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ABSTRACT

GPS-DENIED NAVIGATION USING SYNTHETIC APERTURE RADAR IMAGES

AND NEURAL NETWORKS

by

Teresa White, Master of Science

Utah State University, 2021

Major Professor: Kevin R. Moon, Ph.D.
Department: Mathematics and Statistics

Unmanned aerial vehicles (UAV) often rely on GPS for navigation. GPS signals, how-

ever, are very low in power and easily jammed or otherwise disrupted. This paper presents

a method for determining the navigation errors present at the beginning of a GPS-denied

period utilizing data from a synthetic aperture radar (SAR) system. This is accomplished

by comparing an online-generated SAR image with a reference image obtained a priori. The

distortions relative to the reference image are learned and exploited with a convolutional

neural network to recover the initial navigational errors, which can be used to recover the

true flight trajectory throughout the synthetic aperture. The proposed neural network ap-

proach is able to learn to predict the initial errors on both simulated and real SAR image

data.

(79 pages)
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CHAPTER 1

INTRODUCTION

Unmanned aerial vehicles (UAV) have many applications such as search and rescue

operations, military applications, agricultural applications, surveillance, and more. In many

of these applications, knowledge of the current flight trajectory of the UAV is necessary to

carry out the UAV’s mission. In normal circumstances, GPS is typically used to obtain

this knowledge. However, in abnormal and important circumstances, such as navigating in

a hostile airspace, the GPS signal may be denied or otherwise degraded. Here, we propose

a deep neural network model that accurately estimates the flight trajectory by comparing

a synthetic aperture radar (SAR) image obtained online to a previously-obtained reference

image.

1.1 Motivation

GPS signal vulnerability to many forms of interference has motivated research in al-

ternative approaches to localization [1, 2]. Radar is one of many active approaches, which,

in contrast to image-based methods, is independent of lighting conditions, operates in any

weather condition, and provides an accurate measurement of range. Many approaches have

been developed which exploit artifacts in SAR imagery to determine navigation errors, ei-

ther relative to the beginning of the synthetic aperture [3–7] or in a global/absolute reference

frame [8–14].

1.2 Related Work

Back-projection-based SAR imaging is a technique for producing radar images during

arbitrary flight trajectories [15–17]. SAR images are created by sending a series of radar

pulses during a portion of the vehicle’s trajectory as shown in Figure 1.1. The back-

projection algorithm (BPA) is then used to synthesize the reflected signals into a two or
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three-dimensional SAR image. To obtain an accurate image, back-projection requires an

accurate estimate of the position of the radar antenna throughout the synthetic aperture.

If the assumed flight trajectory is inaccurate, the resulting SAR image will be distorted by

shifts and blurs in the along track (AT) and cross track directions (CT) [18].

Fig. 1.1: Illustration of the simulated flight path in an eastern direction, with the SAR
antenna and its associated beam-width pointing out the left side of the aircraft. The green
and red lines denote the beginning and end of the GPS-denied region [18].

In a typical SAR application, an inertial navigation system uses GPS measurements to

generate the best estimate of the aircraft trajectory and minimize SAR image distortions.

In contrast, we focus on the reverse problem, where the distortions in the SAR image are

exploited to estimate the vehicle trajectory throughout the synthetic aperture. To reduce

the dimensionality of the estimation problem, we use the well-known error dynamics for

inertial navigation systems, effectively reducing the number of parameters to solve for to

nine initial errors.

For the simple case of constant horizontal position errors, identification of SAR image

shifts with respect to an a priori SAR map provides easily exploitable information regarding

position errors. When velocity and attitude errors are included, however, the mapping from
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initial errors to image distortions is more complex [18,19].

There is a strong precedent for applying machine learning techniques to SAR imagery.

The most common application is automatic target recognition [20–25]. Other applications

include the use of deep learning to detect changes in radar images of the same landscape

over time [26] or auto-focusing blurry radar images [27], both of which focus primarily on

image reconstruction. Despite a wide range of target recognition problems, there is no

precedent in the literature to use machine learning to predict initial navigational errors in

a regression-based framework, further motivating the need for our analysis.

Our problem shares some similarities with the task of image registration [28–31], in that

a reference image and an input image are both considered. However, in image registration,

the goal is to align the input image with the reference image. In our setting, we extract

information (the true trajectory of the aircraft) from the degree to which the input image

and reference image do not match, as well as the manner in which they differ.

1.3 Thesis Contributions

This research shows that neural networks can be used to develop a black-box model of

the distortion dynamics: The distorted image and a reference image are input and the true

flight trajectory is the output as shown in Figure 1.2.

Fig. 1.2: Neural network approach. It takes as input the distorted image and a reference
image and outputs the true flight trajectory.

This model uses a specific approach for characterizing the distortions in the input

image: stacking the reference image, the distorted image, and the difference between the

distorted and reference image as shown in Figure 1.3 so that each is treated as a different
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channel in the first convolutional layer. Six different scenarios were studied with different

combinations of active navigation errors for each dataset explored.

Fig. 1.3: 3-channel Image Input. The input of our model consists of a 3-channel image: the
distorted image (Zα), the reference image (Z0), and the difference image (Zα − Z0).

We applied simple convolutional neural network architectures as well as more advanced

ResNet and Wide ResNet models to the problem. Our experiments showed that a modified

Wide ResNet 50 2 model produced the best results in estimating the flight trajectory using

both simulated and real data as summarized in Table 1.1.

Scenario # Average MSE (Sim Data) Average MSE (Real Data)

1 0.0442 0.0494

2 0.1809 0.6206

3 0.2792 0.6287

4 0.4315 0.4285

5 0.5425 0.7651

6 0.6396 0.7766

Table 1.1: This table shows the average MSE across all the scenarios for the simulated and
real-2-sec data using the Wide ResNet 50 2 model. Due to normalization, an MSE less than
1 indicates that the model is learning useful information. As shown, the Wide ResNet 50 2
model performed well in both simulated and real-2-sec data.



5

Part of this work has been accepted for publication to the 2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) [32]. It was also posted

on arXiv [33].

1.4 Roadmap

Chapter 2 begins by providing the necessary background regarding navigation errors

on BPA-SAR images and convolutional neural networks. Chapter 3 describes the different

sets of SAR image data generated for this study and the data preparation for our analysis.

Chapter 4 explores different methods for estimating the initial navigation errors on both

simulated and real data. Chapter 5 shows the performance of the ResNet models and

provides an analysis of the results. Chapter 6 discusses the future work and provides a

conclusion of our study.



CHAPTER 2

BACKGROUND

2.1 Navigation Errors on BPA-SAR Images

In strapdown inertial navigation systems, measurements of specific force νb and angular

rate ωb are used to propagate the position pn, velocity vn, and attitude quaternion qnb of

the aircraft, via the following differential equations


ṗn

v̇n

q̇nb

 =



vn

Tnb ν
b + gn

1
2q
n
b ⊗

 0

ωb




, (2.1)

where b represents a coordinate system attached to the body and n represents a locally-level

frame with the x-axis aligned with the nominal vehicle velocity, the z-axis in the direction

of gravity, and the y-axis determined by the right-hand-rule. Thus the n frame represents

an along-track, cross-track, down coordinate system.

