))

where

rc = r − (r nr.V =s.V ∧ O(r.T,s.T ) s),

rd = πr.V,P.T3((r ./r.V =s.V ∧ C(s.T,r.T ) s) onr.T=P.T1∧s.T=P.T2 P)), and



15

P(T1, T2, T3) is the pre-computed log-segmented difference relation.

First, rc, is the set of tuples that have no value-equivalent match in s or if they have

a value-equivalent match do not overlap in time with any tuple in s. Second, rd is the

tuples in r that have a value-equivalent match in s and a lifetime that is during (excluding

equals) the lifetime of the tuple in s, which we will call the during tuples. The challenge

in computing the during tuples is determining potentially when they exist since the time is

usually not the time of either the tuple in r or in s, which is why relation P is needed. P

is the log-segmented difference relation. It computes the log-segments, attribute T3, in the

difference between a pair of times T1 and T2 and is defined as follows, assuming S is the

domain of log segments, C(t1, t2) is the temporal contains predicate, and O(t1, t2) is the

temporal overlaps predicate.

P(T1, T2, T3) = Φ({(t1, t2, t3) | t1, t2, t3 ∈ S ∧ C(t1, t3) ∧ C(t1, t2) ∧ ¬O(t2, t3)})

Figure 4.8 shows some of the tuples in P. For instance, the difference between 10 and 10001

yields the log-segments in the set (in different tuples) {101, 1001, 10000}. Observe that in

Figure 3.1 these log segments are a set of log segments that together with 10001 span 10,

and are coalesced, no log segment in the set is contained within some log segment, x, such

that x is not in the set and x is contained by 10.

As an example suppose that we take the difference between the Employees relation in

Figure 4.1 and the relation in Figure 4.9. The result is shown in Figure 4.11. First Fred

is in the result unchanged from the Employee relation since the time in his tuple, 1001,

does not overlap time 11. That is, Fred’s tuple is in rc. Second, Jennifer is not in the

result since her tuple’s time, 101, is contained within the time of her tuple in the difference

relation, 10. Jennifer’s tuple is not in rd (or rc). Finally, consider Joe. His tuple has a

value-equivalent match that has a lifetime, 10, which contains his lifetimes in s, 10001 and

101. 10 - 10001 is {101,1001,10000} while 10 - 101 yields {100}. So rd is the relation

shown in Figure 4.10. From this relation we remove any tuple that is value-equivalent and

contains or is equal to a time in the difference relation (Figure 4.9. The first (101 is equal



16

T1 T2 T3

. . .
10 101 100
10 1001 101
10 1001 1000
10 10001 101
10 10001 1001
10 10001 10000

. . .

Fig. 4.8: Some tuples in P

Data Metadata
Name Dept Time

Joe Shoe 10000

Fred Shoe 11

Jennifer Shoe 10

Fig. 4.9: Employee difference relation

Data Metadata
Name Dept Time

Joe Shoe 101

Joe Shoe 1001

Joe Shoe 10000

Joe Shoe 100

Fig. 4.10: The during tuples in computing
the difference

Data Metadata
Name Dept Time

Joe Shoe 10001

Fred Shoe 1001

Fig. 4.11: Result of the sequenced difference
of Figure 4.1 and Figure 4.9

to 101), third (1001 is equal to 1001), and fourth tuples (100 is equal to 100) are removed

yielding only the third tuple to be added to the final result.

4.7 SEQUENCED GROUPING AND AGGREGATION

Sequenced grouping and aggregation is also possible with log segments, though the pro-

cess is somewhat complicated. We first give an informal example of sequenced aggregation

and group by, and then a formal definition.

Assume that we want to count the number of Employees per Department over time,

i.e., a sequenced aggregation and grouping. Furthermore, assume that our relation has four

tuples for the Clothing department timestamped with log-segments 1010, 1010, 101, and

1 as shown in Figure 4.12.

Step 1: Determine log segment fragments Long-lived tuples potentially span many

temporal groups. For instance, in the relation in Figure 4.12, Freya’s tuple contains

the lifetime of all the other tuples in the relation so should belong to each group,



17

Data Metadata
Name Dept Time

Susan Clothing 1010

Pedro Clothing 1010

Malik Clothing 101

Freya Clothing 1

Fig. 4.12: Example relation for grouping

Data Metadata
Name Dept Time

Malik Clothing 1011

Freya Clothing 1011

Freya Clothing 11

Freya Clothing 100

Fig. 4.13: Fragments of lifetimes

Data Metadata
Name Dept Time

Freya Clothing 1010

Malik Clothing 1010

Freya Clothing 101

Fig. 4.14: Long-lived tuple are potential
group members

Data Metadata
Count Name Dept Time

4 Susan Clothing 1010

4 Pedro Clothing 1010

4 Freya Clothing 1010

4 Malik Clothing 1010

2 Malik Clothing 1011

2 Freya Clothing 1011

1 Freya Clothing 100

2 Malik Clothing 101

2 Freya Clothing 101

1 Freya Clothing 11

1 Freya Clothing 1

Fig. 4.15: Union of the original relation, Fig-
ure 4.13 and Figure 4.14 with the aggregate
computed



18

but also to groups not in the lifetimes of those tuples, Freya is present at time 11

while none of the other tuples are (they are all within 10). So the goal of this step

is to split the timestamps to determine coverage with respect to the other times-

tamps in the relation. We use temporal difference to split the lifetimes, that is for

any lifetime that is contained in another, we take the difference. For instance, in our

running example, (Susan, Clothing, 1010) lifetime is contained in that of (Malik,

Clothing, 101) so we take the difference of 101 and 1010 to get 1011 and so gener-

ate the tuple (Malik, Clothing, 1011). We also do the other pairs, 1 - 101 yielding

(Freya, Clothing, 11) and (Freya, Clothing, 100), and the pair 1 - 1010 yield-

ing (Freya, Clothing, 1011) and (Freya, Clothing, 11). The result relation is

shown in Figure 4.13.

