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ABSTRACT
Comparison of Microbial Diversity of Fifteen Aged Cheddar Cheeses from Different Regions

Using Next Generation Sequencing

by

Sophie Overbeck, Master of Science
Utah State University, 2021
Major Professor: Dr. Donald J. McMahon
Department: Nutrition, Dietetics, and Food Science

The aim of this project was to test a newly developed method and its efficacy in
identifying bacterial community diversity within aged Cheddar cheese as well as identifying the
relative abundance of the different bacteria. This project will provide further understanding of
how using next generation sequencing can benefit the study of bacterial communities and their
influence on the aging process of Cheddar cheese along with the possibility of identifying defect
causing microorganisms. The hypothesis of this study is that using next generation sequencing
with different Cheddar cheese samples from various regions will result in cheeses clustering by
region and the cheese’s microbiota will be dominated by non-starter lactic acid bacteria.

To test this hypothesis, 15 different Cheddar cheese sample’s microbiota were
determined by amplifying the hypervariable V4 region of the 16S rRNA gene and sequenced
using the Illumina MiSeq system from the Center for Integrate Biosystems at Utah State
University for DNA analysis. Sequencing data was evaluated using two different denoising
pipelines, within Qiime 2 for comparison of variant identification and as a method of comparing

starter and non-starter lactic acid bacteria in cheeses based on regions and manufacturers.
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The samples clustered into two groups based on the dominant starter lactic acid bacteria
(SLAB). The US cheeses tended to be dominated by Lactococcus lactis while the cheeses
manufactured outside of the United States were dominated by Streptococcus thermophilus. The
two denoising pipelines evaluated were Deblur and DADAZ2. Using Deblur, 40.5% of reads were
retained resulting in 74 total amplicon sequence variants (ASVs) which represent a unique
sequence within the samples. In contrast, DADA2 retained 76% of reads resulting in 247 unique
ASVs. Amplicon sequence variants were categorized into 4 different types Lc. lactis, St.
thermophilus, lactobacilli, and other species.

In both denoising methods the dominating ASVs were SLAB. Of the dominating Lc.
lactis ASVs when using Deblur only 5 ASVs were identified compared to 34 ASVs identified by
DADAZ2. Similarly, only 3 St. thermophilus ASVs were identified by Deblur and 35 ASVs were
identified by DADA2. Typically, during Cheddar manufacture, multiple strains of SLAB are
used as a way of preventing the failure of a cheese make because of phage infection. Therefore,
the ASVs identified by DADAZ2 provide a more realistic representation of a true Cheddar cheese
microbiome, leading to the conclusion that DADAZ2 is the better denoising pipeline to use when
testing cheese samples because it provides a more realistic representation of the actual
microbiota in the aging samples.

(91 Pages)



PUBLIC ABSTRACT
Comparison of Microbial Diversity of Fifteen Aged Cheddar Cheeses from Different Regions
Using Next Generation Sequencing
Sophie Overbeck

This project was funded by BUILD Dairy to test the efficacy of using next generation
sequencing to study Cheddar cheese microbiomes. The 15 different cheese samples used in this
study were purchased in the retail market from various manufacturers and different origins of
manufacture. Sequencing was done by the Center for Integrated Biosystems at Utah State
University using Illumina MiSeq.

The aim of this project is to provide further understanding of how using next generation
sequencing can benefit the study of bacterial communities and their influence during the aging
process of Cheddar cheese and the possibility of identifying defect causing microorganisms. We
tested Cheddar cheese samples microbiota by amplifying and sequencing the hypervariable V4
region of the 16S rRNA. Sequencing data was evaluated using two different denoising pipelines
within Qiime 2: Deblur and DADAZ2. We used variant identification as a method of comparing
starter and non-starter lactic acid bacteria in cheeses based on regions and manufacturers.

In the data denoised by both methods the samples clustered into two groups separated by
the dominant starter lactic acid bacteria (SLAB). DADA2 identified over quadruple the number
of amplicon sequence variants (ASVs), which represent a unique sequence within the samples,
compared to Deblur. Using Deblur we identified 5 Lactococcus lactis ASVs and 3 Streptococcus
thermophilus ASVs compared to DADA2 which identified 34 L. lactis ASVs and 35 St.
thermophilus. Thus, it can be said that using DADAZ to denoise Cheddar cheese data provides a

more realistic representation of the microbiome
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INTRODUCTION

In general, it is understood that over the cheese aging process there is a shift in the lactic
acid bacteria (LAB) microbial community from starter lactic acid bacteria (SLAB) dominance to
a non-starter lactic acid bacteria (NSLAB) dominated community. Every cheese has its own
unique microbiome responsible for flavor development as well as producing defects. Recent
advancements in next generation sequencing (NGS) facilitates a more accurate identification of
microbial communities and thus implying their potential affect on functional properties.

Next generation sequencing has the potential to reveal microorganisms and their
associated pathways responsible for favorable characteristics as well as unfavorable properties in
aging cheese (Jonnala et al., 2018). Starter lactic acid bacteria, adjunct lactic acid bacteria
(ALAB), and NSLAB collectively contribute to the flavor development in Cheddar cheese, while
some NSLAB are also associated with causing defects. The development of flavor occurs
through several basic biological mechanisms including lactose fermentation, conversion of milk
proteins (primarily caseins) into peptides and free amino acids, and the breakdown of lipids,
esters, citrate, and amino acids into volatile aroma compounds (Broadbent and Steele, 2005).

A challenge in understanding and controlling the microflora of cheese during the aging
process is being able to identify and enumerate the different species of bacteria present, both
SLAB and NSLAB. An ideal method should be relatively inexpensive and have the capability of
tracking individual strains of SLAB, ALAB, and NSLAB over the storage time of cheese. The
aim of this project was to use NGS to study the 16S rRNA V4 region of DNA extracted from
cheese to determine the diversity of the bacterial community within aged Cheddar cheese as well

as to identify the relative abundance of variants.



HYPOTHESIS AND OBJECTIVES
I hypothesize that using next generation sequencing with different Cheddar cheese samples from
various regions will result in cheeses clustering by region.
To test this hypothesis, | will perform the following objectives:
1. Extract DNA from Cheddar cheese and analyze the microbiota using primers from the
16S rRNA V4 region obtain next generation sequencing of the DNA.
2. Analyze the sequence data using Qiime2 bioinformatics and compare two denoising
platforms for comparison of variant identification.

3. Compare microbiota community differences between the cheeses.



LITERATURE REVIEW

Cheddar Manufacture

Modern Cheddar cheese manufacture is dependent on being able to control the drop in
pH and the expulsion of moisture within a certain time frame. Availability of reliable starter
cultures has made this possible. Despite the mechanical manufacturing advancements made to
the cheese making process, Cheddar cheese remains a difficult cheese variety to manufacture
with large variability due to the lengthy ripening period needed for flavor development
(Lawrence et al., 2004).

Cheddar cheesemaking involves the removal of moisture from milk inoculated with
starter cultures and coagulated using rennet. The rennet-induced coagulum is cut into small cubes
to aid in moisture removal. The cubes are then cooked and stirred until the required amount of
acid has been produced. The whey is then removed and the cubes of curd are fused into slabs by
cheddaring with the cheddared curd then milled, salted, and pressed. After pressing the salted
curd, the cheese is packaged and stored at 2-7 °C until maturation. Cheddar cheese is typically
ripened for 3-12 months and over this time flavor formation occurs as well as changes in textural

properties (Lawrence et al., 1984).

Lactic Acid Bacteria

The role of LAB is to produce lactic acid in fermented milk products. Lactic acid bacteria
are a heterogeneous group of microorganisms that can be characterized as anaerobic or
facultatively anaerobic, non-spore forming, non-motile, catalase-negative, gram positive rods or
cocci that convert carbohydrates into lactic acid (Chen and Hang, 2019). Milk fermentation by
LAB can occur spontaneously or through inoculation using starter cultures (Widyastuti et al.,

2014). Acid production from LAB contributes to preservation of products as well as flavor



development and, therefore, has been widely utilized in both dairy and non-dairy food
fermentations. The main LAB in dairy products are species of Lactococcus, Lactobacillus,
Leuconostoc, Pediococcus, and Streptococcus. In cheddar Cheese manufacture, LAB can be
divided into two categories: starter lactic acid bacteria (SLAB) defined as intentionally added
LAB and non-starter lactic acid bacteria (NSLAB), which are LAB already present in the milk

flora or introduced via manufacturing equipment.

Starter Cultures

The primary cultures of LAB used in cheese making are referred to as SLAB because
they produce lactic acid from lactose in the cheese making process. The improvement of milk
hygiene and the commercialized standardization and acceleration of ripening has led to blander-
flavored cheeses. Blander-flavored cheeses prompted cheese makers to incorporate adjuncts or
secondary starters to improve the organoleptic qualities of the cheese especially during
accelerated ripening (Parente and Cogan, 2004). Secondary starters, also referred to as adjunct
lactic acid bacteria (ALAB), contribute to the organoleptic properties of the finished cheese but
do not contribute to acid production during cheesemaking.

Starter lactic acid bacteria available today are selected for specific properties being
derived either from selective pressure by means of heat treatment, incubation temperature, or low
pH, or from natural starters of undefined composition by means of backslopping and the use of
natural whey cultures (Parente and Cogan, 2004). Lactic acid bacteria starters can be categorized
as single-strain, multi-strain, and mixed strain. Single-strain starters only contain one strain,
multi-strain starters contain more than one strain and the strains may belong to the same species
or they can be a combination of species that have similar characteristics, while mixed starters

contain many unknown strains (Chen and Hang, 2019). The starters are further characterized



according to their optimum fermentation temperature with the two main categories in the dairy
industry being mesophilic starters with optimal growth temperatures between 20 and 30°C, or

thermophilic starters with optimal growth temperatures between 40 and 45°C.

Non-starter Cultures

In Cheddar cheese made from pasteurized milk there are adventitious (“‘contaminants™),
termed non-starter lactic acid bacteria (NSLAB), these LAB are always nonpathogenic
(Broadbent, 2011). During the early aging stage, the young cheese has low levels of NSLAB, but
after a few months of ripening the NSLAB population inevitably begins to grow eventually
reaching high numbers. Cheese made using both high quality milk and good sanitary conditions
will contain initial NSLAB populations below 102 cfu g-* but can reach a plateau of cell density
between 107 to 108 cfu g after 6 mo. (Broadbent, 2011). Non-starter lactic acid bacteria in
Cheddar most commonly found in aged cheese include Lacticaseibacillus casel,
Lacticaseibacillus paracasei, Latilactobacillus curvatus, Lacticaseibacillus rhamnosus
Levilactobacillus brevis, and Lactobacillus plantarum (Banks and Williams, 2004). These were
reclassified in 2020 and were previously in the Lactobacillus genus (Zheng et al., 2020) although
are still considered lactobacilli as described by McMahon et al. (2020).

The final numbers of NSLAB in Cheddar cheese appears to be stable and is not impacted
by their initial levels within the fresh curd. Populations of NSLAB in the U.S. are dominated by
facultatively heterofermentative species of lactobacilli such as Lc. paracasei and Latl. curvatus.
Facultatively heterofermentative LAB are characterized by their ability to produce a variety of
end products depending on which sugars are available, since they can ferment six carbon glucose
sugars to lactic acid and can also convert five carbon pentose sugars to lactic acid, acetic acid,

carbon dioxide, and other end products. Many of these end products contribute to flavor



development during cheese aging. Obligatory heterofermentative lactobacilli are usually found at
lower numbers in Cheddar cheese but have often been associated with unwanted gas production
(Oberg et al., 2016).