At regular intervals, an external aiding device, such as GPS, provides information to

correct the navigation states, typically in the framework of an extended Kalman filter.

Between aiding device measurements, or in the absence thereof, the navigation errors ac-

cumulate over time. For straight and level flight, typical of SAR data collection, the error

growth is modeled to first order:


δpn (t)

δvn (t)

δθn (t)

 = Φ (t, t0)


δpn (t0)

δvn (t0))

δθn (t0)

 , (2.2)



7

where Φ (t, t0) is the state transition matrix defined as

Φ (t, t0) =


I3×3 I3×3∆t (νn×) ∆t2

2!

03×3 I3×3 (νn) × ∆t

03×3 03×3 I3×3

 . (2.3)

The relationship between the estimated, true, and error parameters is thus defined by

the additive or multiplicative relationships

pn (t) = p̂n (t) + δpn (t) (2.4)

vn (t) = v̂n (t) + δvn (t) (2.5)

qnb (t) =

 1

−1
2δθ

n (t)

⊗ q̂nb (t) . (2.6)

Thus given an initial condition for the navigation errors, the true navigation states can

be recovered by propagating the errors using Equation 2.2 and substituting the result into

Equations 2.4-2.6. The task of correcting errors in the estimated trajectory is, therefore,

reduced to determining the nine errors at the beginning of the time interval of interest. A

more detailed discussion of the inertial navigation framework and error modeling is provided

in [18,19].

Error Shift Direction Blur Direction

AT Position AT None

CT Position CT None

D Position CT None

AT Velocity None AT

CT Velocity AT None

D Velocity AT None

AT Attitude None Small AT

CT Attitude None Small AT

D Attitude None Small AT

Table 2.1: Effect of navigation errors on BPA-SAR images.
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Previous sensitivity studies discovered the complex and seemingly ambiguous relation-

ship between the nine initial navigation errors and the induced SAR image distortions,

summarized in Table 2.1 [18]. In practical navigation systems, however, the down (D)

component of position and velocity errors are easily controlled with a barometric altimeter.

The absence of vertical errors, combined with relatively small sensitivity to typical attitude

errors, results in SAR image distortions dominated by position and velocity errors in the

AT and CT directions.
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Fig. 2.1: Demonstration of shifting and blurring distortions due to navigation errors. (Top)
Shift distortions caused by errors in cross track position. From left to right, cross track
errors are -3, -1.5, 0, 1.5, and 3 meters. (Bottom) Blur distortions caused by errors in along
track velocity. From left to right, along track errors are -0.4, -0.2, 0, 0.2, and 0.4 meters
per second.

While image distortions are characterized by shifts and blurs in different directions

(see Figure 2.1), certain combinations of navigation errors can create image distortions that

appear similar to the human eye, making it difficult to determine the true source of distortion

and thus the true trajectory error. We hypothesize that different error combinations create

subtly different image distortions that can be used by neural networks to learn to predict

the initial navigation errors.



9

2.2 Convolutional Neural Networks

In supervised machine learning, the computer learns from observational data to ac-

complish the task at hand. Beginning in 2006, the discovery of improved techniques for

training neural networks combined with increased computational power led to deep learn-

ing, wherein deep neural networks have been able to outperform many traditional machine

learning approaches in tasks such as image recognition [34].

Inspired by the sophisticated functionality of human brains, a neural network contains

a collection of interconnected artificial neurons (nodes). The architecture of a feedforward

neural network consists of an input layer of neurons, one or more hidden layers of neurons,

and a final layer of output neurons (see Figure 2.2).

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

Input layer
1st Hidden layer Lth Hidden layer

Output layer

Fig. 2.2: Example of an Artificial Neural Network Architecture [35]. It consists of the input
layer with D input units, L hidden layers with m(l) hidden units each, and the output layer
with C output units.

Convolutional neural networks (CNN) are a special case of a neural network where

some notion of spatial structure is assumed, such as in images. In the case of images, the

layers of a CNN have neurons arranged in 3 dimensions (width, height, depth). The most

common layers of a CNN are the input layer, convolutional layers, subsampling (or pooling)

layers, and fully connected layers:
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• Input layer: holds the raw pixel values of the image.

• Convolutional layer: computes the output of neurons that are connected to local

regions in the input.

• Subsampling layer: downsamples the output of a convolution layer along the spatial

dimensions (width, height).

• Fully connected layer: typically the final layers of a CNN. Maps from the output of

the convolutional and subsampling layers to the final output, thus computing the class

scores or regression prediction. Here each neuron is connected to all the outputs in

the previous layer.

input image
layer l = 0

convolutional layer
layer l = 1

subsampling layer
layer l = 3

convolutional layer
layer l = 4

subsampling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Fig. 2.3: Illustration of a simple convolutional neural network indicating convolutional
layers, subsampling layers and fully-connected layers. Some details are omitted such as the
number of channels or the input image size, among others. [35].

CNNs achieve very good performance on image recognition tasks [36–38]. We therefore

use CNN architectures to learn the initial navigational errors on BPA-SAR Images. In

addition, we considered advanced network architectures to obtain the desired performance

such as multiple ResNet [36] and Wide ResNet [39] architectures. Each of these architectures

is built with a residual block.
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In Wide ResNet, a residual block with identity mapping can be represented by the

following formula:

xl+1 = xl + F (xl,Wl)

where xl+1 and xl are the respective input and output of the l−th unit in the network, F

is a residual function and Wl are the parameters of the block. A residual network consists

of sequentially stacked residual blocks [39].

Fig. 2.4: Example of a wide-dropout residual block [39].

This block allows networks to be much deeper (more layers and hence better at dealing

with images) while simultaneously mitigating the issue of the vanishing gradient [36]. Each

of the ResNet and Wide ResNet architectures have pre-trained models trained on large

image datasets.



CHAPTER 3

THE SAR DATA

3.1 Description of the Data

Three different sets of SAR image data were generated for training and testing: sim-

ulated data with a 5 second aperture length (sim-5-sec), and two real datasets with 2

(real-2-sec) and 10 second (real-10-sec) aperture lengths, respectively. In each case, the

aperture length represents the length of time that radar data is collected for the images.

Simulated data is generated from flight and radar software developed in MATLAB. The

software has the capability to generate a flight trajectory, populate the ground with radar

targets, and form both truth and distorted (from initial errors) SAR images via the BPA

from synthesized radar data [19,40]. For the real datasets, the radar data is obtained from

flight tests of the Space Dynamics Laboratory X-band radar system [41]. A sub-centimeter-

accurate, post-processed trajectory is used as truth, and corrupted to synthesize distorted

SAR images.

3.2 Data Preprocessing

The brightness of each pixel of a SAR image represents the reflectivity of all targets

within that pixel’s region. The intensities of the pixels are inherently right-skewed and

subject to changes in magnitude based on the geometric conditions. Thus, we preprocessed

the images and errors as follows.