Step 2: Add long-lived tuples to contained lifetime groups This step add long-lived

tuples to the groups that have lifetimes that are contained within the lifetimes of the

long-lived tuple. For instance, in the relation in Figure 4.12, Freya’s tuple contains

the lifetime of all the other tuples in the relation so should belong to each group,

Freya is present at time 101 and 1010. The resulting relation is shown in Figure 4.14.

Step 3: Gather potential group members Form the union of the results of the original

relation, Step 1, and Step 2. The result relation is shown in Figure 4.15 (the relation

depicted has the computed aggregates as well, but those will be added in the next

step).

Step 4: Group and aggregate Group and aggregate the result of Step 3, pre-pending

the aggregate value (computed for the group) to each tuple. The result relation is

shown in Figure 4.15.

Step 5: Remove containing lifetimes Since lifetimes were fragmented in Step 1 to rep-

resent smaller periods, this step removes duplicate counts. A duplicate count is for any

tuple that has a lifetime that contains that of another tuple in the relation produced

in Step 4. For instance, (2, Mailik, Clothing, 101) is a duplicate tuple since its



19

Data Metadata
Count Name Dept Time

4 Susan Clothing 1010

4 Pedro Clothing 1010

4 Freya Clothing 1010

4 Malik Clothing 1010

2 Malik Clothing 1011

2 Freya Clothing 1011

1 Freya Clothing 100

1 Freya Clothing 11

Fig. 4.16: Sequenced count of Employees grouped by Dept

lifetime contains the lifetime of another tuple (4, Freya, Clothing, 1010). Hence

it has already been counted and should be removed. The result of this step is shown

in Figure 4.16, which is the sequenced count of Employees grouped by Dept.

The aggregation operator ḠF
T
Ā

, where Ḡ is a list of grouping attributes and Ā is a list

of aggregate functions, is defined below.

ḠF
T
Ā

(r) = r5

where (note: relation ri is produced by Step i)

r1 = πr.V,P.T3((r ./C(r.T,s.T ) ∧ r.Ḡ=s.Ḡ ρs(r)) onr.T=P.T1∧s.T=P.T2 P),

r2 = πr.V,s.T (r ./C(r.T,s.T ) ∧ r.Ḡ=s.Ḡ ρs(r)),

r3 = r ∪ r1 ∪ r2, and

r4 =r̄.G FĀ(r3).

r5 = r4 − (r4 nr.Ḡ=s.Ḡ ∧ C(r4.T,s.T ) ρs(r4))

4.8 COST ANALYSIS

The primary disadvantage of log-segmented relational algebra is cost since the log-

segmented increases the size of the relations. Note however, that the size cost could be

reduced by normalizing a log-segmented relation, that is, by splitting the data and metadata

columns into separate tables, with a foreign key from the metadata table into the data table.

In this analysis we do not assume such normalization.



20

Let relation r (s) be a period timestamped relation with N (M) tuples. Representing

the relations using log segments increase the size of the relation by a factor of f = log2(k)

where k is the maximum time (assuming a time domain from 0 to k). Then the relational

algebra operators have the following cost.

• Sequenced projection of r: The cost is O(fN) to project r and O((fN)3) to perform

duplicate elimination, so the cost is dominated by duplicate elimination.

• Sequenced selection of r: The cost is O(fN) to scan through the relation.

• Sequenced Cartesian product of r with s: The cost is O(f2NM).

• Sequenced Union of r with s: The cost is O(fN) +O(fM) + o((f(N +M))3), so the

cost is dominated by duplicate elimination.

• Sequenced Intersection of r with s: The cost is O((fN) ∗ (fM)) since the projection

and selection can performed as the Cartesian product is computed.

• Sequenced Difference of r minus s: To compute the during tuples costs O(f3NM)

assuming that P can by dynamically computed, such as using a table function in

Postgres. To compute rc costs O(f3N2M). The union of rc with the during tuples and

performing the duplicate elimination costs O(f9N3M2), so the duplicate elimination

again dominates the cost.

• Sequenced Grouping and Aggregation: There are five steps. To compute r1 costs

O(f3NM). Computing r2 squares the cost of r1 and, assuming linear-time union can

be performed, the cost of r3 is O((fN)2), which is the maximum possible size of r2 or

r3. We will assume computing the aggregate can be done in linear time, so the cost

of r5 is O((fN)4)

Note that the most frequent query operations are projection, selection, and Cartesian

product. The cost of selection and Cartesian product are the same as their non-temporal

counterparts (except for the increased size of the relation). But unlike temporal periods,

log segments can be indexed using a non-temporal index, a B+-tree, so there are likely



21

significant query optimization opportunities for sequenced queries using standard SQL query

optimization techniques involving indexes. Only projection is significantly more expensive,

but the cost is largely due to duplicate elimination, which can be thought of as optional

in an SQL-based DBMS, which allows duplicates in the data model. The cost of the other

operations (except intersection which is the same as the non-temporal cost) is much higher

than their non-temporal counterpart (which do not support sequenced semantics, with

the additional functionality comes increased cost). But, overall sequenced queries can be

supported in a vanilla SQL-based DBMS and we suspect that query optimization combined

with standard indexes can achieve reasonable run-time efficiency.