Although NSLAB are generally required for mature flavor development, they can also
contribute to undesirable defects such as abnormal flavor, lactate crystal formation, and gas slits
(Banks and Williams, 2004). Extent of growth as well as diversity of lactobacilli in Cheddar
during ripening is dependent on processing factors, including milk quality, factory hygiene, the
cooling rate of the cheese after manufacture, and the storage temperature for ripening (Fox et al.,
1998). In addition, NSLAB can cause a positive, neutral, or negative influence on cheese flavor

development mainly through catabolizing amino acids during cheese ripening (Broadbent, 2011).

Flavor Development

Starter lactic acid bacteria, adjunct or secondary cultures, and NSLAB collectively
contribute to the flavor development in Cheddar. Flavor development occurs through several
basic biological mechanisms including lactose fermentation, conversion of milk proteins
(primarily caseins) into peptides and free amino acids, and breaking down lipids, esters, citrate,
and amino acids into volatile aroma compounds (Broadbent and Steele, 2005). During ripening,
microorganisms and enzymes within the cheese matrix act on available nutrients including
carbohydrates, proteins, citrate, and lipids. The combination of both primary and secondary
proteolysis of caseins influences cheese flavor in several ways. Breaking down the casein
network softens the cheese texture causing flavor compounds to be released when consumed, as
well as producing low-molecular-weight peptides directly affecting flavor (causing bitterness),

and liberating free amino acids influencing flavor development.



Metabolism of branched-chain amino acids (BCAAs), aromatic amino acids, and
methionine results in compounds that have a strong effect on cheese flavor (Broadbent, 2011).
The metabolism of BCAAs contributes to a wide range of flavor compounds, including
aldehydes, alcohols, and various acids. Branched-chain amino acids metabolism is extremely
varied among NSLAB, which can contribute to ‘cheesy’ aroma, ‘goaty’ aroma, Or imparting
‘dark chocolate’ flavor. Catabolism of aromatic amino acids by NSLABs can produce floral and
pungent aromas commonly associated with off-flavors, in contrast, metabolism of methionine
has a positive effect by producing methanethiol and is associated with the development of

‘cheesy’ flavors (Singh et al., 2003).

Studying Cheese Microbial Communities

In studying cheese microbial communities, the methods used can be grouped into two
categories: culture-dependent methods and culture-independent methods. Culture-dependent
methods use culture plating techniques for counting and isolation of viable microorganisms
followed by the application of phenotypic and genotypic tools for evaluation (Ndoye and
Lapointe, 2011). Phenotypic tools used in culture-dependent methods include microscopic
examination, growth tests, determination of assimilation and fermentation patterns, and use of
SDS-polyacrylamide gel separation of cellular proteins.

Genotypic tools used in culture-dependent techniques include DNA restriction mapping,
ribotyping, DNA amplification, RNA or protein-coding gene analysis, using specific nucleic acid
probes, and DNA arrays. One of the drawbacks of using culture-dependent methods is that only a
fraction of microorganisms can be isolated using these techniques (Martin-Platero et al., 2009).
Therefore, when using culture-dependent methods the real composition of the whole microbiome

may not be reflected by the isolated strains. Another downside to using culture-based methods is



that some species are unable to grow because they are either outnumbered by more abundant
microbial species or lack the capability to grow in vitro. Furthermore, some microbial species
have long culture periods making propagation methods time consuming.

Unlike culture-dependent techniques, culture-independent methods do not require
actually propagating microorganisms. Culture-independent techniques are based on direct
extraction of total DNA or RNA from the cheese sample (Ndoye and Lapointe, 2011). Some of
the common culture-independent methods used in cheese studies include denaturing gradient gel
electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single-strand
conformation polymorphism (SSCP), and next-generation sequencing (NGS). Both DGGE and
TGGE are used as fingerprinting methods to study bacterial population dynamics and diversity
during cheese manufacturing (Muyzer, 1999). Several drawbacks to these methods are that they
are not well adapted to detect nondominant populations and band intensity does not always agree
with plate counts, which means these techniques are not quantitative methods. Similar to
T/DGGE, SSCP relies on electrophoretic separation of PCR products and has been used in
studies to analyze dynamics between microbial populations in cheese (Delbés, 2007). The SSCP
method is only able to provide a general overview of the relative abundance of dominant species
within the cheese and is not able to precisely identify microbes at family or genus level. The
newest technique currently used in researching microbial populations is NGS which will be

further discussed in the next section.

Next Generation Sequencing
Next generation sequencing also known as high-throughput sequencing (HTS) is a catch-
all term describing modern sequencing techniques and refers to large-scale DNA sequencing that

allows for the whole genome, whole exome, or exons for select genes to be queried. The earliest
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environmental microbial DNA cloning was first proposed by Lane et al., (1985), and the term
‘metagenome’ was proposed by Handelsman et al. (1998) describing the entire collection of
genomic information of all microorganisms found within a given environment, nowadays also
described as the microbiome.

Microbiome studies require high-quality sequence data to generate valid results and,
therefore, require having sufficient numbers of samples, isolating samples from biologically
relevant sites, controlling for confounding factors, as well as using appropriate analytical tools
(Bella et al., 2013). Furthermore, choosing the appropriate sequencing technology is of vital
importance as each technology has its own maximum capacity controlling the number of
sequencing reads they can undertake, which influences how many samples can be analyzed at
once. Sequencing depth, meaning the number of reads that can be produced during sequencing,
is very important in regard to being able to resolve rare species or detect differences between
samples (Bella et al., 2013).

Utilization of NGS technology can provide valuable information related to manufacturing
processes, seasonal variation, geography, climatic conditions, use of raw or pasteurized milk, and
a variety of other factors which contribute to the cheese microbiota. There are three primary
approaches for microbiota analysis using NGS: amplicon sequencing using a fragment of a
highly conserved gene, ideally containing 16S hypervariable region(s) (HVR(s)) for sequencing
using comparison to databases allowing taxonomic assignment, shotgun metagenomic
sequencing involving non-targeted sequencing of DNA in a sample also using databases for
taxonomic assignment, and metatranscriptomics RNA sequencing where the total MRNA in the
sample is sequenced revealing the extent of different genes being expresses which demonstrates

the relative activity of different components of the microbial community (Jonnala et al., 2018).
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Hypervariable Region

When applying HTS to profile a microbial community, selecting a suitable HVR(s) of the
16S rRNA gene is a critical step which influences the achieved resolution of bacterial diversity
(Rajeev et al., 2020). Over the past decade, there have been various studies researching different
variable (V) regions or multiple regions of the 16S rRNA gene (Zhang et al., 2018). Deep 16S
rRNA gene sequencing of V regions is currently the predominant tool for studying microbial
ecology.

The 16S rRNA gene is comprised of approximately 1600 bp and contains nine
hypervariable regions with varying conservation named V1-V9 (Bukin et al., 2019). There are
regions within the 16S rRNA gene that are more conserved. These more conserved regions are
used to determine higher-ranking taxa, in contrast to the more quickly evolving regions with
hyper variability help identify genus or species. In a previous study for soft-cheese manufacture
they tested two different hypervariable regions V1-V3 and V3-V4 for their abilities to reveal
Lactococcus lactis diversity (Saltaji et al., 2020). The study showed that the VV3-V4 produced
more reads overall. Several studies have shown V4 as a promising region with results allowing
higher species richness determination than other regions with higher coverage and a broader
spectrum in the Bacteria domain (Zhang et al., 2018; Rajeev et al., 2020). Previous HTS studies
on dairy specific products have used the HVR V4 region for analysis (Salazar et al., 2019;

Duarte et al., 2020; Choi et al., 2020).

Bioinformatics
The term “bioinformatics” first began being used in the mid- 1980s as a way to describe
the application of information science and technology in the life sciences. This definition was

very general and included everything from robotics to artificial intelligence. Currently
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bioinformatics is more appropriately recognized as the science of how information is generated,
transmitted, received, stored, processed, and interpreted in biological systems, or more plainly
defined as the application of information science to biology (Ramsden, 2015).

Next generation sequencing techniques produce massive amounts of data and,
consequently, to draw any useful conclusions it is essential to computationally analyze the data
using bioinformatic pipelines (Bella et al., 2013). Of the bioinformatics pipelines available,
Qiime is the most popular (Caporaso, 2010). Qiime 2 is the newest version of Qiime and both are
next-generation bioinformatics platforms that are extensible, free, open source, and community
developed (Bolyen et al., 2019). It is strongly recommended by Qiime’s website to use a
computer with a minimum of 8 gigabytes of RAM. In addition to memory requirements, Qiime 2
must be in a conda environment to operate. Conda is an open-source environment management

system that runs on Windows, macQOS, and Linus (Anaconda Software Distribution, 2020).

Denoising

High-throughput sequencing of the 16S rRNA gene is a strategy commonly used to study
microbial communities. Sequence reads are traditionally clustered into operational taxonomic
units (OTUs) at a defined identity threshold in measure to avoid sequencing errors of false
taxonomic units and sequencing generated artifacts. As means of eliminating sequencing errors
to determine real biological sequences, numerous bioinformatic packages have been made
available to denoise microbiome data. Denoising in bioinformatics is a crucial feature that
reduces the amount of erroneous OTUs and, therefore, increases the accuracy of the entire
analysis pipeline.

The different denoising pipelines determine real biological sequences using single

nucleotide resolution by generating amplicon sequence variants (ASVs) also referred to as zero
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noise OTUs and sub-OTUs. Two of the most commonly used denoising packages are Deblur and
DADAZ2 which are both available through Qiime 2. The two pipelines differ in their algorithms
used to denoise as well as in run times. The pipelines result in similar general community
structure but there is considerable variation in the number of ASVs/OTUs and resulting alpha-
diversity that should be taken into consideration when attempting to identify rare organisms
(Nearing et al., 2018). Deblur and DADAZ2 differ from other denoising pipelines by
reconstructing exact biological sequences within the sample creating ASVs as opposed to OTUs
(Prodan et al., 2020). Previous studies comparing these two denoising pipelines used mock
communities to evaluate the differences and effectiveness of the algorithms (Nearing et al., 2018;

Prodan et al., 2020).

Deblur

Deblur is open source under the Berkley Software Distribution license making it easily
and freely accessible through the Qiime 2 platform. The Deblur algorithm works independently
on each sample. Deblur aligns sequences together into ASVs based upon an upper error rate with
the mean error rate and a constant probability of indels removing predicted error-derived reads
from adjacent sequences (Amir et al., 2017). Indel is a term used in molecular biology used to
describe an insertion or deletion of bases in the genome which is then applied to sample-by-
sample approach having an advantage of reducing memory requirements and computational
demand (Nearing et al., 2018).

The algorithm compares sequence-to-sequence Hamming distances within a sample.
Hamming distance is a metric used to compare two binary data strings of equal length with the
distance being the number of bit positions in which the two strings are different. The

implementation of the Deblur algorithm can be broken down into three steps. Firstly, sequences



14

are sorted by abundance. Secondly, the number of predicted error-derived reads are subtracted
from the neighboring reads using the Hamming distance in an order from the most to least
abundant sequence. Lastly, any sequence with an abundance that drops to 0 after a subtraction of

the Hamming distance is removed from the list of valid sequences (Amir et al., 2017).

DADA2

DADAZ2 stands for Divisive Amplicon Denoising Algorithm 2 and is open source under
the Lesser General Public License (LGPL-3.0). DADA2 uses a parametric model to determine
true biologic sequences from reads. The algorithm relies on input read abundance and distances
with the reasoning of true reads. Meaning true reads are likely to be more abundant and less
abundant reads with a few base-differences from more abundant sequences being more likely to
be error-derived (Prodan et al., 2020). There are some structural differences between DADA2
and most other denoising pipelines. One of the biggest differences is DADAZ2 performs merging
of paired-end reads after denoising samples. The core denoising algorithm uses the empirical
relationship between the quality score and error rates, and when reads are merged, the
relationship will differ between the overlapping, forward-only, and reverse-only portions of the
merged read creating a variation that interferes with the denoising algorithm (Callahan et al.,
2016). Therefore, greater accuracy can be achieved using DADAZ2 by merging after samples are
denoised.