Let X be an input image, X ′ the corresponding reference image, and yαβ the corre-

sponding navigational error vector. We first log-transform each pixel in each image (includ-

ing the reference images): L = log10(X) as is common practice in SAR images. We then

standardize each pixel in the image to ensure standardized inputs to the neural network

by subtracting the mean and dividing by the standard deviation: Z = L−µL
σL

, where µL
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and σL are estimated on an image-by-image basis. Each of the navigational errors yαβ are

measured on different scales. We therefore standardize the navigational errors as s =
y−µy
σy

to ensure equal consideration of all navigational errors during training. We estimate µy and

σy from the entire dataset. In practice, the standardization of the navigation parameters

would use a mean of 0 (assuming unbiased navigation errors on average) and a standard

deviation estimated from an extended Kalman filter (EKF) [42].

3.3 Data Splitting

For each of the simulated and real datasets, six different scenarios were studied, with

varying numbers and combinations of active navigation errors, as shown in Table 3.1.

Scenario # AT Pos CT Pos D Pos AT Vel CT Vel D Vel

1 x x

2 x x

3 x x x x

4 x x x

5 x x x

6 x x x x x x

Table 3.1: Summary of scenarios and corresponding initial errors. The network attempted
to model of the indicated error states. In Scenario 7 (not shown), however, North, East,
and Down Attitude errors were also present in the generated data, but the Neural Network
only tried to predict North Position and East Position.

Dataset
Training Validation Testing

# targets # images # targets # images # targets # images

Sim-5-sec 134 13500 19 1900 39 3800

Real-2-sec 130 13000 18 1800 37 3700

Real-10-sec 122 12300 17 1700 36 3500

Table 3.2: Data split details. The six datasets of the sim-5-sec, real-2-sec, and real-10-sec
data were approximately split into a 70% training, 10% validation, and 20% testing set. As
shown, for each of the six scenarios of the real-2-sec data, the training set had 130 unique
target locations and 13000 distorted images.

For each of the six scenarios, a total of 192, 185, and 175 unique target locations

were considered for the sim-5-sec, real-2-sec, and real-10-sec dataset, respectively. For each
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target, we generated 100 distorted images of size 80×80 pixels, paired with the corresponding

navigation errors. The datasets were then sorted by targets into training, validation, and

testing sets as shown in Table 3.2. We train on a set of targets and validate and test on an

entirely different set of targets. Thus, a network’s performance on the test data reflects its

ability to generalize to new locations.



CHAPTER 4

EXPLORATORY METHODS FOR ESTIMATING INITIAL ERRORS

We applied different methods to the problem such as linear regression, a simple CNN,

a fully connected neural network, and several ResNet models to the sim-5-sec and real-2-sec

datasets for scenarios 1-3. All of these models attempted to predict the initial navigation

errors present in each scenario (e.g. AT Position and CT Position are the only errors present

in scenario 1, and the models attempted to predict both error states). These models were

constructed, trained, and tested using Python and the Pytorch framework [43].

4.1 Loss Function

We used the average mean squared error (MSE) loss function across all considered

initial errors for training and for testing:

MSE =
1

mn

n∑
α=1

m∑
β=1

(
sαβ − ŝαβ

)2
,

where m is the number of error states considered, n is the number of training images in the

data, sαβ is the true standardized error of the βth error and the αth image, and ŝαβ is the

corresponding error estimate by the model.

Due to standardization, the MSE for any prediction can be compared against the value

of 1: if the network guesses that the initial error state is 0 or randomly guesses with a mean

0 and a similar standard deviation, then the network will have an estimated MSE of 1. If

the network is accurately estimating the relationship between the reference image, distorted

image, and initial navigational error states, then the MSE would be less than 1. This is a

key benchmark for learning, as it indicates that where an MSE is less than 1, the neural

network is learning relevant information for this task.
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To prevent overfitting, we used L2 regularization, also known as weight decay. This

regularization forces the weights to be reduced towards zero, limiting the risk of overfitting.

4.2 Linear Regression Model

Linear regression is a common predictive model to identify the relationship among

variables [44]. In general, given the training data (x1, y1), (x2, y2), . . . , (xn, yn), the linear

regression model is represented by the following:

ŷ = wTx (4.1)

where x is the feature variable (explanatory variable), ŷ is the target variable (response

variable), and w are the weights.

For our problem, the linear regression model considers each pixel of the stacked image

(stacking the normalized-differenced image, the reference image, and the distorted image)

as explanatory variables with the standardized navigation errors sα of the αth image as the

response.

4.2.1 Linear Regression Results

Table 4.1 shows a summary of the results for each scenario (1-3) applying the linear

regression model to the sim-5-sec and real-2-sec dataset and its error states (for additional

results for this model, see Appendix A subsection A.1).

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1
MSE (Sim-5-sec) 0.8855 0.6749 N/A N/A N/A N/A 0.7802
MSE (Real-2-sec) 1.0041 1.0425 N/A N/A N/A N/A 1.0233

2
MSE (Sim-5-sec) N/A N/A N/A 1.0636 0.6502 N/A 0.8569
MSE (Real-2-sec) N/A N/A N/A 1.0704 1.0560 N/A 1.0632

3
MSE (Sim-5-sec) 1.0534 0.5882 N/A 1.0564 0.4989 N/A 0.7993
MSE (Real-2-sec) 1.0518 1.0251 N/A 1.0340 0.9738 N/A 1.0212

Table 4.1: Summary of Model Performance for each error state for scenarios 1-3 on the sim-
5sec and real-2-sec dataset using the Linear Regression Model. As shown, all the MSE for
this model are greater than 1 or almost 1 on the real-2-sec dataset. This indicates the linear
model performs poorly and is unable to accurately predict the initial navigation errors.



17

The results show that the model perfoms well on the sim-5-sec dataset for scenario

1 since the MSE is less than 1 for all the considered errors in that scenario. However,

when velocity errors are introduced, the MSE is greater than 1. Along with that, the MSE

is greater than 1 or very close to it for all of the scenarios 1-3 on the real-2-sec dataset.

These results suggest that a linear model is not sufficiently complex to accurately predict

the initial navigation errors in any of these scenarios.

4.3 Simple CNN Model

Since CNNs have been used successfully on image classification and feature extraction

[45], we applied a simple CNN model to the sim-5-sec and real-2-sec dataset for scenarios

1-3.

Fig. 4.1: Simple CNN Architecture. This network is a CNN with two convolutional layers
followed by a fully connected hidden layer and a fully connected output layer.

We used a linear activation function in the output layer as we are predicting a regression

response. We focused on tuning the learning rate, batch size, and number of epochs. Tuning

the learning rate and batch size was performed using a grid search over candidate hyper-

parameters retaining the model with the lowest average MSE for the validation set, while

tuning the number of epochs was performed by tracking the validation accuracy over epochs

and retaining the epoch with the lowest validation MSE. Dropout for fully connected layers

was fixed at p = 0.5 for all fully connected layers during training to limit over-fitting.
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4.3.1 Simple CNN Results

The summary of the results by applying this simple CNN model is shown in Table 4.2

(for additional results for this model, see Appendix A subsection A.2). As shown, this

model performs well for all the scenarios on the sim-5-sec dataset. These results suggest

that the neural network is capable of characterizing both shifts and blurs, in the absence of

ambiguity. On the other hand, this model only performs well for scenario 1 on the real-2-sec

dataset as the MSE is less than 1 for the considered errors (AT Pos and CT Pos). However,

for scenarios 2 and 3, the MSE for some of the considered errors are greater than (or around)

1, suggesting that as the velocity errors are introduced, the performance degrades.