CHAPTER 5

IMPLEMENTATION

This section describes the implementation of temporal query using log-segmented label

as timestamp. In other words, here we illustrates the transformation of temporal query to

a query having only operations available already in a standard SQL engines so that the

transformed query gets executed in the unmodified engine which, inevitably, executes the

sequence semantics in a traditional SQL engine. This section covers hardware configuration,

system setup, system design and exemplification of query transformation.

Fig. 5.1: System Design.

Host machine’s hardware configuration: Intel Core i5 quad core CPU with 3MB

L2 cache and 2.8 GHz clock speed, 16 GB of memory and 1 TB of hard drive. Windows

8.1 Pro 64-bit is used as host operating system.

System Setup: We have used ANTLR version 4.5.3 for implementation and testing of

our research work. From a given grammar, ANTLR generates parse tree and walks through

it. We have built a java program that takes the parser and a temporal query as input and



23

generates the desired SQL consisting of only standard operations. We have used Netbeans

8.2 as java IDE and integrated ANTLR into it as a plugin. As a reference database we have

chosen PostgreSQL version 11.12 database management system.

System Design: Figure 5.1 illustrates the flow of control of our implementation. The

ANTLR gets a grammar (i.e., set of rules of a SQL language) and generates parser for it.

The parser generates parse tree from a temporal SQL query. Then our custom listener

program receives the parse tree (which enumerates the type of operation, table name(s),

column name(s), join column name(s), etc.) and constructs the intended query. The key

part of the implementation is the transformation of query of various SELECT operations.

We demonstrate in this section that log segmented label offers a way to implement

the temporal semantics in an unaltered database. In contrast with our research, earlier

articles implemented the sequence semantics by changing the SQL engine [2, 4]. This work

investigates all the relational algebras of chapter 4 and deduce the transformation for each

of the operations: projection, selection, Cartesian product, union, intersection, set differ-

ence and aggregation. For a subset of SQL comprised of constructive parts, like projection,

selection, join operations, are comparatively straight forward using log segmented times-

tamps. Besides, the eliminative parts of SQL such as set difference, sequenced aggregation

and grouping operations require complex query conversions. Nonetheless, with the log seg-

mented labels, there is absolutely no need of any alternation of the underlying DBMS. The

subsequent section explores the query conversion for each of the above operations with ex-

amples.

5.1 QUERY TRANSFORMATION

This section illustrates sample temporal query and their equivalent query with available

techniques in a standard database (i.e., PostgreSQL). We tried to write exhaustive set of

queries (to cover all cases), transformed them in order to accumulate insight on the query



24

conversion. Finally used that knowledge to formulate the algorithm of the listener program

that ultimately converts the query. The listener program consists of several subroutines

and each subroutine handles a definite type of SELECT operation. The program switches

to a particular subroutine based on the specific keywords in the query (e.g., “WHERE”,

“JOIN”, “UNION”, “INTERSECTION”, “EXCEPT”, “COUNT”, “SUM”, “GROUP BY”

and so on) which essentially turns the listener into a rule based program. Algorithm 5.1

shows the pseudo-code of the listener. Algorithm 3.1 shows the pseudo-code of the listener.

On the other hand, each subroutine takes care of one type of operation similar to the each

of the relational algebra in section reference-to-the-relational-algebra-section.

Algorithm 5.1 Listener

Input:
Parse Tree of a Temporal Query (Pt)

Output:
Transformed Query (Qc)

Begin
if K WHERE ∈ Pt then handle selection()
else if K JOIN ∈ Pt then handle Cartesian product()
else if K UNION ∈ Pt then handle union()
else if K INTERSECTION ∈ Pt then handle intersection()
else if K EXCEPT ∈ Pt then handle difference()
else if K GROUP BY ∈ Pt then handle aggregation()
else handle projection()

End

Even though the conversion is similar to the conversion of relational algebra operation,

there is a non-trivial difference between them due to underlying data model. In contrast

with the relational algebra, the SQL table allows duplicate tuples. Hence, unlike the relation

algebra, there is no need of duplicate removal in conversion from sequenced to non-sequenced

SQL query. We will go through each of them in the following subsections.

5.1.1 SEQUENCED PROJECTION

Figure 5.2 illustrates typical transformation of sequenced projection. Here, the query



25

at the left hand side is the temporal query and that at the right side is the equivalent query

with standard operations. The “data” column and the “projection table” in the temporal

query (highlighted with blue color) indicate the list of columns to be projected and the

table name respectively. Similarly, the “data” column and the “projection table” in the

right hand side query (highlighted with the blue background) stand for the column names

and the table name to be replaced with. Thus our listener program looks for the projected

column list and the table name from the temporal query and then construct a query alike

the right side query with the retrieved metadata. Similar to the other constructive queries,

the sequenced projection is easier to transform.