DADAZ2’s core denoising algorithm is slower than others because of the computational
demands. The DADAZ pipeline includes filtering, dereplication, denoising, chimera detection,
and merging paired ends. Filtering trims sequences to a specified length, removing any
sequences shorter than that length, and filters based on a minimum quality score and the number

of ambiguous bases (Callahan et al., 2016). Dereplication creates a list of unique sequences and
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their abundances and creates consensus quality scores for the unique sequences by taking the
mean of the positional qualities of the component reads. The denoising step implements the core
denoising algorithm. In the chimera detection sequences that are exact bimeras, and then
searching for combinations of right-parent and left-parent sequences all chimeric sequences are
flagged and removed. DADAZ2 uses a method with sensitive chimera detection allowing this
pipeline to differentiate closely related variants creating ASVs. The final step is merging the

paired sequences if they match exactly.
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METHODS
Cheese
Fifteen aged Cheddar cheeses manufactured in different locations were purchased in the
retail market (Table 1). This included an aged Cheddar cheese made at Utah State University
(Logan, UT) for which the manufacturing protocol was known including the SLAB and ALAB

used. Information on the typical NSLAB present in the cheese was also available.

DNA Extraction

Bacterial DNA in the Cheddar was extracted using a pretreatment followed by a modified
DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) extraction protocol. Cheese samples were
stomached for 4 min at 260 rpm using 11 g of cheese into 99 mL of sterile 2% sodium citrate
(Fisher Scientific, Fair Lawn, NJ). Then 10 mL of homogenate was transferred into a 15-mL
sterile centrifuge tube and centrifuged at 8,000 x g for 15 min. Following centrifugation, the
supernatant was removed, and the pellet suspended into 1 mL of sterile 0.2 M sodium phosphate
buffer (pH 7) (Fisher Scientific). The suspended pellet was then transferred into a sterile 1.5-mL
microfuge tube and centrifuged at 13,000 x g for 10 min and supernatant discarded. The pellet
was suspended in warmed(60°C) bead solution from the PowerSoil kit and transferred back into
the bead tube included in PowerSoil Kit. Reagent C1 was then added per PowerSoil kit protocol
with the addition of 10 pL of sterile 5-mg/mL lysozyme (Fisher Scientific) in phosphate buffer
(Fisher Scientific) and incubated at 37 °C for 1 h.

The PowerSoil kit’s protocol was followed with the exceptions of adding 25 uL
proteinase K (Qiagen, not included in the kit) during step 6 used to digest proteins and remove
contamination. Additional modifications included taking all of the supernatant at steps 9 and 12

instead of the 600 uL and 750 pL listed in the PowerSoil protocol as a way of maintaining as
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much DNA in the samples as possible. A final modification to the kits protocol was using a final
volume of 50 uL of reagent C6 instead of 100 L at the end of the protocol (step 19) as a means
of not diluting the final DNA product (Appendix A.). Following extraction DNA samples were

quality checked using NanoQuant Plate (Tecan, Zurich, Switzerland).

DNA Amplification, Barcoding, and Sequencing

The samples underwent two rounds of PCR using Thermo Fisher Scientific PCR
reagents. During the first round of PCR the set of primers used were S-D-Bact-0341-b-S-17
(CCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21 (GACTACHVGGGTATCTAA
TCC) obtained from Integrated DNA Technologies (IDT; Coralville, 1A). These primers amplify
460 bp from the 5’ end of the 16S rRNA gene targeting the hypervariable VV3-V4 region. A
second round of PCR added unique forward and reverse barcode primer combinations to each
sample (see Appendix B) obtained by IDT allowing samples to be identified during downstream
analysis. The prepared DNA samples were then sequenced by the Center for Integrated
Biosystems (Utah State University, Logan, UT) using the IHlumina MiSeq system with MiSeq

Reagent Kit v3 (600 cycle).

Downstream Analysis

Microbiome bioinformatics were performed using QIIME 2 2019.4 (g2) software
(Bolyen et al., 2019) with the data uploaded and accessed remotely at the Center for High
Performance Computing (CHPC; University of Utah, Salt Lake City, UT) using FastX2, from
StarNet. The CHPC remote server provided access to 80 core processing units (CPUs) and 376
GB of memory to use for analysis.

Raw sequence data was demultiplexed, joined, and quality filtered using the g2-demux

plugin followed by denoising. The sequence data was denoised using two plugin programs:
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Deblur (Amir et al., 2017; see Appendix B) and DADA2 (Callahan et al., 2016; see Appendix
C). After the samples were denoised, ASVs were aligned with mafft (Katoh et al., 2002) using
g2-allignment and then phylogenic trees created using fasttree2 (Price et al., 2010) using g2-
phylogeny. Taxonomic analysis was performed using g2-feature-classifier to assign taxonomy to
ASVs using Silva 132 99% OTUs aligned sequences (Quast et al 2012). All ASVs were then
assigned an OTU identification using the National Center for Biotechnology Information (NCBI)

database.
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RESULTS AND DISCUSSION
Sample Identities

The fifteen different samples were manufactured in different regions, with 9 of the
cheeses manufactured in the United States, 5 originating from Ireland, and one originating from
Australia (Table 1). The types of Cheddar cheeses purchased for this study included medium,
sharp, extra sharp, aged, and reserved. The term sharp refers to the flavor profile resulting from
the aging process. There are no legal definitions or requirements for Cheddar cheese to be
labeled as “sharp” or “aged” resulting in a retail market where products commercially labeled as
“sharp” or “aged” may actually vary widely in actual ripening time (Drake et al., 2009).

Even though there is not an industry standard for labeling, Cheddar cheese types are
assigned based on how long they have been aged with mild Cheddar being ripened the least
amount of time typically 1 to 3 mo, medium Cheddar is ripened 3 to 6 mo, and sharp Cheddar is
ripened over 6 mo or more as defined by the U.S. Dairy Export Council (2016), extra sharp
Cheddar is ripened 15 mo or greater, and reserve Cheddar is often a Cheddar cheese that has
been aged between 2 to 6 yr. Although there may be slight variation among manufacturers these
ranges of categorizations of sharpness have been accepted for this study. The Cheddar cheeses
purchased have a type listed which indicates what type they were at the time they left the
packaging facility. However, there is no way of knowing the exact age of the cheeses at the time
of DNA extraction for a number of reasons including not knowing how long it took to for the
Cheddar cheeses to reach the retail outlet or how long the Cheddar cheeses were there before
they were purchased.

Both the manufacturer and origin of manufacture are listed with the cheese sample

identity (Table 1). In a previous study, Cheddar cheeses from Ireland, New Zealand and the



Table 1. Cheeses used for DNA extraction.
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Sample Manufacturer/Brand Type Origin
A Tillamook Medium Cheddar Oregon, USA
B Cracker Barrel Vermont Sharp White Vermont, USA
C Cabot NY Extra Sharp New York, USA
D Old Crock Sharp Cheddar Australia
E Kerrygold Skelling Ireland
F Kerrygold Reserve Cheddar Ireland
G Kerrygold Dubliner Ireland
H Oscar Wilde Vintage Cheddar Ireland
| Utah State University Aged Cheddar Utah, USA
J Murray's Irish Cheddar Ireland
K Spring Hill Jersey Cheese Yellow Cheddar California, USA
L Hilmar Medium Cheddar California, USA
M Hilmar Vintage Sharp Cheddar California, USA
N Carr Valley Cheese Medium Cheddar Wisconsin, USA
(0] Babcock White Aged Cheddar Wisconsin, USA

United States were analyzed for differences in flavor (Drake et al., 2005). The results showed

distinctive differences between Cheddar cheeses from each of the geographic locations as noted

by the highly trained tasting panel, suggesting international differences in Cheddar cheese. It is

known that SLAB, adjunct or secondary cultures, and NSLAB collectively contribute to the

flavor development in Cheddar. Whether the milk comes from grass fed cows or cows fed a total

mixed ratio diet is also important to final cheese flavor because milk from grass fed cows has a

distinctive flavor even if the same cultures are used to make the cheese (Khanal et al., 2005;

Crossiant et al., 2007). Therefore, the manufacturer and origin of manufacture are important

categorizations for our cheese samples.

Sequencing Output

The total number of raw sequence reads before denoising the 15 Cheddar cheese samples

was 15,193,666. Individual samples ranged between 854,340 and 1,197,119 reads with an
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average of 1,012,911 reads per sample. Looking at the interactive quality plot generated in
demux-paired-end.qzv (see Appendices C and D), | decided to trim left 17 base pairs (bp) and to
trim right from 460 bp to 448 bp (Figure 1).

After sequencing of the DNA and initial processing of data in Qiime2 using q2-vsearch
and applying a quality filter (see Appendix C), there were 13,669,044 reads going into the
Deblur denoising algorithm. Using a denoising step is a crucial step in the bioinformatic analysis
used to eliminate sequencing errors and determine real biological sequences within the samples.
Denoising sequences allows for greater taxonomic resolution and is now the standard in
bioinformatics. After using Deblur to denoise the reads, there were 6,152,601 filtered reads
resulting in only 40.5% of the raw reads being retained. This is an average of 410,000 reads per
cheese sample.

When using DADAZ2 there were 15,193,666 sequence reads going into the denoising
algorithm, about one and a half million more sequences than the sequences that went into
Deblur. This difference is because unlike Deblur, DADAZ2 joins paired ends and denoises
sequence data. After using DADA2 to denoise the raw reads, there were 11,547,210 filtered
reads (770,000 reads per sample) resulting in 76% of the reads being retained. DADAZ2 retained
1.9 times more reads compared to Deblur.

Figure 1 Interactive quality plot generated by Qiime 2 with areas to trim marked by red
dashed lines.
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Deblur

After denoising using Deblur, 74 unique ASVs across the 15 different samples were
identified (see Appendices E and F). Each ASV has its own DNA sequence. Deblur had 30 DNA
sequences that were only identified by Deblur and had 44 DNA sequences that were also found
by DADAZ2. These 74 ASVs were then grouped as Lc. lactis, St. thermophilus, lactobacilli, or
other species (Table 2). The category of other species does not contain bacteria that traditionally
contribute to the cheese making process or considered as LAB typically present in cheese.

Of the 74 unique ASVs, 39% were identified as Lc. lactis or St. thermophilus, although
within each cheese they accounted for 98.25% of the relative abundance. Unexpectedly, this
makes SLAB the most dominant category of bacteria in the aged Cheddar cheese samples at
almost 2 logs higher than NSLAB. Twenty-three percent of ASVs were identified as various
lactobacilli which can include ALAB and NSLAB. Within individual cheeses, lactobacilli only
accounted for an average of 1.73% relative abundance. There were 28 other ASVs identified as
various species but at a very low relative abundance within a cheese of 0.01% or less.

It has been noted that during cheese maturation, the salt-in-moisture concentration and
lack of sugars as nutrients causes some SLAB to lose their viability and at the same time NSLAB
lactobacilli begin to multiply, plateauing after 3 to 9 mo at cell densities of 107 to 102 cfu/g
(Broadbent et al., 2011). The cheese samples used in this study were all aged at least 6 mo and it
was expected that ASV relative abundance would show a greater abundance of lactobacilli than
Lc. lactis and St. thermophilus. However, the relative abundance observed showed SLAB to have
populations 2 logs higher than NSLAB populations.

Starter LAB reach their peak cell density during the day of manufacture with counts up to

10° cfu/mL and within the first mo. of ripening the viable SLAB decline to approximately 1%



Table 2. Relative abundance of amplicon sequence variants after denoising using Deblur
identified as starter culture (Lactococcus lactis or Streptococcus thermophilus), adjunct and
nonstarter lactobacilli and other species in aged cheeses color coded from lowest abundance

(yellow) to greatest abundance (red) with black representing none detected.