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1
MSE (Sim-5-sec) 0.0915 0.0539 N/A N/A N/A N/A 0.0727
MSE (Real-2-sec) 0.0569 0.0414 N/A N/A N/A N/A 0.0492

2
MSE (Sim-5-sec) N/A N/A N/A 0.4748 0.4019 N/A 0.4384
MSE (Real-2-sec) N/A N/A N/A 1.0949 0.1956 N/A 0.6453

3
MSE (Sim-5-sec) 0.7093 0.3353 N/A 0.5690 0.3385 N/A 0.4880
MSE (Real-2-sec) 0.9985 0.1972 N/A 0.9850 0.1989 N/A 0.5949

Table 4.2: Summary of Model Performance for each error state for scenarios 1-3 of the
sim-5-sec and real-2-sec dataset using a simple CNN Model. This model predicts the initial
navigation errors very well on the sim-5-sec dataset (all MSE are less than 1). On the real-
2-sec dataset, this model only performs well for scenario 1. For the other scenarios, 2 and
3, the MSE are greater than 1 for some of the error states, which shows the performance
decays as velocity errors are present.

4.4 Fully Connected Model

Here we implemented a model that consists of a standard feedforward network with two

fully connected hidden layers and a fully connected output layer as shown in Figure 4.2. As

in the previous model, we used a linear activation function in the output layer. We focused

on tuning the learning rate, batch size, and number of epochs as well. Tuning learning rate

and batch size was performed using a grid search over candidate hyper-parameters retaining

the model with the lowest average MSE for the validation set, while tuning the number of

epochs was performed by tracking the validation accuracy over epochs and retaining the
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epoch with the lowest validation MSE. Dropout for fully connected layers was fixed at

p = 0.5 for all fully connected layers during training to limit over-fitting.

Fig. 4.2: Fully Connected Model. This neural network model consists of two fully connected
hidden layers and a fully connected output layer.

4.4.1 Fully Connected Results

Table 4.3 shows a summary of the results using the fully connected model for each

scenario (1-3) in the sim-5-sec and real-2-sec dataset and its error states (for additional

results for this model, please see Appendix A subsection A.3). As we can see on the table,

this model performs well in scenario 1 on the sim-5-sec dataset.

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1
MSE (Sim-5-sec) 0.5600 0.2336 N/A N/A N/A N/A 0.3968
MSE (Real-2-sec) 1.0658 1.0762 N/A N/A N/A N/A 1.0710

2
MSE (Sim-5-sec) N/A N/A N/A 1.1543 0.4250 N/A 0.7897
MSE (Real-2-sec) N/A N/A N/A 1.4362 1.1074 N/A 1.2718

3
MSE (Sim-5-sec) 1.1355 0.3600 N/A 1.1278 0.3501 N/A 0.7434
MSE (Real-2-sec) 1.4322 0.9967 N/A 1.3948 0.9754 N/A 1.1998

Table 4.3: Summary of Model Performance for each error state for scenarios 1-3 of the sim-
5-sec and real-2-sec dataset using the fully connected Model. This model performs poorly
on the real-2-sec dataset as all the MSE are around or equal to 1 for scenarios 1-3. On
the sim-5-sec dataset, this model only performs well in scenario 1 and showing most of the
MSE greater than 1 for scenarios 2 and 3.
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However, for scenario 2 and 3, some of the error states present an MSE greater than 1,

which indicates the performance degrades as more errors are introduced. On the real-2-sec

dataset, the MSE is greater than 1 for all the considered scenarios (1-3). These results

suggest that the fully connected model is not learning how to predict the initial navigation

errors as desired.



CHAPTER 5

RESNET ARCHITECTURES FOR ESTIMATING INITIAL ERRORS

As shown in section 4.2, the linear regression model didn’t perform well for any of the

three scenarios on the real-2-sec dataset. On the other hand, the results in subsection 4.3.1

show that a basic CNN model is able to learn the initial navigation errors in some scenarios.

Thus, we studied more advanced CNN architectures.

5.1 ResNet Models considered

CNNs were chosen because they have been successful on various problems involving

images. The convolutional filters that are part of CNNs allow for the network to learn short

and long range dependencies between image pixels. Beyond the previous neural network

models tested, more advanced network architectures were considered:

• ResNet 34 [36]

• ResNet 50 [36]

• ResNet 101 [36]

• ResNet 152 [36]

• Wide ResNet 50 2 [39]

• Wide ResNet 101 2 [39]

Note that each of these architectures is built with the same basic idea: the residual

block as shown in Figure 2.4. This block allows networks to be much deeper (more layers

and hence better at dealing with images) while simultaneously mitigating the issue of the

vanishing gradient [36]. The residual block technique is still considered a state-of-the-art

way of dealing with image data.
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5.2 Proposed Method based on ResNet Models

For all the ResNet approaches, our input consists of a 3-channel image with the dis-

torted image, the reference image, and the difference image as each of the channels. This

3-channel image input is fed into a randomly initialized convolutional layer followed by the

considered ResNet architecture. The final layer of ResNet is replaced with a fully connected

layer with the same number of outputs as error states as shown in Figure 5.1.

Fig. 5.1: Architecture of the Wide ResNet 50 2 approach. This architecture illustrates
an example of the features used in our proposed method based on ResNet models. The
input consists of a 3-channel image with the distorted image, the reference image, and the
difference image, which is fed into a randomly initialized convolutional layer followed by
the considered ResNet architecture (e.g. Wide ResNet 50 2, ResNet-34). The final layer of
ResNet is replaced with a fully connected layer with the same number of outputs as error
states.

Each of the ResNet architectures listed above have pre-trained models available in the

Pytorch framework. In the initial attempts at estimating initial navigational errors, we

explored whether starting with pre-trained weights or randomly initializing the model’s

weights would produce the best results. Unsurprisingly, in all cases, the model with pre-

trained weights outperformed models that had weights that were trained using only the

reference chips and distorted images. We further discovered that starting with pre-trained

weights but then allowing these weights to be modified specifically for the problem at hand

produced better results than “freezing” the already pre-trained weights. This is remarkable
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considering the datasets used for pretraining contained natural images, which differ con-

siderably from SAR images. This suggests that the pretrained network has learned image

features (e.g. lines and other shapes) that are also present in SAR images.

5.3 Selecting a ResNet Model based on performance

To compare the performance between the different ResNet models, we applied our

proposed method to the sim-5-sec and real-2-sec dataset for scenarios 1-3.