@temporal

SELECT t1.data

FROM projection_table AS t1;

(a) Temporal Query

SELECT t1. data

, t1.time

FROM projection_table AS t1

EXCEPT

SELECT t1. data

, t2.time

FROM projection_table AS t1

JOIN projection_table AS t2

ON t1. data = t2. data

WHERE t1.time != t2.time

AND t2.time LIKE t1.time || ’%’;

(b) Equivalent Query

Fig. 5.2: Transformation of Sequenced Projection

@temporal

SELECT t1.data

FROM selection_table AS t1

WHERE t1.data = ’data value’;

(a) Temporal Query

SELECT t1. data

, t1.time

FROM selection_table AS t1

WHERE t1.data = ’data value’ ;

(b) Equivalent Query

Fig. 5.3: Transformation of Sequenced Selection



26

5.1.2 SEQUENCED SELECTION

The conversion of sequenced selection query is pretty plain dealing. It retrieves the

column list, table name and the condition of selection from the temporal query and then

returns the selected columns along with the timestamp of the tuples. There is nothing to

deal with time metadata apart from retrieving it. Figure 5.3 demonstrates the scenario.

@temporal

SELECT t1.data

, t2.data

FROM join_table_1 AS t1

JOIN join_table_2 AS t2

ON t1.data = t2.data;

(a) Temporal Query

SELECT t1. data

, t2. data

, CASE

WHEN length(t1.time) >= length(t2.time)

THEN t1.time

ELSE t2.time

END AS time

FROM join_table_1 AS t1

JOIN join_table_2 AS t2

ON t1. data = t2. data

WHERE t1.time LIKE t2.time || ’%’

OR t2.time LIKE t1.time || ’%’;

(b) Equivalent Query

Fig. 5.4: Transformation of Sequenced Cartesian Product

5.1.3 SEQUENCED CARTESIAN PRODUCT

Unlike period timestamp, the log segmented timestamp makes the Cartesian product

query conversation easier. In sequenced Cartesian product the result tuple only exists if

the underlying two tuples from two tables co-exist together. Using log segmented labels, we

do it by prefix checking which is simple done in SQL by a “LIKE” operation. Again, the

timestamp of the result tuple will be the timestamp of the short living tuple which is simply

the longer (in length) timestamp in SQL while using log segmented labels as timestamp.

This is what we have did while transforming the sequenced Cartesian product as illustrated

in the figure 5.4. It extracts the selected columns, join columns, join tables and replaces

the template of the intended query. Additionally, it matches the prefix (of each other) and



27

select the longer (in length) timestamp as the time of the result tuple.

5.1.4 SEQUENCED UNION

In congruence to the sequenced projection operation, the sequenced union handler

captures the selected columns and union tables before replacing them into the stub query

for union conversion. This is shown in the figure 5.5.

@temporal

SELECT t1.data

FROM union_table_1 AS t1

UNION

SELECT t2.data

FROM union_table_2 AS t2;

(a) Temporal Query

WITH union_result_set AS (

SELECT data

, time

FROM union_table_1

UNION

SELECT data

, time

FROM union_table_2

)

SELECT data

, time

FROM union_result_set

EXCEPT

SELECT t1. data

, t2.time

FROM union_result_set AS t1

JOIN union_result_set AS t2

ON t1. data = t2. data

(b) Equivalent Query

Fig. 5.5: Transformation of Sequenced Union

5.1.5 SEQUENCED INTERSECTION

Sequenced intersection and sequenced Cartesian product operations are somehow ho-

mogeneous in terms of calculating timestamp of a tuple. Two value equivalent tuples from

two tables only get selected in the result tuple if and only if they live in some same time

period. Using log segmented labels, we determine it by prefix testing among timestamps

and we select the longer (in length) timestamp as the timestamp of the tuple in order to de-



28

termine the co-existence. Figure 5.6 demonstrates how we convert the query in our handler

subroutine.

@temporal

SELECT t1.data

FROM intersection_table_1 AS t1

INTERSECT

SELECT t2.data

FROM intersection_table_2 AS t2;

(a) Temporal Query

SELECT t1. data

, CASE

WHEN length(t1.time) >= length(t2.time)

THEN t1.time

ELSE t2.time

END AS time

FROM intersection_table_1 AS t1

JOIN intersection_table_2 AS t2

ON t1. data = t2. data

WHERE t1.time LIKE t2.time || ’%’

OR t2.time LIKE t1.time || ’%’;

(b) Equivalent Query

Fig. 5.6: Transformation of Sequenced Intersection

5.1.6 SEQUENCED DIFFERENCE

Sequence difference is little harder than the earlier operations. Transforming sequenced

differences directly from the concept of relational algebra makes it more complex. Instead

we will define some primitives, check a representative example of difference, grow some

intuition behind the logic and then develop a more feasible algorithm so that calculating

difference between two labels will be easier to implement in SQL. We start with the follow-

ing definition.

Sibling Labels: Two log segmented labels are sibling of each other if they are of equal

length and differ only in the last bit. For instance, 10110 and 10111 are siblings since they

have same length and only the last bit is dissimilar with each other. But 1101 and 11010

(unequal length) or 10110 and 10101 (earlier bits are different) are not sibling. Thus if we

toggle the last bit of a log segmented label then we get its sibling.