Cheese!
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Lactococcus  Streptococcus - Other
lactis thermophilus Lactobacilli species.
(%)

0.0388 0.1560 0.0002
0.0278 0.9502
0.4371 0.0071
18.1103 0.5322 0.5201
32.4472 0.0519 0.0335
5.0828 0.0957
0.9414 0.0037
14.3854 0.4608 0.0660
11,3532 0.0002
22.6283 0.9910 0.3006
36.7049 0.0000 0.2482
5.4329 0.0346

el 3090 |
0.0818 0.0080
0.0580 0.0133 0.0031

1Cheeses as described in Table 1.



24

of maximum numbers (McSweeney et al., 1994; Banks and Williams, 2004). Many culture-
dependent approaches have inherent limitations in terms of their abilities to recreate real
conditions under which most bacteria are growing in their natural habitat leading to the
cultivatable populations not being completely reflective of the communities and the actual
microbial diversity (Ruggirella et al., 2014). One way to explain the SLAB dominance in relative
abundance is the possibility that the SLAB populations are in a viable non-culturable (VNC)
state.

During cheese storage after carbohydrate depletion, lactococci can enter a VNC state,
meaning that although the cells have an inability to replicate, they do not necessarily die. During
this stage, Lc. lactis cells have been observed using spectofluorometry and demonstrated their
ability to express lytic and cell wall repair genes showing that they did not undergo lysis but
rather maintained their cellular membrane aiding in preservation of nucleic acids (Ganesan et al.,
2007). At the beginning of Cheddar cheese making, milk is inoculated with high levels of starter
cultures and during the cheese ripening some starter cultures die or enter a VNC state where they
preserve their nucleic acids. Therefore, the dominance of SLAB in the relative abundance
observed reflects a population of initial starter cultures within the cheeses.

The lactobacilli group was observed ranging in ASV relative abundances between
0.0004% to 11.35%. Generally, the lactobacilli group is thought of as the NSLAB population
within aged Cheddar cheese. However, it is known that the cheese sample from Utah State
University (Cheese I) uses Lactobacillus helveticus as an ALAB when making this particular
aged Cheddar cheese explaining the high relative abundance of 11.35% (Table 3) observed
within the lactobacilli group. Cheese F also had a higher relative abundance of 4.5% for Lb.

helveticus when compared to the other relative abundances observed for the identified OTUs.



Table 3. Relative abundance of best match of operational taxonomic unit of amplicon sequence variants after denoising using Deblur
sequenced from aged cheese grouped as various lactobacilli species and color coded from lowest abundance (yellow) to
greatest abundance (orange) with black representing none detected.
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Cheese L contains Lactobacillus delbrueckii subsp. lactis with a relative abundance of 4%. All
other lactobacilli observed had relative abundances <1%.

The use of ALAB during cheese making can be for a number of purposes including
preventing bitterness, modifying the flavor profile, or for their ability to produce proteins that
protect against the growth of unwanted bacteria (Fox et al., 1998; Orsi and Zambrini, 2017).
Knowing that the highest level of abundance within the lactobacillus grouping is because of the
use of Lb. helveticus as an ALAB means that the maximum relative abundance possible for a
NSLAB in the lactobacilli group is 4.5%. Although, Lb. helveticus is used as an ALAB in
Cheese I, it cannot be stated with certainty that this is the same for Cheese F because the SLAB

and ALAB used to manufacture all cheeses other than Sample I are unknown in this study.

Deblur Filtered > 0.01% Relative Abundance

Using Deblur to denoise the sequence data resulted in 74 total ASVs, of which only 42%
had a relative abundance greater than 0.01% (see Appendix G). The 31 ASVs with relative
abundances greater than 0.01% make up 99.95 to 99.99 % total abundance across the samples
(Table 4). After filtering out ASVs with relative abundances less than 0.01% there were only 5
unique ASVs for Lc. lactis. Of these ASVs, only one ASV had a relative abundance greater than
0.09% (Table 5). This single dominant ASV was identified as a strain of Lc. lactis subsp. lactis.
There were only 3 unique ASVs identified as St. thermophilus identified. Two had abundances
greater than 1% (Table 6).

Based on both the microbiological and biochemical characteristics of Lc. lactis is a
preferred organism for manufacturing aged Cheddar cheese and is widely used in commercial
starter cultures (Vedamuthu et al., 1966). A single strain of Lc. lactis dominating across all

samples manufactured in various regions and by various manufactures is not a realistic
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Table 4. Relative abundances greater than 0.01% of amplicon sequence variants after
denoising using Deblur identified as starter culture (Lactococcus lactis or Streptococcus
thermophilus), adjunct and nonstarter lactobacilli and other species in aged cheeses color coded
from lowest abundance (yellow) to greatest abundance (red) with black representing abundances
less than 0.01%

Lactococcus  Streptococcus - Other
! : Lactobacilli -
lactis thermophilus species.

Cheese? (%)

0.04 0.16 0.00
B 0.03 0.95
c 0.44 0.01
D 0.53 0.50
E 0.05 0.02
F 5.08 0.07
G 0.94 0.00
H 0.06

1Cheeses as described in Table 1.
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Table 5. Relative abundances greater than 0.01% for the 5 unique amplicon sequence
variants (ASVs) obtained after denoising using Deblur, all identified as being
Lactococcus lactis subsp. lactis. Color coded as lowest abundance (yellow) to greatest
abundance (red) and all cells less than 0.01% abundance are blacked out.

Lc. lactis ASVs
Cheese!? 1 2 3 4 5

(%)
(%)

A
B
C
D
E
F
G
H
|
J
K
L
M
N
0

1Cheeses as described in Table 1.
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Table 6. Relative abundances greater than 0.01% for the 3 unique amplicon sequence
variants (ASVs) obtained after denoising using Deblur, all identified as being
Streptococcus thermophilus. Color coded as lowest abundance (yellow) to greatest
abundance (red) and all cells less than 0.01% abundance are blacked out.
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representation of what the actual microbiomes of the cheese samples would be. This would mean
that all of the cheeses used the same single strain of Lc. lactis in their starter culture. For Cheddar
cheese manufacture, companies use defined or mixed starters composed of a blend of multiple
Lc. lactis strains that are ideally phage-unrelated (Bissonnette et al., 1999). It is known that in
Cheese I, the starter culture consisted of mixture of 6 different stains of Lc. lactis including both

lactis and cremoris subspecies.

DADA2

Using DADA2, there were 247 unique ASVs identified across the 15 different cheeses
(see Appendices H and I). DADA2 had 203 DNA sequences that were only identified by using
its algorithm and shared 44 DNA sequences with Deblur. These 247 unique ASVs were then
split into 5 different classifications; Lc. lactis, St. thermophilus, lactobacilli, and other species
(Table 7). Of the 247 unique ASVs, 38% were identified as Lc. lactis and St. thermophilus.
Lactococcus lactis ranging up to 99.25% abundance and St. thermophilus ranged up to 96%.
Lactobacilli had 38 unique ASVs making up 15% of the total number ASVs present with an
average of 0.04% relative abundance within the samples.

The lactobacilli group had ASV relative abundances ranging between 0.0003% to
10.029%. The highest relative abundance was observed in Cheese | for the OUT group of Lb.
helveticus (Table 8). This difference in the range of observed relative abundance for lactobacilli
when compared to the range observed when using Deblur comes from the difference in total

ASVs identified.

DADA2 Filtered >0.01% Relative Abundance
Using DADA2 to denoise the sequence data resulted in 247 total ASVs. Of these, only

43% have a relative abundance greater than 0.01%. After filtering out any ASV with relative
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Table 7.  Relative abundance of amplicon sequence variants after denoising using
DADAZ? identified as starter culture (Lactococcus lactis or Streptococcus thermophilus),
adjunct and nonstarter lactobacilli and other species in aged cheeses color coded from
lowest abundance (yellow) to greatest abundance (red) with black representing none
detected.

Lactococcus  Streptococcus - Other
. g Lactobacilli :
lactis thermophilus species

%

Cheese!

A 0.1171 0.2768 0.0004
B 0.0251 0.1628
c 0.5063 0.0084
D 17.1963 0.4906 0.0729
E 30.7423 0.0523 0.0227
F 4.3430 0.4658
G 0.8698 0.0016
H 13.8005 0.5628 0.0931
| 10.2522 | 0.0435
J 15.4018 0.6356 0.0314
K 25.4110

L 0.0609
M 0.0012
N 0.0114
0 0.0067

1Cheeses as described in Table 1.



Table 8.  Relative abundance of best match of operational taxonomic unit of amplicon sequence variants after denoising
using DADA2 sequenced from aged cheese grouped as various lactobacilli species and color coded from lowest abundance
(yellow) to greatest abundance (orange) with black representing none detected.

Lactobacilli OTU ldentifications
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abundances less than 0.01% only 107 ASVs remained (see Appendicies K and L) making up
99.42 to 99.99% total relative abundance across samples (Table 9). After filtering out ASVs with
less than 0.01% there were 34 unique ASVs for Lc. lactis, four had abundances greater than 1%
(Table 10). Similarly, there 35 unique ASVs for St. thermophilus, two had abundances greater
than 1% (Table 11).

Both the greater number of ASVs and there spread across the different Cheddar chesses
demonstrates a more realistic representation of what would be expected in a commercial
manufacture. To manufacture Cheddar cheese, an inoculation of carefully selected SLAB is
required. The SLAB drives the fermentation process. When phage sensitive cultures are present,
the consequent lysis of sensitive cells can delay or halt milk fermentation leading to low-quality
products or the need to discard the inoculated milk entirely (Garneau and Moineau, 2011). The
risk of LAB phages has led the industry to select multiple SLAB strains for use in the starter
inoculum that are phage-unrelated as a way of preventing a fermentation from failing. Therefore,
DADAZ2 provides a better representation of the SLAB Cheddar cheese samples and will be used

for further comparisons. Similar data obtained by Deblur will be given in the Appendix.

Regional Comparison of Cheeses

The Cheddar samples clustered into two groups (Figure 2). The first grouping included
cheeses manufactured in Ireland, Australia, California, and Vermont. The second grouping
included cheese from Ireland, Utah, California, Oregon, New York, and Wisconsin. Initially it
was predicted that the cheeses were going to cluster according to their regions of manufacture.
However, this was not entirely the case. Cheeses clustered by the most abundant SLAB with the

first group dominated by St. thermophilus and the second group dominated by Lc. lactis
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Table 9. Relative abundances greater than 0.01% of amplicon sequence variants after
denoising using DADAZ identified as starter culture (Lactococcus lactis or Streptococcus
thermophilus), adjunct and nonstarter lactobacilli and other species in aged cheeses color
coded from lowest abundance (yellow) to greatest abundance (red) with black
representing abundances less than 0.01%.
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Table 10.  Relative abundances greater than 0.01% for the 34 unique amplicon sequence variants (ASV) after denoising using
DADAZ2 all identified as being Lactococcus lactis. Color coded as lowest abundance (yellow) to greatest abundance (orange) with
ASV <0.01% or not detected as black (continued on page 36).
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Lactococcus lactis ASVs
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Table 11. Relative abundances greater than 0.01% for the 35 unique amplicon sequence variants (ASV) after denoising using
DADAZ2 all identified as being Streptococcus thermophilus. Color coded as lowest abundance (yellow) to greatest abundance (orange)
with ASV <0.01% or not detected as black (continued on page 38).
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Figure 2.  Phylogenetic clustering of samples based on their microbiomes displaying the branch lengths in blue.
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(Tablel0). In the first cluster group, Cheese K and B, both from the United States, had the
highest abundance of Lc. lactis of the group. In the second cluster group Cheese F from Ireland
had the highest abundance of St. thermophilus of the group.