Scenario # Model (sim-5-sec data) AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1

ResNet-34 0.0846 0.0313 N/A N/A N/A N/A 0.0579
ResNet-50 0.0547 0.0450 N/A N/A N/A N/A 0.0498
ResNet-101 0.0575 0.0387 N/A N/A N/A N/A 0.0481
ResNet-152 0.0570 0.0378 N/A N/A N/A N/A 0.0474
Wide ResNet 50 2 0.0594 0.0289 N/A N/A N/A N/A 0.0442
Wide ResNet 101 2 0.0651 0.0335 N/A N/A N/A N/A 0.0493

2

ResNet-34 N/A N/A N/A 0.2068 0.1463 N/A 0.1766
ResNet-50 N/A N/A N/A 0.2544 0.1137 N/A 0.1841
ResNet-101 N/A N/A N/A 0.2529 0.2044 N/A 0.2286
ResNet-152 N/A N/A N/A 0.2782 0.2710 N/A 0.2746
Wide ResNet 50 2 N/A N/A N/A 0.2456 0.1162 N/A 0.1809
Wide ResNet 101 2 N/A N/A N/A 0.3085 0.1886 N/A 0.2485

3

ResNet-34 0.7824 0.2671 N/A 0.6088 0.1737 N/A 0.4580
ResNet-50 0.6140 0.2689 N/A 0.3003 0.1151 N/A 0.3246
ResNet-101 0.5772 0.2552 N/A 0.2670 0.1290 N/A 0.3071
ResNet-152 0.5722 0.2360 N/A 0.2959 0.1333 N/A 0.3094
Wide ResNet 50 2 0.5229 0.2237 N/A 0.2442 0.1259 N/A 0.2792
Wide ResNet 101 2 0.5972 0.2763 N/A 0.3004 0.1716 N/A 0.3364

Table 5.1: Summary of Model Performance for each error state for scenarios 1-3 on the
sim-5-sec dataset using the ResNet and Wide ResNet Models. The bold numbers represent
the smallest MSE of the considered error state for each scenario to indicate which model is
doing the best. This shows that the Wide ResNet 50 2 model outperforms the other models
more frequently than any other.

As seen in Table 5.1, all of the ResNet models performed very well in all the scenarios

(MSE < 1) on the simulated data. Particularly the Wide ResNet 50 2 model outperformed

the other models more frequently than any other (e.g. the Wide ResNet 50 2 model has

the lowest MSE in most of the error states in scenario 3).
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Scenario # Model(real-2-sec data) AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1

ResNet-34 0.0705 0.0351 N/A N/A N/A N/A 0.0528
ResNet-50 0.0586 0.0520 N/A N/A N/A N/A 0.0553
ResNet-101 0.0612 0.0465 N/A N/A N/A N/A 0.0538
ResNet-152 0.0925 0.0500 N/A N/A N/A N/A 0.0713
Wide ResNet 50 2 0.0563 0.0425 N/A N/A N/A N/A 0.0494
Wide ResNet 101 2 0.0618 0.0490 N/A N/A N/A N/A 0.0554

2

ResNet-34 N/A N/A N/A 1.2545 0.0859 N/A 0.6702
ResNet-50 N/A N/A N/A 1.1395 0.0810 N/A 0.6103
ResNet-101 N/A N/A N/A 1.1430 0.1190 N/A 0.6310
ResNet-152 N/A N/A N/A 1.1420 0.8100 N/A 0.6115
Wide ResNet 50 2 N/A N/A N/A 1.0729 0.1683 N/A 0.6206
Wide ResNet 101 2 N/A N/A N/A 1.1548 0.1196 N/A 0.6372

3

ResNet-34 1.0988 0.2000 N/A 1.1107 0.1073 N/A 0.6292
ResNet-50 1.1881 0.1850 N/A 1.1508 0.1179 N/A 0.6604
ResNet-101 1.1558 0.2171 N/A 1.1049 0.1256 N/A 0.6508
ResNet-152 1.1251 0.2235 N/A 1.1408 0.1171 N/A 0.6516
Wide ResNet 50 2 1.0657 0.2340 N/A 1.0682 0.1468 N/A 0.6287
Wide ResNet 101 2 1.1933 0.1725 N/A 1.1244 0.1234 N/A 0.6534

Table 5.2: Summary of Model Performance for each error state for scenarios 1-3 on the
real-2-sec dataset using the ResNet and Wide ResNet Models. The bold numbers represent
the smallest MSE of the considered error state for each scenario to indicate which model
is doing the best. As on the simulated data, the Wide ResNet 50 2 model outperforms the
other models more frequently than any other on the real-2-sec data as well.

Table 5.2 shows the results obtained applying the proposed approach to the real-2-sec

data. The outcomes obtained suggested that all of the considered ResNet architectures had

similar performance for scenarios 1-3. In scenario 1, all the MSE of the ResNet models were

less than 1 but in scenarios 2 and 3, some of the error states got a MSE > 1. Notably the

Wide ResNet 50 2 model outperformed the other models more frequently than any other

on both the sim-5-sec and real-2-sec data.

Hence, after testing these architectures, we settled on the Wide ResNet 50 2 network

because it outperformed all other models and because its wide nature enables faster training

and therefore more time can be devoted to trying specific hyper-parameters (for additional

results, see Appendix A subsection A.4).
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5.4 Wide ResNet 50 2 Application on the simulated and real-2-sec data

To continue evaluating the performance of our proposed method based on the Wide

ResNet 50 2 model, we trained on the sim-5-sec and real-2-sec data for scenarios 1-6 using

the split described in Table 3.2.

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1
MSE (Sim-5-sec) 0.0594 0.0289 N/A N/A N/A N/A 0.0442
MSE (Real-2-sec) 0.0563 0.0425 N/A N/A N/A N/A 0.0494

2
MSE (Sim-5-sec) N/A N/A N/A 0.2456 0.1162 N/A 0.1809
MSE (Real-2-sec) N/A N/A N/A 1.0729 0.1683 N/A 0.6206

3
MSE (Sim-5-sec) 0.5229 0.2237 N/A 0.2442 0.1259 N/A 0.2792
MSE (Real-2-sec) 1.0657 0.2340 N/A 1.0682 0.1468 N/A 0.6287

4
MSE (Sim-5-sec) 0.0941 0.9204 0.2800 N/A N/A N/A 0.4315
MSE (Real-2-sec) 0.1020 0.8102 0.3734 N/A N/A N/A 0.4285

5
MSE (Sim-5-sec) N/A N/A N/A 0.2834 0.7982 0.5460 0.5425
MSE (Real-2-sec) N/A N/A N/A 1.0699 0.6459 0.5795 0.7651

6
MSE (Sim-5-sec) 0.6321 0.9139 0.5245 0.3677 0.8661 0.5331 0.6396
MSE (Real-2-sec) 1.0846 0.7509 0.5353 1.0868 0.6039 0.5984 0.7766

Table 5.3: Summary of Model Performance for each error state for scenarios 1-6 of the
sim-5-sec and real-2-sec datasets. The network is able to learn many of the errors for both
simulated and real data (MSE < 1), but it still has some difficulties in resolving error
sources in certain scenarios shown in bold numbers (MSE > 1).

Fig. 5.2: Training and validation MSE as a function of training epoch for scenario 1 on the
real-2-sec dataset using the proposed method. The gap between the errors is small.
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Table 5.3 lists the results obtained in all six scenarios for both the sim-5-sec and the

real-2-sec dataset. For all scenarios in the simulated dataset, the MSE is less than 1 for

all considered errors. In particular, the simulated dataset performs well for scenarios 1 and

2, where no ambiguity exists. These results suggest that the neural network is capable of

characterizing both shifts and blurs in the absence of ambiguity. However, as more errors

are introduced, the performance degrades, suggesting difficulties in resolving ambiguous

error sources.