29

Parent Labels: If we remove the last bit of a log segmented label (apart from the root

label), we get the parent of the label. Namely, 1001 is the parent label of 10010 and 10011

since removing last bit from the both of 10010 and 10011 result in 1001. By similar argu-

ment, child label forms when another bit is added at the last of a label. A parent label

can have exactly two children labels which are sibling of each other. Both the sibling label

and the parent label have a good link in determining set difference with log segmented

timestamp which we will see by an example.

Fig. 5.7: Temporal Difference between two labels.

If we come back to the example of set difference given in the subsection 4.6, 10 – 10001

= {10000, 1001, 101}. Figure 5.7 depicts this difference where the difference between two

red labels are the green labels. Careful observation of the figure reveals that,

• Result set consists of 10000 which is the sibling of short living label.

• Since two of the children labels (10000 and 10001) have been considered, the parent

label (1000) need no consideration in subtraction.

• Now the sibling (1001) of the parent belongs to the result.

• The above three steps continues until one level down the long living label.



30

SELECT t1.data

, unnest(

string_to_array(

(

SELECT string_agg(

(left(substring(t2.time, 1, len), len-1)::bit varying || ~right(substring(t2.time, 1, len), 1)::bit)::text

, ’,’

)

FROM generate_series(length(t1.time)+1, length(t2.time)) as len

)

,’,’

)

) AS TIME

FROM difference_table_1 AS t1

JOIN difference_table_2 AS t2

ON t1.data = t2.data

WHERE t1.time <> t2.time

AND t2.time LIKE t1.time || ’%’;

(a) Equivalent Query

Fig. 5.8: Transformation of Sequenced Set Difference

The above discussion sheds the light on the logic how set difference between two log

segmented labels works. Last but not the least, if the long living label is not the prefix of the

short living label then the operation returns “NULL”. Hence we formulate the algorithm

5.2 that calculates set difference between two log segmented labels.

The algorithm 5.2 generates a set of log segmented labels while calculating set difference

between two labels. This is pretty easier to implement using SQL functions. In PostgreSQL,

we construct a single row with each set element. The final query conversion looks like the

figure 5.8.

5.1.7 SEQUENCED AGGREGATION AND GROUPING

From the discussion of relational algebra for sequenced grouping and aggregation (sec-

tion 4.7), we found that it has a complex implementation to some extent. For ease of

understanding, we first discuss our implementation approach keeping similarity with the

relational algebra and then present our code conversion. In a relation, there exist two types



31

Algorithm 5.2 Set Difference

Input:
Log segmented label (l1)
Log segmented label (l2)

Output:
Set of log segmented label(s) (result)

Begin
if l1 LIKE l2 + ’%’ then

current label ← l2
do

current label ← toggle last bit(current label)
result.append(current label)
current label ← remove last bit(current label)

while length(current label) > length(l1)
return result

otherwise
return NULL

end if
End

of value equivalent tuples.

• First type of (value equivalent) tuples don’t coexist with other tuple. That means,

they don’t live within time limit of other tuples and also don’t outspan others. In this

case, the grouping operation works similar to the non-temporal query.

• Second type of (value equivalent) tuples coexist with other tuples which means either

their lifespan belong to that of other tuples or vice versa. In that case we have to

adopt two steps.

– We keep the timestamp of the short-lived tuple unchanged.

– Then we split the timestamp of the long-lived tuples into multiple smaller times-

tamps using set difference operation.

For instance, if we get following two value equivalent tuples with overlapping times-

tamps: (value1, value2, 10) and (value1, value2, 10001) then we keep the short living

tuple (value1, value2, 10001) and split the long lasting tuple resulting in (value1,



32

value2, 10000), (value1, value2, 1001), (value1, value2, 101), (value1, value2, 11)

[since, 1 – 10001 = {10000, 1001, 101}]. Thus we accumulate total of 5 tuples: (value1,

value2, 10001), (value1, value2, 10000), (value1, value2, 1001), (value1, value2, 101),

(value1, value2, 11).

Sometimes, a long living tuple outspans multiple tuples and we split the long last-

ing tuple with the tuples that has smallest longevity, since it produces maximum

outcomes.

SELECT COUNT(∗ )

, dept

, time

FROM (

WITH CTE AS (

SELECT name lg

, name sm

, dept

, t i m e l g

, time sm

FROM (

SELECT name lg

, name sm

, dept

, t i m e l g

, time sm

, ROWNUMBER( ) OVER(PARTITION BY name lg ORDER BY d i f f DESC) AS row numbr

FROM (

SELECT t1 . name AS name lg

, t2 . name AS name sm

, t1 . dept AS dept



33

, t1 . time AS t i m e l g

, t2 . time AS time sm

, l ength ( t2 . time ) − l ength ( t1 . time ) AS d i f f

FROM a g g r e g a t i o n c o u n t t a b l e AS t1

JOIN a g g r e g a t i o n c o u n t t a b l e AS t2

ON t1 . dept = t2 . dept

WHERE t1 . time != t2 . time AND t2 . time LIKE t1 . time | | ’%’

) AS i n n e r t a b l e

) AS o u t e r t a b l e

WHERE row numbr = 1

)

SELECT name lg AS name

, dept

, time sm AS time

FROM CTE

UNION ALL

SELECT name lg

, dept

, unnest (

s t r i n g t o a r r a y (

(

SELECT s t r i n g a g g (

( l e f t ( substring ( time sm , 1 , l en ) , l en1 ) : : bit varying

| | ˜right ( substring ( time sm , 1 , l en ) , 1 ) : : bit ) : : t ex t

, ’ , ’