The biggest influence on how cheeses clustered in this study was the dominant SLAB
used in manufacture. In a previous study, commercial Cheddar cheeses from various regions
across the United States were evaluated for regional flavor differences (Drake et al., 2008). The
evidence in that study suggested that region of manufacture and general make procedure did not
have as large of an influence as the facility practices as a whole. Further, the starter culture had a
bigger influence on the overall microbiome of aged Cheddar cheese not the region of

manufacture.

Environmental Bacteria

During the cheese making process environmental bacteria may be introduced through the
milk, processing equipment, or by the cheese handlers. The environmental bacteria found in the
category other species (see Appendices E and I) were not exclusionary strains of bacteria
meaning that although some of the bacteria present were not ideal for cheese making, they were
not the types of bacteria that pose a health risk and make the cheese unfit for sale. Environmental
bacteria including both other species and NSLAB have the potential to cause cheese defects,
poor flavor development, and affect shelf life. The amount and types of environmental bacteria
found in cheeses may indicate how clean the cheese making process is for any given cheese
making facility.

An example of an environmental contaminant introduced by milk during manufacture is

Streptococcus uberis, which was found in two of the cheeses studied (see Appendices E and I).
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Table 12. Relative abundances greater than 0.01% of amplicon sequence variants after denoising using DADAZ identified as
starter culture (Lactococcus lactis or Streptococcus thermophilus), adjunct and nonstarter lactobacilli and other species in aged
cheeses color coded from lowest abundance (yellow) to greatest abundance (red) with black representing abundances less than
0.01%.

Lactococcus  Streptococcus

lactis thermophilus Lactobacilli  Other species
Cheese? Cluster Region
G 1 Ireland 0.33
J 1 Ireland 15.39
D 1 Australia 17.19
H 1 Ireland 13.79
B 1 Vermont 38.86
K 1 California 2541
E 1 Ireland 30.74
| 2 vah (S
F 2 Ireland _
L 2 California _
M 2 California _
c 2 New York | CORON
A 2 Oregon _
o] 2 Wisconsin _
N 2 Wisconsin _

1Cheeses as described in Table 1.
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Streptococcus uberis is an environmental bacterium responsible for a high percentage of mastitis
in dairy cattle (Di Domenico et al., 2015). Another example of an environmental contaminant is
Thermus thermophilus (see Appendices E and 1) a carotenoid-producing thermophile which can
cause a pink discoloration defect in cheese (Quigely et al., 2016). The most probable source of T.
thermophilus contamination is from hot water used during cheese making. Staphylococcus
aureus was found in 2 cheese samples (see Appendix 1) which is found on the skin indicating it
was introduced by cheese handlers and possible poor hygiene practice in the manufacturing

facilities.
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CONCLUSIONS

Originally, it was hypothesized that when testing Cheddar cheeses from various regions
of manufacture samples would cluster according to the region of manufacture when analyzed
using NGS technology. However, when DNA was extracted from the 16S rRNA hypervariable
V3-V4 region the most important factor impacting how samples cluster was not region of
manufacture but rather the dominant SLAB population. Cheeses tested were either dominated by
Lc. lactis or St. thermophilus which determined the clustering group.

When analyzing the NGS data using the Qiime 2 bioinformatics platform we used two
different denoising algorithms both accessible through the platform. The two denoising methods
were used for comparison of variant identification. After initial sequencing using lllumina MiSeq
there were 15,193,666 raw sequence reads with an average of 1,012,911 raw reads per sample.
When using Deblur to denoise sequence data 40.5% of reads were retained. When DADA2 was
used to denoise the same sequence data 76% of reads were retained. Using DADAZ resulted in
the retention of about 1.9 times more reads in comparison to Deblur. Greater number of reads
allows less abundant ASVs to be detected. The ability to detect low-abundance bacteria is of
particular importance especially in regard to low-abundance spoilage bacteria as demonstrated
by Xue et al., 2021.

When comparing the two denoising methods it was important to compare the ASVs
generated by each denoising algorithm. Deblur resulted in 74 unique ASVs and DADAZ2 resulted
in 247 ASVs. The defining characteristic of the first cluster was dominance of St. thermophilus
Deblur only identified 3 ASVs with greater than 0.01% relative abundance and DADA2
identified 35 ASVs. Lactococcus lactis dominance was the defining characteristic of the second

cluster grouping and when using Deblur for analysis only 5 ASVs were identified for the OTU
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classification of Lc. lactis compared to the 34 ASVs identified by DADAZ2. The starter
composition for the cheese made by Utah State University known and uses 6 different Lc. lactis
strains when making their cheese. This would mean for the results generated by using Deblur to
be accurate in resolution of the data there was only 1 Lc. lactis starter used in all of the different
cheeses tested. Leading to the conclusion that when doing a Cheddar microbiome study DADAZ2
should be used for denoising sequence data as a way of identifying more ASVs and as a means
of creating a more accurate representation of the actual cheese composition.

It has been shown that SLAB and NSLAB dynamically change according to the
modification of environmental conditions during cheese gaining (Stefanovic et al., 2018). In
aging Cheddar cheese studies using culturing techniques it has been observed that over the aging
process SLAB lose viability rapidly in the initial phases of ripening and NSLAB slowly increase
in numbers to become the dominant microbiota in cheese (Gatti et al., 2014). The results of this
study showed that SLAB remains the most abundant after being aged for over 6 months
suggesting that SLAB remain present in a viable but non-culturable state (VBNC).

Microorganisms generally live in a feast or famine existence in their natural
environments due to the variability of nutrient and energy availabilities. During cheese ripening
conditions SLAB encounter famine type conditions leading to a severe reduction of the growth
rate. Lactic acid bacteria are able to survive these periods of extremely slow growth, while still
forming aroma compounds (Mastrigt et al., 2018). Using NGS as a way of detecting VBNC
bacteria in food products would be a powerful tool to utilize in the dairy industry allowing for
the detection of foodborne pathogenic bacteria. It has been suggested that 80% of foodborne

illness can be attributed to VBNC microorganisms (Unlu, 2021).



45

When comparting the microbiota community differences between the cheeses the
differences observed were mainly differences in relative abundances of various SLAB. The first
cluster grouping contained cheeses from Ireland, Australia, California, and Vermont with the
OTU identifications of highest relative abundance being St. thermophilus. In the second cluster
grouping there were cheeses from Ireland, Utah, California, Oregon, New York, and Wisconsin
with OTU identifications of highest relative abundance being Lc. lactis. Although, of the cheeses
in the first grouping both the cheeses from the United States had the highest relative abundance
of L. lactis across the group and the Irish cheese from the second grouping had the highest
relative abundance of St. thermophilus among the cheeses in its grouping. Demonstrating that

there might be regional preferences of SLAB.
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FUTURE RESEARCH

To build upon this project a follow up study could be done by choosing 6 different
defined starter strains for which there is a genome sequence. Then using these 6 strains different
cheese makes could be done with defined ratios to be used during manufacture sampling at
different storage points. The previously outlined protocol could then be followed for DNA
extraction and analysis. Then after bioinformatic analysis the method could be evaluated by
checking if 6 unique ASVs were identified and what relative abundances were observed as well
as evaluating any changes in the relative abundances observed over the Cheddar aging process.

Based on the results of this study either everyone is using the same SLAB strains to make
cheese, or these are the only strains surviving. Another follow up study that could be done
separately or in conjunction with the proposed study previously mentioned. Where cheeses are
tested using next generation sequencing as well through use of traditional plating techniques for

both SLAB and NSLAB.
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APPENDIX A. MANUFACTURER (QIAGEN) INSTRUCTIONS USED FOR DNA

EXTRACTION

1. Add 0.25 g of soil sample to the PowerBead Tube provided. Gently vortex to mix.
2. Add 60 pl of Solution C1 and invert several times or vortex briefly.
Note: Solution C1 may be added to the PowerBead tube before adding soil sample

3. Secure PowerBead Tubes horizontally using a Vortex Adapter tube holder {cat. no.
13000-V1-24).

4. Vortex at maximum speed for 10 min.
Note: If using the 24-place Vortex Adapter for more than 12 preps, increase the vortex
time by 5-10 min.

5. Centrifuge tubes at 10,000 x g for 30 s.

6. Transfer the supernatant fo a clean 2 ml collection tube.
Note: Expect between 400-500 pl of supernatant. Supernatant may still contain some

soil particles.

7. Add 250 pl of Solution C2 and vortex for 5 s. Incubate at 2-8°C for 5 min.

— Sample to Insight
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Note: You can skip the 5 min incubation. However, if you have already validated the

DNeasy PowerScil extractions with this incubation we recommend you retain the step.
8. Centrifuge the tubes for 1 min at 10,000 x g.
9. Avoiding the pellet, transfer up to 600 pl of supernatant to a clean 2 ml collection tube.

10. Add 200 p| of Solution C3 and vortex brl'eHy. Incubate at 2—8°C for 5 min.

Note: You can skip the 5 min incubation. However, if you have already validated the

PowerSoil extractions with this incubation we recommend you retain the step.
11. Centrifuge the tubes for 1 min at 10,000 x g.
12. Avoiding the pellet, transfer up to 750 pl of supernatant to a clean 2 ml collection tube.
13. Shake to mix Solution C4 and add 1200 pl to the supernatant. Vortex for 5 s,

14. load 675 pl onto an MB Spin Column and centrifuge at 10,000 x g for 1 min. Discard
flow through.
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15. Repeat step 14 twice, until all of the sample has been processed.
16. Add 500 pl of Solution C5. Centrifuge for 30 s at 10,000 x g.
17. Discard the flow through. Centrifuge again for 1 min at 10,000 x g.

18. Carefully place the MB Spin Column into a clean 2 ml collection tube. Avoid splashing
any Solution C5 onto the column.

19. Add 100 pl of Solution Cé to the center of the white filter membrane. Alternatively, you
can use sterile DNA-Free PCR Grade Water for this step (cat. no. 17000-10).

20.Centrifuge at room temperature for 30 s at 10,000 x g. Discard the MB Spin Column.
The DNA is now ready for downstream applications.
Note: Solution Cé is 10 mM Tris-HCI, pH 8.5. We recommend storing DNA frozen
(=20° to —80°C) as Solution Cé does not contain EDTA. To concentrate DNA see the
Hints & Troubleshooting Guide.