In the real dataset, the MSE is below 1 for all errors in scenarios 1 and 4. The

network performs particularly well in scenario 1 with a low MSE (see also Figure 5.2). It

is noteworthy that for scenario 4, ambiguity exists in CT shifts, due to either CT or D

position errors. The network, however, is able to identify subtleties in the distorted SAR

images and properly attribute the effect to the corresponding error.

Fig. 5.3: Distribution of Error States before (blue line) and after (histogram) estimation for
the real-2-sec dataset for scenarios 1 and 4. In both cases, the error distributions are more
concentrated around zero, indicating that the network has improved our ability to estimate
navigation errors. No outliers have been introduced by the network.

Figure 5.3 shows the distribution of the error states before and after estimation of the

navigation errors for scenarios 1 and 4. The resulting error distributions are more concen-

trated around zero, indicating that the neural network is able to improve our knowledge
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of the initial error states. Furthermore, no outliers are introduced by the neural network.

However, as was the case for the simulated dataset, increasing numbers of ambiguous error

sources results in degraded overall performance, with an MSE near 1.0 in cases where little

information is learned by the network.

Fig. 5.4: Training and validation MSE as a function of training epoch for scenario 2 for the
real-2-sec dataset using the propodes method. There is a large gap between the training
and validation error, suggesting the network may be overfitting. Compare with Figure 5.2,
where little overfitting is occurring in scenario 1.

For some of these errors, the network may also be overfitting. Figure 5.4 shows the

training and validation MSE as a function of training epoch for scenario 2. Here, we see

that the average training error is very low, indicating that the network is able to accurately

predict both errors on the training set. However, the validation MSE is considerably higher,

suggesting that overfitting is occurring. Increasing the amount of training data, especially

adding more targets, will likely reduce the tendency to overfit.
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5.5 Transfer Learning Technique with Simulated Data

Since the network was having difficulties in resolving some error sources in certain

scenarios of the real-2-sec dataset (see Table 5.3), we hypothesized that transfer learning

would help in improving the performance in those scenarios.

Transfer learning is the improvement of learning in a new task through the transfer

of knowledge from a related task that has already been learned [46]. For example, using

the pretrained Wide ResNet 50 2 is a form of transfer learning. The goal of using transfer

learning is to fully learn the target task given the transferred knowledge instead of learning

from scratch. It can often speed up the training and improve the performance of the model.

To do transfer learning in this approach, we pretrained the network (which was already

pretrained on other image data) on the sim-5-sec data and then trained on the real-2-sec

data. We then applied this technique to the real-2-sec data for scenario 2 to evaluate and

compare the performance.

Dataset, Scenario 2 AT Vel CT Vel Average

MSE (Real-2-sec) 1.0729 0.1683 0.6206

MSE (Transfer Learning - 2 sec) 1.0429 0.0849 0.5639

Table 5.4: Summary of Model Performance for the error states present in scenario 2. This
table shows: 1) the results of applying the proposed model on the real-2-sec; 2) the results of
pretraining on simulated data and training on real-2-sec data. Improvements from transfer
learning are negligible.

Table 5.4 shows the performance for scenario 2, showing negligible improvement in both

the AT and CT velocity MSE, suggesting that the simulated and real data are not similar

enough to justify transfer learning (for additional results, see Appendix C subsection C.1).
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5.6 Increase of the aperture length on the real data

Most of the errors that the previous networks struggled with are associated with im-

age blurring. Blurring errors are more apparent with longer flight trajectories. This fact

motivates an increase in the aperture length to emphasize the blurring distortion in the

images.

5.6.1 Real data with a 10-second synthetic aperture length

Dataset, Scenario 2 AT Vel CT Vel Average

MSE (Real-2-sec) 1.0729 0.1683 0.6206

MSE (Real-10-sec) 0.7895 0.0812 0.4354

MSE (Transfer Learning - 2 sec) 1.0429 0.0849 0.5639

MSE (Transfer Learning - 10 sec) 0.9004 0.0851 0.4927

Table 5.5: Summary of Model Performance for the error states present in scenario 2. This
table shows: 1) the results of applying the proposed model on the real-2-sec and real-10-sec
data; 2) the results of pretraining on simulated data and training on real-2-sec (and real-10-
sec) datasets. Going from 2 seconds to 10 seconds improves the performance. Improvements
from transfer learning are better when using the 10-second aperture length (MSE < 1).

We analyzed the real data with a 10-second synthetic aperture length in scenario 2.

Table 5.5 shows that for both errors AT Vel and CT Vel the MSE < 1 on the real-10-sec

data. Also, when we applied the transfer learning technique to this real dataset, a slight

improvement was shown in the AT Vel MSE.

Table 5.6 shows the results for all six scenarios. In scenario 2 of the real-2-sec dataset

the network was not able to characterize blur distortions for the 2-second synthetic aperture

despite the lack of error ambiguity. Comparing those results to the results obtained using

the 10-second aperture, in the latter case the MSE for the North velocity (AT Vel) error

decreased by more than 25%, suggesting that the neural network successfully characterized

the effect of blurs for the larger apertures. Notably, the neural network also improves its

estimation of the East velocity (CT Vel) error by a factor of 2.
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Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1
MSE (Sim-5-sec) 0.0594 0.0289 N/A N/A N/A N/A 0.0442
MSE (Real-2-sec) 0.0563 0.0425 N/A N/A N/A N/A 0.0494
MSE (Real-10-sec) 0.1808 0.1338 N/A N/A N/A N/A 0.1573

2
MSE (Sim-5-sec) N/A N/A N/A 0.2456 0.1162 N/A 0.1809
MSE (Real-2-sec) N/A N/A N/A 1.0729 0.1683 N/A 0.6206
MSE (Real-10-sec) N/A N/A N/A 0.7895 0.0812 N/A 0.4354

3
MSE (Sim-5-sec) 0.5229 0.2237 N/A 0.2442 0.1259 N/A 0.2792
MSE (Real-2-sec) 1.0657 0.2340 N/A 1.0682 0.1468 N/A 0.6287
MSE (Real-10-sec) 0.8864 0.2924 N/A 0.7894 0.1319 N/A 0.5250

4
MSE (Sim-5-sec) 0.0941 0.9204 0.2800 N/A N/A N/A 0.4315
MSE (Real-2-sec) 0.1020 0.8102 0.3734 N/A N/A N/A 0.4285
MSE (Real-10-sec) 0.2694 0.8165 0.4186 N/A N/A N/A 0.5015

5
MSE (Sim-5-sec) N/A N/A N/A 0.2834 0.7982 0.5460 0.5425
MSE (Real-2-sec) N/A N/A N/A 1.0699 0.6459 0.5795 0.7651
MSE (Real-10-sec) N/A N/A N/A 0.9072 0.6453 0.5781 0.7102

6
MSE (Sim-5-sec) 0.6321 0.9139 0.5245 0.3677 0.8661 0.5331 0.6396
MSE (Real-2-sec) 1.0846 0.7509 0.5353 1.0868 0.6039 0.5984 0.7766
MSE (Real-10-sec) 0.9875 0.7382 0.5102 0.9447 0.6233 0.5113 0.7192

Table 5.6: Summary of Model Performance for each error state for scenarios 1-6 of the sim-
5-sec, the real-2-sec and the real-10-sec datasets. In all of the scenarios the MSE < 1 for the
real-10-sec dataset. This shows that increasing the aperture length improves performance
with blur-related errors.