)



34

FROM g e n e r a t e s e r i e s ( l ength ( t i m e l g )+1 , l ength ( time sm ) ) as l en ) , ’ , ’ )

) AS TIME

FROM CTE

UNION ALL

SELECT ∗

FROM a g g r e g a t i o n c o u n t t a b l e

EXCEPT ALL

SELECT t3 .∗

FROM a g g r e g a t i o n c o u n t t a b l e AS t3

JOIN a g g r e g a t i o n c o u n t t a b l e AS t4

ON t3 . dept = t4 . dept −− non−temporal group by column ( l i s t )

WHERE t3 . time != t4 . time

AND t4 . time LIKE t3 . time | | ’%’

) AS t

GROUP BY dept , time ;

5.2 TESTING

In order to test the query conversion, we have created some table and populate it with

some randomly generated data. Then we have written some sequenced query and have

converted them to desired query to be executed on a standard DBMS. Then we executed

the transformed queries and stored the data that they returned. Simultaneously we have

executed the manually transformed queries and compared the returned data with the pre-

viously stored data. At ours surprise, we got absolutely same data both times. A typical

scripts of metadata and the data is given at the appendix A.



CHAPTER 6

CONCLUSION AND FUTURE WORK

The primary contribution of this paper is to show how sequenced semantics can be

implemented for a relational query language using the non-temporal form of the language.

This demonstration means that it is possible to implement sequenced semantics when eval-

uating queries in a relational DBMS such as MariaDB without having to make any changes

to the DBMS.

In this paper we presented sequenced relational algebra by defining its operations en-

tirely in terms of standard relational algebra, lacking any temporal semantics or constructs.

The key to the translation is to interpret timestamps in a different way. Rather than taking

the standard approach of using period timestamps we chose to timestamp using log seg-

ments. The log segments are an a priori dividing of the time-line into segments such that

the segments cover the time-line and form a hierarchy in which smaller segments group into

larger segments. The labels on the segments can be used to efficiently and easily determine

temporal relationships such as overlaps or contains. We showed how the segments are used

in various operations such as sequenced aggregation and grouping.

Future work is focused on implementation. We are currently implementing a sequenced

SQL to SQL translator using Postgres. An open question is the impact of the translation

on query optimization. That is, can the query optimizer take advantage of indexes for the

log segments in the translated queries? We are also investigating the benefits and costs

of normalized representation (factoring the metadata into separate tables). We have not

yet begin to look at other issues such as implementation of sequenced constraints using

log segments, recursive queries, or application to other query languages such as sequenced

GraphQL.



36

REFERENCES

[1] M. Böhlen and C. S. Jensen, “Sequenced semantics,” in Encyclopedia of Database
Systems. Springer, 2009, pp. 2619–2621.

[2] C. E. Dyreson, V. A. Rani, and A. Shatnawi, “Unifying sequenced and non-sequenced
semantics,” in 2015 22nd International Symposium on Temporal Representation and
Reasoning (TIME). IEEE, 2015, pp. 38–46.

[3] M. H. Böhlen, C. Jensen, R. Snodgrass, L. Liu, and M. T. Oezsu, “Nonsequenced
semantics,” 2009.

[4] A. Dignös, M. H. Böhlen, and J. Gamper, “Temporal alignment,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, 2012, pp.
433–444.

[5] C. X. Chen and C. Zaniolo, “Sql st: A spatio-temporal data model and query language,”
in International Conference on Conceptual Modeling. Springer, 2000, pp. 96–111.

[6] C. E. Dyreson, “Observing transaction-time semantics with/sub tt/xpath,” in Proceed-
ings of the Second International Conference on Web Information Systems Engineering,
vol. 1. IEEE, 2001, pp. 193–202.

[7] F. Grandi, “T-sparql: A tsql2-like temporal query language for rdf.” in ADBIS (local
proceedings), 2010, pp. 21–30.

[8] R. Snodgrass, “The temporal query language tquel,” ACM Transactions on Database
Systems (TODS), vol. 12, no. 2, pp. 247–298, 1987.

[9] R. T. Snodgrass, The TSQL2 temporal query language. Springer Science & Business
Media, 2012, vol. 330.

[10] R. T. Snodgrass, Ed., The TSQL2 Temporal Query Language. Kluwer, 1995.

[11] J. Chomicki and D. Toman, “Abstract versus concrete temporal query languages.”
2009.

[12] K. Torp, C. S. Jensen, and M. Böhlen, “Layered temporal dbms’s—concepts and tech-
niques,” in Database Systems For Advanced Applications’ 97. World Scientific, 1997,
pp. 371–380.

[13] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Stratum approaches to temporal dbms
implementation,” in Proceedings. IDEAS’98. International Database Engineering and
Applications Symposium (Cat. No. 98EX156). IEEE, 1998, pp. 4–13.

[14] C. Dyreson and V. A. Rani, “Translating temporal sql to nested sql,” in 2016 23rd
International Symposium on Temporal Representation and Reasoning (TIME). IEEE,
2016, pp. 157–166.



37

[15] C. S. Jensen, C. E. Dyreson, M. Böhlen, J. Clifford, R. Elmasri, S. K. Gadia, F. Grandi,
P. Hayes, S. Jajodia, W. Käfer et al., “The consensus glossary of temporal database
concepts—february 1998 version,” in Temporal Databases: Research and Practice.
Springer, 1998, pp. 367–405.