For upto-date licensing information and productspecific disclaimers, see the respective QIAGEN kit handbook or user manual. Trademarks: QIAGEN®, Sample to
Insight®, DN easy®, PowerSoil® (QIAGEN Group), 1103425 06/2016 HB2179-001 @ 2016 QIAGEN, all rights reserved

Ordering www.qgiagen.com /contact | Technical Support support.qiagen.com | Website www.qiagen.com



APPENDIX B. UNIQUE BARCODE COMBINATIONS FOR EACH CHEESE SAMPLE

Forward Reverse Forward Reverse
Cheese!  Barcode Barcode Sequence Sequence

A U701 U501 TCGCCTTA TAGATCGC
B U701 U502 TCGCCTTA CTCTCTAT

C U701 U503 TCGCCTTA TATCCTCT

D U701 U504 TCGCCTTA AGAGTAGA
E U701 U505 TCGCCTTA GTAAGGAG
F U702 U501 CTAGTACG TAGATCGC
G U702 U502 CTAGTACG CTCTCTAT

H U702 U503 CTAGTACG TATCCTCT

| U702 U504 CTAGTACG AGAGTAGA
J U702 U505 CTAGTACG GTAAGGAG
K U704 U501 GCTCAGGA TAGATCGC
L U704 U502 GCTCAGGA CTCTCTAT
M U704 U503 GCTCAGGA TATCCTCT

N U704 U504 GCTCAGGA AGAGTAGA
O U704 U505 GCTCAGGA GTAAGGAG

1Cheeses as described in Table 1.
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APPENDIX C: QIIME 2 DEBLUR DENOISING COMMAND PIPELINE

A. Data importing
1. Move sequence data folder (Sophie_Sequences) into the directory you will be using in
Qiime 2. The sequence data are in individual compressed files (.gz) of forward and
reverse sequences.
2. Rename files to include lane number: A s1 R1 001.fastqg.gz >
A S1 L### R1 001.fastq.gz where “L###” isafake lane number for each
sample (can all be “.001").
3. Import data as type: “cassava-18-paired-end-demultiplexed”.
giime tools import \
--type 'SampleData[PairedEndSequencesWithQuality]' \
--input-path Sophie Sequences \
-—-input-format CasavaOneEightSingleLanePerSampleDirFmt \
--output-path demux-paired-end.qgza

4. Generate summary of the demultiplexed results.

giime demux summarize \
--i-data demux-paired-end.gza \
--o-visualization demux-paired-end.qzv

#visualizations generated are .gzv files and you can view these

files in Qiime 2

5. View generated visualization. The first tab shows the distribution of sequences/samples.
The second tab is an interactive graph of quality score as a function of sequence length.

giime tools view demux-paired-end.qzv

#the interactive graph will show you if your sequence reads need to
be trimmed for analysis

B. Sequence quality control and feature table construction.

There are two options for quality control Deblur and DADAZ2. Deblur will only do denoising and
clustering and thus joining paired ends must be done separately using g2-vsearch.
4. Join demultiplexed reads.

giime vsearch join-pairs \
-—i-demultiplexed-seqgs demux-paired-end.gza \
--0-joined-sequences demux-Jjoined.gza

5. Create a view of the summary of the joined data with read quality.

giime demux summarize \
--i-data demux-joined.gza \
--o-visualization demux-joined.qgzv

6. View results.

giime tools view demux-joined.qgzv
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By hovering over the read quality graph, determine the maximum sequence length that is
associated with 99% of the sequence data (e.g., less than 9,900 sequences). (In my sample,
my max was 460.) Note the lower overall quality score at the beginning and end of the reads.
By trimming the primers off both ends (REQUIRED), these areas of poor quality will be
removed. The commands “~--p-left-trim-len 17 \”and “--p-trim-length
448 \” trim the V4 primers used in this study.

7. Apply quality control filter.

giime quality-filter g-score-joined \
--i-demux demux-joined.gza \
--o-filtered-sequences demux-joined-filtered.gza \
-—o-filter-stats demux-joined-filter-stats.qgza

8. Create visualization of quality control filter outcome.

giime metadata tabulate \
--m-input-file demux-joined-filter-stats.gza \
--o-visualization demux-joined-filter-stats.qgzv

9. View results.

giime tools view demux-joined-filter-stats.qgzv

10. Denoise your sequences with Deblur

giime deblur denoise-16S \
-—-i-demultiplexed-seqgs demux-joined-filtered.qgza \
--p-left-trim-len 17 \
--p-trim-length 448 \
--p-sample-stats \
--p-jobs-to-start 80 \
--o-representative-sequences rep-segs.gza \
--o-table table.qgza \
—--o-stats deblur-stats.gza
—--verbose
#--verbose shows what the command is doing and where it is in the
denoising process

11. Create visualization summary of Deblur feature table and stats

giime feature-table summarize \
--i-table table.qgza \
--o-visualization table.qgzv

giime feature-table tabulate-segs \
--i-data rep-segs.gza \
--o-visualization rep-segs.qzv

giime deblur visualize-stats \

--i-deblur-stats deblur-stats.qgza \
—--o-visualization deblur-stats.qgzv

12. Generate a phylogenetic tree based on the representative sequences

giime phylogeny align-to-tree-mafft-fasttree \
--i-sequences rep-segs.gza \



--o—alignment aligned-rep-segs.gza \
--o-masked-alignment masked-aligned-rep-segs.gza \
--o-tree unrooted-tree.qgza \

—-—-o-rooted-tree rooted-tree.qgza

giime tools export \
—-—input-path rooted-tree.gza \
—--output-path exported-rooted-tree
13. Alpha and beta diversity analysis.
Using the table.qzv look at the interactive sample detail to choose sampling depth with the
highest level of retained sequences for all of the samples
giime diversity core-metrics-phylogenetic \
--i-phylogeny rooted-tree.gza \
--i-table table.gza \
--p-sampling-depth 220000 \
--m-metadata-file sophie-metadata.tsv \
—--output-dir core-metrics-results
#at a sampling depth of 220000 53.64% of features are retained in
100% of samples

giime diversity alpha-group-significance \
--i-alpha-diversity core-metrics-results/faith pd vector.qgza \
--m-metadata-file sophie-metadata.tsv \
--o-visualization core-metrics-results/faith-pd-group-
significance.qgzv

giime diversity alpha-group-significance \
--i-alpha-diversity core-metrics-results/evenness vector.gza \
--m-metadata-file sophie-metadata.tsv \
--o-visualization core-metrics-results/evenness—-group-
significance.qzv

giime diversity beta-group-significance \
-—-i-distance-matrix core-metrics-

results/unweighted unifrac distance matrix.gza \
--m-metadata-file sophie-metadata.tsv \
--m-metadata-column Country \
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--o-visualization core-metrics-results/unweighted-unifrac-country-

significance.gzv \
-—p-pairwise

14. Alpha rarefaction plotting.

giime diversity alpha-rarefaction \
--i-table table.qgza \
--i-phylogeny rooted-tree.gza \
--p-max-depth 200000 \
--m-metadata-file sophie-metadata.tsv \
--o-visualization alpha-rarefaction.qgzv

15. Beta-diversity jackknife on 0.01% filtered table.

giime diversity beta-rarefaction \



--i-table table.gza \

--i-phylogeny rooted-tree.qgza \

--p-metric unweighted unifrac \
--p-clustering-method upgma \

--m-metadata-file sophie-metadata.tsv \
—--p-sampling-depth 200000 \

—--o-visualization unweighted unifrac jackknife.gzv

giime diversity beta-rarefaction \
--i-table table.gza \
--i-phylogeny rooted-tree.gza \
-—-p-metric weighted unifrac \
--p-clustering-method upgma \
--m-metadata-file sophie-metadata.tsv \
--p-sampling-depth 200000 \
--o-visualization weighted unifrac jackknife.qzv

16. Train classifier and assign taxonomies

giime feature-classifier classify-sklearn \
-—i-classifier silva V3V4 classifier.qgza \
--i-reads rep-segs.gza \
--o-classification rep-segs-taxonomy.gza

giime metadata tabulate \
--m-input-file rep-segs-taxonomy.gza \
--o-visualization rep-segs-taxonomy.qzv
17.

17. Taxonomy bar chart

giime taxa barplot \
--i-table table.qgza \
--i-taxonomy rep-segs-taxonomy.gza \
--m-metadata-file sophie-metadata.tsv \
--o-visualization taxa-bar-plots.qgzv

18. Exporting feature table with taxonomy

giime tools export \
-—-input-path table.gza \
—--output-path exported table

giime tools export \
-—-input-path rep-segs-taxonomy.qgza \
—--output-path exported rep-segs-taxonomy

ffexported files will be exported into a file that can be

opened in excel
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APPENDIX D: QIIME 2 DADA2 DENOISING COMMAND PIPELINE

A. Data importing

19. Move sequence data folder (Sophie_Sequences) into the directory you will be using in
Qiime 2. The sequence data are in individual compressed files (.gz) of forward and
reverse sequences.

20. Import data as type: “cassava-18-paired-end-demultiplexed”.

giime tools import \
--type 'SampleData[PairedEndSequencesWithQuality]' \
--input-path Sophie Sequences \
-—-input-format CasavaOneEightSingleLanePerSampleDirFmt \
—--output-path demux-paired-end.qgza

21. Generate summary of the demultiplexed results.

giime demux summarize \
--i-data demux-paired-end.qgza \
—--o-visualization demux-paired-end.qzv

#visualizations generated are .gzv files and you can view these
files in Qiime 2

22. View generated visualization. The first tab shows the distribution of sequences/samples.
The second tab is an interactive graph of quality score as a function of sequence length.

giime tools view demux-paired-end.gzv

#the interactive graph will show you if your sequence reads need to
be trimmed for analysis

B. Sequence quality control and feature table construction

Unlike Deblur, DADAZ2 will both join paired ends and do denoising resulting in the
clustering of ASVs. Therefore, there is no need to join the paired ends using g2-vsearch.

23. Denoise sequence data with DADA2

giime dada2 denoise-paired \
-—-i-demultiplexed-seqgs demux-paired-end.gza \
--p-n-threads 12 \
--p-trunc-len-f 250 \
——p-trim-left-f 17
--p-trunc-len-r 250 \
--p-trim-left-r 21 \
—-—-o-representative-sequences rep-segs-dada2.qgza \
--o-table table-dada2.gza \
--o-denoising-stats stats-dada2.qgza
—--verbose

#--p-n-threads is not required to run the DADA2 command however by
specifying 12 threads to be used it will cut down the amount of time
needed to run the command. However, note that too many threads can
max out your memory and cause the command to fail.
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#the truncate length and trim lengths were chosen based off the
interactive quality score graph and reflected the trimming used in
the Deblur denoising method

24. Rename output using the next two commands

mv rep-seqs-dadaZ?.gza rep-segs.dza
mv table-dada2.gza table.gza

25. Create visualization summary of DADAZ2 feature table and stats
giime feature-table summarize \
--i-table table.qgza \
--o-visualization table.gzv \
--m-sample-metadata-file sophie-metadata.tsv

giime feature-table tabulate-segs \
--i-data rep-segs.qgza \
--o-visualization rep-segs.qzv

giime metadata tabulate \
--m-input-file stats-dada2.qgza \
--o-visualization stats-dada2.qgzv

#the metadata file created labeled the sample IDs with features like
type of cheddar, origin of manufacture, and manufacturer

26. Create Phylogenic Tree

giime phylogeny align-to-tree-mafft-fasttree \
--i-sequences rep-segs.gza \
--o—alignment aligned-rep-segs.qgza \
--o—-masked-alignment masked-aligned-rep-segs.gza \
--o-tree unrooted-tree.qgza \
—--o-rooted-tree rooted-tree.qgza

27. Alpha and Beta Diversity Analysis
Using the table.qzv look at the interactive sample detail to choose sampling depth with
the highest level of retained sequences for all of the samples
giime diversity core-metrics-phylogenetic \
--i-phylogeny rooted-tree.qgza \
--i-table table.qgza \
--p-sampling-depth 451028 \
--m-metadata-file sophie-metadata.tsv \
—--output-dir core-metrics-results
#sampling depth of 451028 was chosen because it retained 57.25% of
features in 100% of samples
giime diversity alpha-group-significance \
--i-alpha-diversity core-metrics-results/faith pd vector.qgza \
--m-metadata-file sophie-metadata.tsv \
--o-visualization core-metrics-results/faith-pd-group-
significance.qzv

giime diversity alpha-group-significance \



66

-—i-alpha-diversity core-metrics-results/evenness vector.gza \

--m-metadata-file sophie-metadata.tsv \

--o-visualization core-metrics-results/evenness—-group-
significance.qzv

giime diversity beta-group-significance \

—-—-i-distance-matrix core-metrics-
results/unweighted unifrac distance matrix.gza \

--m-metadata-file sophie-metadata.tsv \

--m-metadata-column Country \

--o-visualization core-metrics-results/unweighted-unifrac-country-
significance.gzv \

—-—p-pairwise

28. Alpha rarefaction plotting.

giime diversity alpha-rarefaction \
-—-i-table table.qgza \
--i-phylogeny rooted-tree.gza \
—--p-max-depth 220000 \
--m-metadata-file sophie-metadata.tsv \
--o-visualization alpha-rarefaction.qgzv