Fig. 5.5: Training and validation MSE as a function of training epoch for scenario 2 for
the real-10-sec dataset using the proposed method. Compared to Figure 5.4, here the gap
between the training and validation error is smaller, which shows that the network may be
overfitting less in scenario 2 for the real-10-sec data.
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Further, in Figure 5.5, we can see that the gap between the the training and validation

error for scenario 2 is smaller than the gap shown on the figure for the real-2-sec data

(Figure 5.4), this suggests that the overfitting occurs less on the real-10-sec data.

In fact, the MSE for all scenarios on the real-10-sec dataset is less than 1. This shows

that the neural network performs better when the errors are more apparent. These results

identify a trend of improved performance on real datasets with increasing aperture length

(for additional results, see Appendix B subsection B.2).

5.6.2 Real data with a 6-second and 15-second synthetic aperture length

As demonstrated in Table 5.6, as the aperture length increases, the network performs

better in some settings. To examine this further, we also tested our neural network approach

using the real datasets with an aperture length of 6-seconds and 15-seconds for scenarios

1-3.

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel Average

1

MSE (Sim-5-sec) 0.0594 0.0289 N/A N/A N/A N/A 0.0442
MSE (Real-2-sec) 0.0563 0.0425 N/A N/A N/A N/A 0.0494
MSE (Real-6-sec) 0.1705 0.1326 N/A N/A N/A N/A 0.1516
MSE (Real-10-sec) 0.1808 0.1338 N/A N/A N/A N/A 0.1573
MSE (Real-15-sec) 0.1967 0.1296 N/A N/A N/A N/A 0.1632

2

MSE (Sim-5-sec) N/A N/A N/A 0.2456 0.1162 N/A 0.1809
MSE (Real-2-sec) N/A N/A N/A 1.0729 0.1683 N/A 0.6206
MSE (Real-6-sec) N/A N/A N/A 1.0330 0.1389 N/A 0.5859
MSE (Real-10-sec) N/A N/A N/A 0.7895 0.0812 N/A 0.4354
MSE (Real-15-sec) N/A N/A N/A 0.7933 0.0809 N/A 0.4371

3

MSE (Sim-5-sec) 0.5229 0.2237 N/A 0.2442 0.1259 N/A 0.2792
MSE (Real-2-sec) 1.0657 0.2340 N/A 1.0682 0.1468 N/A 0.6287
MSE (Real-6-sec) 1.0193 0.2177 N/A 0.9918 0.1995 N/A 0.6071
MSE (Real-10-sec) 0.8864 0.2924 N/A 0.7894 0.1319 N/A 0.5250
MSE (Real-15-sec) 0.7787 0.2386 N/A 0.7755 0.1276 N/A 0.4801

Table 5.7: Summary of Model Performance for each error state for scenarios 1-3 of the sim-
5-sec, the real-2-sec, real-6-sec, real-10-sec and real-15-sec datasets. The network is able to
learn many of the errors for both simulated and real data (MSE < 1). In particular, the
MSE is less than 1 for all the scenarios for the real-10-sec and real-15-sec datasets.

Table 5.7 shows the experimental results on these real datasets and compares them

with the previous results. For instance, in scenario 2 and 3, the performance improves
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slightly going from 2 seconds to 6 seconds of aperture length of the real data.

Fig. 5.6: Distribution of Error States before (blue line) and after (histogram) estimation for
the real-6-sec dataset for scenarios 1-3. Our proposed method performed well, in particular
in scenario 1.

Fig. 5.7: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-15-sec dataset for scenarios 1-3. Our proposed method performed very well in
all the scenarios (1-3).

Comparing Figure 5.6 and Figure 5.7, we can see that as the aperture length increases,

the network performs even better in scenarios 2 and 3. Going from 6 seconds to 15 seconds

of aperture length, the AT Pos error MSE decreased by more than 20% in scenario 3.

Furthermore, the AT Vel error MSE decreased by more than 20% as well in scenarios 2 and

3, suggesting again that the neural network successfully characterized the effect of blurs for

the larger apertures.

In fact, in all of the scenarios for the real-10-sec and real-15-sec datasets, the MSE is
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less than 1. These results confirm our hypothesis: As the synthetic aperture length of the

real data increases, the performance of our proposed method improves in certain scenarios

(for additional results, see Appendix B subsection B.1, subsection B.2, and subsection B.3).



CHAPTER 6

FUTURE WORK AND CONCLUSION

We used a convolutional neural network to estimate position and velocity errors at the

beginning of a SAR data collection period, by comparison of a distorted SAR image to an

a priori SAR reference image. Performance was assessed on both simulated and real SAR

data. In general, the network performs well in the absence of ambiguous error sources,

reducing the MSE of the active navigation errors. As the number of error sources increases,

the performance degrades due to the inability to separate errors which result in the same

image distortion. In the case of the real data, however, the network successfully separated

CT shifts caused by CT and D position errors. This exciting result suggests that the network

is able to identify subtleties in the image distortions that are not readily apparent to the

human eye. Another key finding in the testing of the network on real data is the sensitivity

of estimation performance on the length of the synthetic aperture. As the length increases,

the network successfully characterizes blurring in real images and appropriately attributes

it to the corresponding error source.

Future work includes further investigation of the effect of the aperture length on the

network’s ability to learn. Furthermore, the sensitivity of distortions to the vehicle/target

geometry may be exploited to reduce ambiguities and improve performance. Future ap-

proaches may, therefore, augment the training data with information about the viewing

geometry, including the estimated vehicle position at the beginning/end of the synthetic

aperture, the location of known targets, or the time history of barometric altimeter mea-

surements. Finally, including more training data in future iterations will likely help mitigate

over-fitting.
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APPENDIX A

Additional Results from chapter 5

A.1 Linear Regression Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.1: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the Linear Regression Model. This model
performed better in scenario 1 on the simulated data but not on the other scenarios.

• Real-2-sec Data for scenarios 1-3:

Fig. A.2: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the Linear Regression Model. This model
didn’t perform well in any scenario.
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A.2 Simple CNN Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.3: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the simple CNN Model. As shown, this
model performed well in all the scenarios.

Fig. A.4: Training and validation MSE as a function of training epoch for scenario 1-3 for
the sim-5-sec dataset using the simple CNN Model. There is a very small gap between the
training and validation error in scenarios 1 and 3. It is a little bit bigger in scenario 2.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.5: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the simple CNN Model. As shown, this
model performed well, in particular, in scenario 1.

Fig. A.6: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-2-sec dataset using the simple CNN Model. In all scenarios, there is a very small
gap between the training and validation error.
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A.3 Fully Connected Model Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.7: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the Fully Connected Model. As shown, this
model performed well, in particular, in scenario 1.

Fig. A.8: Training and validation MSE as a function of training epoch for scenario 1-3 for
the sim-5-sec dataset using the Fully Connected Model. There is a big gap between the
training and validation error for scenario 2 and 3. The gap is smaller in scenario 1.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.9: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the Fully Connected Model. As shown, this
model didn’t perform well in any of the scenarios.