[16] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass, “On the
semantics of “now” in databases,” ACM Transactions on Database Systems (TODS),
vol. 22, no. 2, pp. 171–214, 1997.

[17] C. A. Hurtado, A. O. Mendelzon, and A. A. Vaisman, “Maintaining data cubes under
dimension updates,” in Proceedings 15th International Conference on Data Engineering
(Cat. No. 99CB36337). IEEE, 1999, pp. 346–355.

[18] A. A. Vaisman and A. O. Mendelzon, “A temporal query language for olap: Imple-
mentation and a case study,” in International Workshop on Database Programming
Languages. Springer, 2001, pp. 78–96.

[19] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass, “Temporal statement modifiers,”
ACM Transactions on Database Systems (TODS), vol. 25, no. 4, pp. 407–456, 2000.

[20] M. Böhlen, J. Gamper, and C. S. Jensen, “Temporal aggregation,” in Encyclopedia of
Database Systems. Springer, 2009, pp. 2924–2929.

[21] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, S. Jajodia, C. Dyreson,
F. Grandi, W. Käfer, N. Kline et al., “A consensus glossary of temporal database
concepts,” ACM Sigmod Record, vol. 23, no. 1, pp. 52–64, 1994.

[22] A. Tansel, “Modelling temporal data,” Information and Software Technology, vol. 32,
no. 8, pp. 514–520, 1990.

[23] C. E. Dyreson, “Using couchdb to compute temporal aggregates,” in 2016 IEEE
18th International Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016, pp.
1131–1138.

[24] C. E. Dyreson and R. T. Snodgrass, “Timestamp semantics and representation,” In-
formation Systems, vol. 18, no. 3, pp. 143–166, 1993.



38

APPENDICES



39

APPENDIX A

SQL Listing for Testing

−− Sequenced P r o j e c t i o n

DROP TABLE IF EXISTS p r o j e c t i o n t a b l e ;

CREATE TABLE p r o j e c t i o n t a b l e (

data varchar ( 50 ) ,

time varchar (64)

) ;

INSERT INTO p r o j e c t i o n t a b l e ( data , time )

VALUES ( ’A ’ , ’ 10 ’ ) ,

( ’A ’ , ’ 101 ’ ) ,

( ’A ’ , ’ 110 ’ ) ,

( ’B ’ , ’ 11001 ’ ) ,

( ’B ’ , ’ 110 ’ ) ,

( ’C ’ , ’ 100 ’ ) ,

( ’C ’ , ’ 1001 ’ ) ,

( ’D ’ , ’ 1101 ’ ) ,

( ’D ’ , ’ 101 ’ ) ,

( ’E ’ , ’ 111 ’ ) ,

( ’F ’ , ’ 11 ’ ) ;

−− Sequenced S e l e c t i o n

DROP TABLE IF EXISTS s e l e c t i o n t a b l e ;

CREATE TABLE s e l e c t i o n t a b l e (

data varchar ( 50 ) ,

time varchar (64)



40

) ;

INSERT INTO s e l e c t i o n t a b l e ( data , time )

VALUES ( ’A ’ , ’ 10 ’ ) ,

( ’A ’ , ’ 110 ’ ) ,

( ’B ’ , ’ 11001 ’ ) ,

( ’C ’ , ’ 100 ’ ) ,

( ’D ’ , ’ 1101 ’ ) ,

( ’E ’ , ’ 111 ’ ) ,

( ’F ’ , ’ 11 ’ ) ;

−− Sequenced Cartes ian Product

DROP TABLE IF EXISTS j o i n t a b l e 1 ;

CREATE TABLE j o i n t a b l e 1 (

data varchar ( 50 ) ,

time varchar (64)

) ;

INSERT INTO j o i n t a b l e 1 ( data , time )

VALUES( ’A ’ , ’ 10 ’ ) ,

( ’B ’ , ’ 11001 ’ ) ,

( ’C ’ , ’ 100 ’ ) ,

( ’D ’ , ’ 1101 ’ ) ,

( ’E ’ , ’ 111 ’ ) ,

( ’F ’ , ’ 11 ’ ) ;

DROP TABLE IF EXISTS j o i n t a b l e 2 ;

CREATE TABLE j o i n t a b l e 2 (

data varchar ( 50 ) ,

time varchar (64)



41

) ;

INSERT INTO j o i n t a b l e 2 ( data , time )

VALUES( ’A ’ , ’ 10101 ’ ) ,

( ’B ’ , ’ 10101 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 110 ’ ) ,

( ’E ’ , ’ 11101 ’ ) ,

( ’F ’ , ’ 11 ’ ) ;

−− Sequenced Union

DROP TABLE IF EXISTS u n i o n t a b l e 1 ;

CREATE TABLE u n i o n t a b l e 1

(

data character varying ( 50 ) ,

time character varying (64)

) ;

INSERT INTO u n i o n t a b l e 1

VALUES ( ’A ’ , ’ 11 ’ ) ,

( ’B ’ , ’ 1010 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 110 ’ ) ,

( ’E ’ , ’ 110 ’ ) ,

( ’F ’ , ’ 1101 ’ ) ;

DROP TABLE IF EXISTS u n i o n t a b l e 2 ;

CREATE TABLE u n i o n t a b l e 2

(

data character varying ( 50 ) ,

time character varying (64)