29. Beta-diversity jackknife on 0.01% filtered table.

giime diversity beta-rarefaction \
--i-table table.qgza \
--i-phylogeny rooted-tree.qgza \
--p-metric unweighted unifrac \
—--p-clustering-method upgma \
--m-metadata-file sophie-metadata.tsv \
--p-sampling-depth 200000 \
--o-visualization unweighted unifrac jackknife.gzv

giime diversity beta-rarefaction \
--i-table table.qgza \
--i-phylogeny rooted-tree.qgza \
--p-metric weighted unifrac \
—--p-clustering-method upgma \
--m-metadata-file sophie-metadata.tsv \
—--p-sampling-depth 200000 \
--o-visualization weighted unifrac jackknife.qgzv

30. Train classifier and assign taxonomies

giime feature-classifier classify-sklearn \
--i-classifier silva V3V4 classifier.qgza \
-—-i-reads rep-segs.qgza \
--o-classification rep-segs-taxonomy.dgza

giime metadata tabulate \
--m-input-file rep-segs-taxonomy.gza \



--o-visualization rep-segs-taxonomy.qzv

31. Taxonomy bar chart

giime taxa barplot \
--i-table table.gza \
--i-taxonomy rep-segs-taxonomy.gza \
--m-metadata-file sophie-metadata.tsv \
--o-visualization taxa-bar-plots.qgzv

32. Exporting feature table with taxonomy

giime tools export \
-—input-path table.gza \
—--output-path exported table

giime tools export \
--input-path rep-segs-taxonomy.qgza \
—-—-output-path exported rep-segs-taxonomy

biom convert \

-i exported /feature-table.biom \

-0 exported/feature-table.txt \
—-—to-tsv

ffexported files will be exported into a file that can be

opened in excel
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APPENDIX E: DEBLUR OTU IDENTIFICATIONS OF NON-CHEESE AMPLICON
SEQUENCE VARIANTS AND RELATIVE ABUNDANCE WITHIN EACH SAMPLE WITH

SAMPLES ANONYMIZED

Cheese Identity
Best Match (OTU Identification) <™ | E-value
Identity
Acinetobacter baumannii 100 0.00E+00 0.0427
Acinetobacter baumannii 100 0.00E+00 [ ] 0.0160 [ 1
Anoxybacillus flavithermus 100 0.00E+00 X 1 1 1 0.0024 0.0032 NN
uncultured Bacteroides sp. 100 0.00E+00 [ I I N
uncultured Flavobacteriaceae 100 0.00E+00 1 1 1 1 0.0026 [
Escherichia coli 100 0.00E+00 ] 0.0005 [ HNNGN_NGGEEE 0.0024 [ NEEG_
illus stearothermophilus 100 | 0.00E+00 X [ [ [ [ [ [ ey |
Klebsiella 100 | 0.00E+00 I R L] I [
Streptococcus anginosus 9349 | 3.00E-179
Lactococcus sp. 94.2 0.00E+00
Lactococcus taiwanensis 96.77__| 0.00E+00
[ lactis 9559 | 0.00E+00
Macrococcus caseolyticus 100 0.00E+00
Mycoplasma alkalescens 100 0.00E+00
Pediococcus parvulus 100 0.00E+00
Pseudomonas lactis 100 0.00E+00
Pseudomonas sp. 99.77 | 0.00E+00
aureus 100 0.00E+00
Streptococcus dysgalactiae 100 0.00E+00
Streptococcus lutetiensis 100 0.00E+00 0.0032
Streptococcus sp. 96.97 | 0.00E+00 0.0004 0.0029
anginosus 96.96 | 0.00E+00
uncultured Enterococcaceae 98.38 0.00E+00 0.5579 [ |
i 98.38 | 0.00E+00 0.2478 0.0198
anginosus 95.82 0.00E+00
Streptococcus uberis 100 0.00E+00 0.0006 0.0015 NG
Streptococcus anginosus 97.43 | 0.00E+00
anginosus 96.73 | 0.00E+00
Thermus thermophilus 99.3 0.00E+00
Thermus thermophilus 99.53 | 0.00E+00
Thermus thermophilus 100 0.00E+00
Thermus thermophilus 99.77 0.00E+00
Thermus thermophilus 99.53 | 0.00E+00
Thermus thermophilus 100 0.00E+00
Thermus thermophilus 100 0.00E+00
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APPENDIX F: DEBLUR OTU IDENTIFICATIONS OF CHEESE-RELATED AMPLICON

SEQUENCE VARIANTS AND RELATIVE ABUNDANCE WITHIN EACH SAMPLE

Cheese Identity
. . . Percent
Best Match (OTU Identification) Identity E-value B [¢ D E F G H I J K L M N o
Lacticaseibacillus paracasei 100 0.00E+00
Lacticaseibacillus paracasei 100 0.00E+00
Lacticaseibacillus rh 100 0.00E+00
Lactiplantil plantarum 100 0.00E+00
Lactobacillus crispatus 96.75 0.00E+00
Lactobacillus delbrueckii 99.77 0.00E+00 [ ] - 0.0450 0.0067
Lactobacillus delbrueckii 100 0.00E+00 0.0278 | 0.0022 0.0006 I N N N N 020z o2:s5:
Lactobacillus helveticus 100 0.00E+00 I 0-05c oo+ IR o057 B o0::0 I
Lactobacillus helveticus 100 0.00E+00 0.9502 0.0278
Lactococcus lactis 95.60 0.00E+00
Lactococcus lactis 95.36 0.00E+00 -
Lactococcus lactis 95.59 0.00E+00 I 00052
Lactococcus lactis subsp. lactis 96.75 0.00E+00 -
Lactococcus lactis subsp. lactis 97.22 0.00E+00 -
Lactococcus lactis subsp. lactis 97.68 0.00E+00 0.0166 [ o.0022 0.0073 I o070 0.0188 I
Lactococcus lactis subsp. lactis 100 0.00E+00_| 0.0004 | I I o.0006 ------- 0.0004 0.0006 0.0002
Lactococcus lactis subsp. lactis 100 0.00E+00 0013 0.0003 0.0019 0.0024 0.0015
Lactococcus lactis subsp. lactis 95.36 0.00E+00 | ] --- 0.0008 ]
Lactococcus lactis subsp. lactis 97.22 0.00E+00 | 0.0045 0.0022 0.0052 IR o000:; I 00017 00049 00010 0.0018 0.0024 0.0040 0.0038 0.0035
Lactococcus lactis subsp. lactis 99.08 0.00E+00 | 0.0011 [ 000z NN oo B 0000 00022 [ 00014 00011
Lactococcus lactis subsp. lactis 100 0.00E+00 - -
Lactococcus lactis subsp. lactis 100 0.00E+00
Lactococcus lactis subsp. lactis 94.43 0.00E+00 --
Lactococcus sp. 94.90 0.00E+00 ------
Lactococcus sp. 94.20 0.00E+00
[ curvatus 100 0.00E+00 | ]
Lenti illus buchneri 100 | 0.00E+00 I o.0:-+ | I I I R 1 1 |
L kefiri 100 0.00E+00 I o IR ooc- R 047 00:0: I
Loigolactobacillus coryniformis subsp. torquens 99.77 0.00E+00 0.0042
Loigolactobacillus coryniformis subsp. torquens 100 0.00E+00 ---- - 0087
Paucilactobacillus wasatchensis 100 0.00E+00 I o.:5:7 o0.006 o0.0006 0.0432 [N o.003: I
s malefermentans 100 0.00E+00 I IR oo B oooc- B oo

illus malefermentans 99.54 0.00E+00
Streptococcus thermophilus 96.29 0.00E+00 [ ] L
Streptococcus thermophilus 97.22 0.00E+00 0.0000 [N D D D D D . .ocs I
Streptococcus thermophilus 96.76 0.00E+00 I o003 ------ 0.0031 [N D
Streptococcus thermophilus 100 0.00E+00 .
Streptococcus thermophilus 100 0.00E+00 | 0.0388 [52.0809 0.0757
Streptococcus thermophilus 100 0.00E+00 - - J g
Streptococcus thermophilus 97.45 0.00E+00 0.0031 I o0.0026 0.0020 - 0.0051  0.0024 [N o.0037 o.0022 [N
uncultured Streptococcus sp. 97.90 0.00E+00 0.0038  0.0032 ] 0.0013 0.0009
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APPENDIX G: DEBLUR FILTERED > 0.01% RELATIVE ABUNDANCE OPERATIONAL

TAXONOMIC UNIT IDENTIFICATIONS FOR EACH NON-CHEESE AMPLICON

SEQUENCE VARIANT WITH SAMPLES ANONYMIZED

Cheese Identity

Best Match (OTU Identification) T<"™ | E-value 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Identity

baumannii 100 0.00E+00
Acinetobacter baumannii 100 [ 0.00E+00 I Y I A
Lactococcus taiwanensis 96.77 0.00E+00 1
Macrococcus caseolyticus 100 0.00E+00 I
Pediococcus parvulus 100 0.00E+00 1
uncultured Enterococcaceae 98.38 | 0.00E+00

98.38 0.00E+00 J 0.2478 0.0198

Streptococeus uberis 100 0.00E+00
Thermus thermophilus 100 0.00E+00
Thermus thermophilus 99.77 | 0.00E+00
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APPENDIX H: DEBLUR FILTERED > 0.01% RELATIVE ABUNDANCE OTU

IDENTIFICATIONS FOR EACH CHEESES-RELATED ASV

Cheese Identity
Best Match (OTU Identification) Perce!n E-value
Identity
Lacti ibaci paracasei 100 0.00E+00
L paracasei 100 0.00E+00
Lacti ibaci rhamnosus 100 0.00E+00
Lactobacillus delbrueckii 99.77 0.00E+00
L illus delbrueckii 100 0.00E+00
Lactobacillus helveticus 100 0.00E+00
Lactobacillus helveticus 100 0.00E+00
Lactococcus lactis subsp. lactis 96.75 0.00E+00
Lactococcus lactis subsp. lactis 97.68 0.00E+00
Lactococcus lactis subsp. lactis 100 0.00E+00
Lactococcus sp. 94.90 0.00E+00
Latilactobacillus curvatus 100 0.00E+00
Lenti illus buchneri 100 0.00E+00
Lenti illus kefiri 100 0.00E+00
i illu: i 100 0.00E+00
Secundi illus malefermentans 100 0.00E+00
Secundi illus malefermentans 99.54 0.00E+00
Streptococcus thermophilus 96.29 0.00E+00
Streptococcus thermophilus 100 0.00E+00 I d
Streptococcus thermophilus 100 0.00E+00 ----- 0.9655 - - 16979 120.3175 ----




APPENDIX I:

\I

DADA2 OTU IDENTIFICATIONS OF NON-CHEESE AMPLICON

2

SEQUENCE VARIANTS AND RELATIVE ABUNDANCE WITHIN EACH SAMPLE WITH

SAMPLES ANONYMIZED

Cheese Identity

Percent

1 2 3 I3 5 6 7 8 9 10 1
0.00032438

I
0.00063929 | N
I I
0.0023973> [N I A N R I —
I I

I I o.00035023 I I
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I N N o.000::72! [N I I R B
| N N I R

I I

0.00239732 [N I I
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_— 0.00292668 _—_—
I I
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e
&
3

I I R I I
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R AN A N R o.000:0:9: I
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[ [ 1 gl |

N I I R

N I A N R
000079911 | I I 0.00026551 0.00067861
I I I I

—
I I I o.0o:: 15 N N
S S S S S
S O S N

[

I I I
00034573 [N N R
I I R R
0.001317 | I I
[ 1

N I N B 0.003:3656: I I N B 004578109

S N A S N AN S R 0.02:5261
I 0.00:01305 [N I N A I S I S A R
I I I 0.001:6157 0.00484677 [

o
o
S
2
&
8
8
2

I I 000030746
I I A N A B o.00052534 [ I R I R

13 14 15

0.0006924 [ NEGNGG
[ ]

0.0032272!

ol

0.0005193

0.00051791

0.00082865

0.00041433

L
I 0.000z555 I
I 0.000s555 I

[

LI 1
I  0.0008199 ___

r r° [ T T = Kkgk 00 ]