Fig. A.10: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-2-sec dataset using the Fully Connected Model. In all scenarios, there is a big gap
between the training and validation error suggesting overfitting.
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A.4 ResNet Models

ResNet-34 Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.11: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the ResNet-34 Model. As shown, this model
performed well in all the scenarios.

Fig. A.12: Training and validation MSE as a function of training epoch for scenario 1-3 for
the sim-5-sec dataset using the ResNet-34 Model. There is a small gap between the training
and validation error in scenarios 1 and 2 but a big gap in scenario 3.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.13: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the ResNet-34 Model. This model performs
well, in particular, in scenario 1.

Fig. A.14: Training and validation MSE as a function of training epoch for scenario 1-3
for the real-2-sec dataset using the ResNet-34 Model. There is a small gap between the
training and validation error in scenario 1 but the gap increases in scenario 2 and 3.
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ResNet-50 Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.15: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the ResNet-50 Model. As shown, this model
performed well in all the scenarios.

Fig. A.16: Training and validation MSE as a function of training epoch for scenario 1-3 for
the sim-5-sec dataset using the ResNet-50 Model. There is a small gap between the training
and validation error in scenarios 1 and 2.



49

• Real-2-sec Data for scenarios 1-3:

Fig. A.17: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the ResNet-50 Model. The model performs
well in scenario 1.

Fig. A.18: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-2-sec dataset using the ResNet-50 Model. There is a bigl gap between the training
and validation error in scenario 3.
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ResNet-101 Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.19: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the ResNet-101 Model. As shown, this model
performed well in all the scenarios.

Fig. A.20: Training and validation MSE as a function of training epoch for scenario 1-3 for
the sim-5-sec dataset using the ResNet-101 Model. There is a very small gap between the
training and validation error in scenarios 1-3.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.21: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the ResNet-101 Model. This model performs
well in scenario 1.

Fig. A.22: Training and validation MSE as a function of training epoch for scenario 1-3
for the real-2-sec dataset using the ResNet-101 Model. There is a small gap between the
training and validation error in scenario 1 but not in scenario 2 and 3.
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ResNet-152 Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.23: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the ResNet-152 Model. As shown, this model
performed well in all the scenarios.

Fig. A.24: Training and validation MSE as a function of training epoch for scenario 1-3
for the sim-5-sec dataset using the ResNet-152 Model. There is a small gap between the
training and validation error in scenarios 1-3.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.25: Distribution of Error States before (blue line) and after (histogram) estimation for
the real-2-sec dataset for scenario 1-3 using the ResNet-152 Model. This model performed
well in scenario 1.

Fig. A.26: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-2-sec dataset using the ResNet-152 Model. There is a big gap between the training
and validation error in scenarios 2 and 3.
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Wide-ResNet-50 2 Model Additional Results

• Sim-5-sec Data for scenarios 1-6:

Fig. A.27: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-6 using the Wide-ResNet-50 2 Model. As shown,
this model performed well in all the scenarios.
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Fig. A.28: Training and validation MSE as a function of training epoch for scenario 1-6
for the sim-5-sec dataset using the Wide-ResNet-50 2 Model. There is a gap between the
training and validation error in all the scenarios, in particular in scenario 6.
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• Real-2-sec Data for scenarios 1-6:

Fig. A.29: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-6 using the Wide-ResNet-50 2 Model. The model
performs well in scenario 1 (MSE < 1).
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Fig. A.30: Training and validation MSE as a function of training epoch for scenario 1-6 for
the real-2-sec dataset using the Wide-ResNet-50 2 Model. There is a big gap between the
training and validation error in most of the scenarios.
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Wide-ResNet-101 2 Model Additional Results

• Sim-5-sec Data for scenarios 1-3:

Fig. A.31: Distribution of Error States before (blue line) and after (histogram) estimation
for the sim-5-sec dataset for scenario 1-3 using the Wide-ResNet-101 2 Model. As shown,
this model performed well in all the scenarios.

Fig. A.32: Training and validation MSE as a function of training epoch for scenario 1-3
for the sim-5-sec dataset using the Wide-ResNet-101 2 Model. There is a very small gap
between the training and validation error in scenarios 1 and 3.
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• Real-2-sec Data for scenarios 1-3:

Fig. A.33: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-2-sec dataset for scenario 1-3 using the Wide-ResNet-101 2 Model. This model
performs well in scenario 1.

Fig. A.34: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-2-sec dataset using the Wide-ResNet-101 2 Model. There is a big gap between the
training and validation error in scenario 3.



60

APPENDIX B

Additional Results from the implementation of the Wide ResNet 50 2 Model with

different aperture lengths

B.1 Implementing the Wide ResNet 50 2 Model on the real-6-sec data for

scenarios 1-3

Fig. B.1: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-6-sec dataset for scenario 1-3 using the Wide-ResNet-50 2 Model. This model
performs well in all scenario 1.

Fig. B.2: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-6-sec dataset using the Wide-ResNet-50 2 Model. There is a big gap between the
training and validation error in scenario 2 and 3, suggesting overfitting.
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B.2 Implementing the Wide ResNet 50 2 Model on the real-10-sec data for

scenarios 1-6

Fig. B.3: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-10-sec dataset for scenario 1-6 using the Wide-ResNet-50 2 Model. This model
performs very well in all scenarios.
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Fig. B.4: Training and validation MSE as a function of training epoch for scenario 1-6 for
the real-10-sec dataset using the Wide-ResNet-50 2 Model. There is a big gap between the
training and validation error in most of the scenarios, in particular in scenario 5 and 6.
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B.3 Implementing the Wide ResNet 50 2 Model on the real-15-sec data for

scenarios 1-3

Fig. B.5: Distribution of Error States before (blue line) and after (histogram) estimation
for the real-15-sec dataset for scenario 1-3 using the Wide-ResNet-50 2 Model. This model
performs very well in all scenarios.

Fig. B.6: Training and validation MSE as a function of training epoch for scenario 1-3 for
the real-15-sec dataset using the Wide-ResNet-50 2 Model. There is a big gap between the
training and validation error in scenario 2 and 3.
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APPENDIX C

Using Transfer Learning

Results obtained pretraining the sim-5-sec data and training the real-2-sec or real-

10sec datset for scenario 2. AT Velocity and CT Velocity are the only errors present in this

scenario.

C.1 Transfer Learning using the real-2-sec dataset:

Fig. C.1: Distribution of Error States before (blue line) and after (histogram) estimation
for scenario 2 using transfer learning using the real-2-sec dataset. This approach performed
well for the CT Velocity error state.
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Fig. C.2: Training and validation MSE as a function of training epoch for scenario 2 using
transfer learning using the real-2-sec dataset. There is a big gap between the training and
validation error, suggesting overfitting.

C.2 Transfer Learning using the real-10-sec dataset:

Fig. C.3: Distribution of Error States before (blue line) and after (histogram) estimation for
scenario 2 using transfer learning using the real-10-sec dataset. Increasing to a 10-second
aperture length helped a little bit in the performance of the AT Velocity error state.
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Fig. C.4: Training and validation MSE as a function of training epoch for scenario 2 using
transfer learning using the real-10-sec dataset. The gap between the training and validation
error is smaller than in Figure C.2.
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