42

) ;

INSERT INTO u n i o n t a b l e 2

VALUES ( ’A ’ , ’ 1101 ’ ) ,

( ’B ’ , ’ 10 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 1100 ’ ) ,

( ’E ’ , ’ 101 ’ ) ,

( ’F ’ , ’ 100 ’ ) ;

−− Sequenced I n t e r s e c t i o n

DROP TABLE IF EXISTS i n t e r s e c t i o n t a b l e 1 ;

CREATE TABLE i n t e r s e c t i o n t a b l e 1

(

data character varying ( 50 ) ,

time character varying (64)

) ;

INSERT INTO i n t e r s e c t i o n t a b l e 1

VALUES ( ’A ’ , ’ 11 ’ ) ,

( ’B ’ , ’ 1010 ’ ) ,

( ’C ’ , ’ 110 ’ ) ,

( ’D ’ , ’ 110 ’ ) ,

( ’E ’ , ’ 101 ’ ) ,

( ’F ’ , ’ 110 ’ ) ;

DROP TABLE IF EXISTS i n t e r s e c t i o n t a b l e 2 ;

CREATE TABLE i n t e r s e c t i o n t a b l e 2

(

data character varying ( 50 ) ,

time character varying (64)



43

) ;

INSERT INTO i n t e r s e c t i o n t a b l e 2

VALUES ( ’A ’ , ’ 1101 ’ ) ,

( ’B ’ , ’ 10 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 100 ’ ) ,

( ’E ’ , ’ 101 ’ ) ,

( ’F ’ , ’ 1100 ’ ) ;

−− Sequenced D i f f e r e n c e

DROP TABLE IF EXISTS d i f f e r e n c e t a b l e 1 ;

CREATE TABLE d i f f e r e n c e t a b l e 1

(

data character varying ( 50 ) ,

time character varying (64)

) ;

INSERT INTO d i f f e r e n c e t a b l e 1

VALUES ( ’A ’ , ’ 1 ’ ) ,

( ’B ’ , ’ 1010 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 110 ’ ) ,

( ’E ’ , ’ 110 ’ ) ,

( ’F ’ , ’ 1001 ’ ) ;

DROP TABLE IF EXISTS d i f f e r e n c e t a b l e 2 ;

CREATE TABLE d i f f e r e n c e t a b l e 2

(

data character varying ( 50 ) ,

time character varying (64)



44

) ;

INSERT INTO d i f f e r e n c e t a b l e 2

VALUES ( ’A ’ , ’ 1010 ’ ) ,

( ’B ’ , ’ 10 ’ ) ,

( ’C ’ , ’ 101 ’ ) ,

( ’D ’ , ’ 1100 ’ ) ,

( ’E ’ , ’ 101 ’ ) ,

( ’F ’ , ’ 100 ’ ) ;

−− Sequenced Aggregat ion and Grouping

DROP TABLE IF EXISTS a g g r e g a t i o n c o u n t t a b l e ;

CREATE TABLE a g g r e g a t i o n c o u n t t a b l e

(

name character varying ( 50 ) ,

dept character varying ( 50 ) ,

time character varying (64)

) ;

INSERT INTO a g g r e g a t i o n c o u n t t a b l e

VALUES ( ’ Susan ’ , ’ Clothing ’ , ’ 1010 ’ ) ,

( ’ Pedro ’ , ’ Clothing ’ , ’ 1010 ’ ) ,

( ’ Malik ’ , ’ Clothing ’ , ’ 101 ’ ) ,

( ’ Freya ’ , ’ Clothing ’ , ’ 1 ’ ) ;

−− ( ’ Fred ’ , ’ Cloth ing ’ , ’10 ’ ) ,

−− ( ’ Joe ’ , ’ Cloth ing ’ , ’ 10101 ’ ) ;

−− INSERT INTO a g g r e g a t i o n c o u n t t a b l e

−− VALUES ( ’ Fred ’ , ’ Cloth ing ’ , ’10 ’ ) ,

−− ( ’ Joe ’ , ’ Cloth ing ’ , ’ 10101 ’ ) ;



45

CURRICULUM VITAE

M A Manazir Ahsan

Conference Papers - In Press

• Dyreson, C., Ahsan, M. (2021). Achieving a Sequenced, Relational Query Language

with Log-Segmented Timestamps. In 28th International Symposium on Temporal

Representation and Reasoning (TIME 2021). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.


	Achieving a Sequenced, Relational Query Language with Log-Segmented Timestamps
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK
	LOG-SEGMENTED TIMESTAMPS
	RELATIONAL ALGEBRA
	SEQUENCED PROJECTION
	SEQUENCED SELECTION
	SEQUENCED CARTESIAN PRODUCT
	SEQUENCED UNION
	SEQUENCED INTERSECTION
	SEQUENCED DIFFERENCE
	SEQUENCED GROUPING AND AGGREGATION
	COST ANALYSIS

	IMPLEMENTATION
	QUERY TRANSFORMATION
	SEQUENCED PROJECTION
	SEQUENCED SELECTION
	SEQUENCED CARTESIAN PRODUCT
	SEQUENCED UNION
	SEQUENCED INTERSECTION
	SEQUENCED DIFFERENCE
	SEQUENCED AGGREGATION AND GROUPING

	TESTING

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	A  SQL Listing for Testing

	CURRICULUM VITAE