N N AN R B o.00020:98 ___

I I B
I S N o.000253> S N I R I S S

- r . ! ‘' ! ([ [ ;| |
| I 0.00025721 [N ©.00108578 0.00190234 [ 0.00030606 _— 0.00062062 [ NEEEEEEN
([ [ ]

[ 1 1 |
I I I 00020498 I

I o<56+0571 I 0.00:7503 NN AN N N o-oo.-:7:2 I
1T 11 ]
N N A N N A o 00031074
- ]

0.000439 [N A N A N A
(. r @ © ;[ ]
N N A A A N 0.0011394
0.01697472 NN NN M 0.00355:5: N N

I I
I I
I I
I I
I I
N I A o 0535347 I I
N I A N R R E—
N I A S R o 0023/13+ I
1 [ [ 1]
I I o.0002:2 N I
1 1 [ ]
0.00811163

0.02633022

[ 0.0003302: I I
1

| 0.00162217 I 0.00091223 0.00097071 0.00012674 0.00066378 0.00067861
0.0003196 [N I

I —
00054335 N R I I A A E N
S O S S S

L]
0.00114029 | I

I I R
[ 0.00054072 N 0.00152¢47 NN N M 00009006 I R R
N S N o 25500925 I I N
I I N o.5135 I I R R
N I AN A S S A
N I A S S A A
N I AN A B 0000145 I

Best Match (OTU Identification) " E-value
Identity
ter denitrificans 99.77 | 0.00E+00
aumannii 100 0.00E+00
Acinetobacter baumannii 100 0.00E+00
Acinetobacter Iwoffii 100 0.00E+00
Anoxybacillus flavithermus 100 0.00E+00
Anoxybacillus flavithermus 99.77 | 0.00E+00
Bacteroides pyogenes 100 0.00E+00
bacterium 100 0.00E+00
Bos taurus 100 2.00E-124
Brevundimonas bullata 100 0.00E+00
Carnobacterium maltaromaticum 99.77 | 0.00E+00
Chlamydiales bacterium 96.49 | 0.00E+00
Chryseobacterium haifense 100 0.00E+00
Corynebacterium sp. 100 0.00E+00
Deinococcus sp. 99.76 | 0.00E+00
Enterococcus faecalis 100 0.00E+00
Enterococcus faecalis 100 0.00E+00
Enterococcus italicus 993 0.00E+00
Escherichia coli 100 0.00E+00
Flavobacteriaceae bacterium 100 0.00E+00
Fundicoccus ignavus 99.77 | 0.00E+00
99.75 | 0.00E+00
100 0.00E+00
obacillus sp. 100 0.00E+00
obacillus sp. 986 0.00E+00
acillus sp. 99.53 | 0.00E+00
100 0.00E+00
99.77 | 0.00E+00
H ovis 100 0.00E+00
Kiebsiella 100 0.00E+00
Kiebsiella 100 0.00E+00
Macrococcus caseolyticus 99.58 | 1.00E-116
Macrococcus caseolyticus 100 0.00E+00
Mycoplasma alkalescens 100 0.00E+00
sp. 98.76 | 0.00E+00
sp 9851 | 0.00E+00
Pasteurella multocida 100 0.00E+00
Pediococcus parvulus 100 0.00E+00
Planomicrobium flavidum 100 0.00E+00
Prototheca zopfii 100 0.00E+00
Pseudomonas fluorescens 100 0.00E+00
lactis 100 0.00E+00
lactis 100 0.00E+00
sp. 99.77 | 0.00E+00
sp. 100 0.00E+00
sp. 100 0.00E+00
sp. 100 0.00E+00
Pseudomonas sp. 100 0.00E+00
96.96 | 0.00E+00
Ralstonia insidiosa 100 0.00E+00
Rhodococcus sp. 100 0.00E+00
100 0.00E+00
Rothia marina 100 0.00E+00
rumen bacterium 96.26 | 0.00E+00
anguibacter sp. 100 0.00E+00
Secundilactobacillus malefermentans 100 0.00E+00
Secundilactobacillus malefermentans 100 0.00E+00
99.53 | 0.00E+00
B aureus 100 0.00E+00
aureus 99.53 | 0.00E+00
us aureus 100 0.00E+00
100 0.00E+00
uberis 100 0.00E+00
uberis 99.53 | 0.00E+00
Streptococcus anginosus 9581 | 0.00E+00
Streptococcus dysgalactiae 100 0.00E+00
Streptococcus lutetiensis 100 0.00E+00
Streptococcus parasuis 98.83
Streptococcus phocae 98.83 | 0.00E+00
Streptococcus salivarius 9558 | 0.00E+00
Streptococcus uberis 99.77 | 0.00E+00
Thermus thermophilus 100 0.00E+00
Thermus thermophilus 99.52 | 0.00E+00
Trueperella pyogenes 100 0.00E+00
unculture bacterium 100 0.00E+00
anaerobic bacterium 99.51 | 0.00E+00
uncultured anaerobic bacterium 99.77 | 0.00E+00
uncultured anaerobic bacterium 9836 | 0.00E+00
uncultured anaerobic bacterium 100 0.00E+00
uncultured anaerobic bacterium 97.87 | 0.00E+00
uncultured anaerobic bacterium 99.01 | 0.00E+00
uncultured bacterium 100 0.00E+00
uncultured bacterium 100 0.00E+00
acterium 100 0.00E+00
uncultured bacterium 99.75 | 0.00E+00
uncultured bacterium 100 0.00E+00
uncultured bacterium 9451 | 4.00E-173
uncultured bacterium 100 0.00E+00
uncultured bacterium 100 0.00E+00
uncultured bacterium 99.75 | 0.00E+00
uncultured bacterium 100 0.00E+00
uncultured bacterium 9825 | 0.00E+00

[ 0.00036042 | I N R
[

°
°
8
IS
3
S
R
4]

I o.00025>c I

[ 1
I B 0001391 I I
IS S A R o.0102:34
I N
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I I B
N S M o.0005:0c: I R R R
I I R

I —
I I S © 000320 I T
0.00271595 N I N Y Y S S R
1 11

N I I I A 0.00040777 [ N R
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0.000439 NN N N NN S N
N S N A R
I N I I o.005093c N 0.0023:s:+ I N
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]
S
o
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S
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0.03770364

[ ]
0.0004965 |

0.0002482!
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0.0006924

o

S
S
&
5

o

S

2

S

I

&

&

5
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uncultured bacterium 100 0.00E+00 I
uncultured bacterium 100 0.00E+00 I N D B o.0002::2; I
uncultured Bacteroides sp. 100 0.00E+00 | I I D
uncultur. sp. 99.53 0.00E+00 I
iaceae bacterium | 100 [ 0.00E+00 N I R [ 1 0.00397 [ I
unculture 99.76 0.00E+00 . I
uncultured Por sp. 99.76 0.00E+00 . | I
uncultured proteobacterium 99.75 0.00E+00 I D R D . 0-000::c:
uncultured rumen bacterium 93.28 9.00E-165 1
uncultured rumen bacterium 9851 | 0.00E+00
uncultured Str sp. 97.89 | 0.00E+00
Str sp. 97.89 | 0.00E+00
uncultured Str sp. 99.53 | 0.00E+00
uncultured Str sp. 9439 | 0.00E+00
uncultured Str sp. 94.88 | 0.00E+00
uncultured Streptococcus sp. 100 I I
uncultured Thermus bacterium 100 | o.00e+00 | SN IR AN A N _—U_—_—_—__ o-0020-0/ | _— _— __—
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APPENDIX J. DADA2 OTU IDENTIFICATIONS OF CHEESE-RELATED AMPLICON

SEQUENCE VARIANTS AND RELATIVE ABUNDANCE WITHIN EACH SAMPLE

Cheese Identity

Best Match (OTU Identification) Percent E-value A H
Identity
I illus paracasei 100 0.00E+00_| 0.14099362
I paracasei 100 0.00E+00
L paracasei 100 0.00E+00
i paracasei 100 0.00E+00
L illus rhamnosus 100 0.00E+00 | 0. . I
L thamnosus 100 | 0.00E+00 | 001315645 I 0.0331552c I Y N I NN R N R ]
. 55,05 | 0.00E+00 1 T g [ [ ] 1
[ plantarum 9977 N N A SN A S A S S [ ]
L delbrueckii 100 0.02508643 N o.00:7:09 N I D D D D B - 205062 0.31742064 [N
L delbruecki 9063 N I S S A N A M 00553 I I
L delbruecki 9055 r r r °r —t 1 1 [  jxeny 0 [ ]
L helveticus 100 | N I I : 17026303 0.8693111 [N 10.0289614 NN I o.:s356364 0.02972785 NN
L helveticus 100 | I 3796616 0.05146244 [N I o.0s23107: I o.c3:5111c I I D
L helveticus 9977 1 [ ] I 002548103 N N A B R
L helveticus 9977 N I A A I A 007029 [ N I R R
Lactobacillus helveticus 9977 r 1 ey 0 0 0 00 0 ]
L helveticus 99.77 ]
[ helveticus 9977 I I
L helveticus 99.77 I
L helveticus 99.77 I N
L helveticus 99.77 ]
i helveticus 9977 I I
L helveticus 100 . I R R
L helveticus 98.13 N N A A .o155372 I I I R N
L helveticus 9063 | 2006157 N I A S 0000505 IS o 0010355 I I S S
Lactobacillus helveticus 100 [ 0.00€+00 |0.00065752 NN I N N N R N I A N R
L 98.59 0.00£+00_ || 0.00082865 I N
Lactococcus cremoris 92.41 | 3.00E-145 | 0.00603005 0.0027367 0.00479491 [N 0.00159821 0.00633721 MMM 0.00086887 0.00642205 0.00027145 0.00234313 0.00439001 0.00424684 0.00502191 0.00616316
Lactococcus cremoris 916 [ 3.00€-140 0.0008655 r r r r r r [ ]
Lactococcus cremoris 9241 | 3.00E-145 I B 000055 N I I I S R S S S
Lactococeus lactis 97.66 | 0.00E+00 N e S S A A 012737 I
Lactococcus lactis 9836 | 0.00E+00 O Y Y M 0092239
Lactococeus lactis 97.77 0.00€+00_| 0.10996625 | A I I . :635:14 [ I I
Lactococcus lactis 97.89 I |
Lactococcus lactis 97.19
Lactococcus lactis 97.19
Lactococcus factis 97.42
Lactococcus lactis 97.19
Lactococcus lactis sub. lactis 9461
Lactococcus lactis sub. lactis 100
Lactococcus lactis sub. lactis 99.77
Lactococcus lactis sub. lactis 100
Lactococcus lactis sub. lactis 9977 N I
Lactococeus lactis sub. lactis. 98.36 0.20162307 [ 24239773 [ I D .
Lactococeus lactis sub. lactis 99.77 I o:7:22:7: I o ;;::::: I o :/25::0; I 015555286 | ] ]
Lactococeus lactis sub. lactis 99.77 I o.:3:s63+: I N N 0122125 [ N N 0.:056:07 I 010931502
Lactococeus lactis sub. lactis 99.77 I R o :0-::7:o I N o.:0-23:7: I o.:19::7: 0.10677759
Lactococeus lactis sub. factis 9977 N I A N A N O ::-s6¢02 I — I O
Lactococcus lactis sub. factis 9977 I 0.:500703 | N A N o 5772 I
Lactococcus lactis sub. lactis 98.58 I 015330+ N I I R 0573 I N S R
Lactococcus lactis sub. lactis 99.77 I
Lactococcus lactis sub. lactis 9859
Lactococcus lactis sub. lactis 9977
Lactococcus lactis sub. lactis 99.77
Lactococcus lactis sub. lactis 99.77
Lactococcus lactis sub. lactis 9977
Lactococcus lactis sub. lactis 9977
Lactococeus lactis sub. lactis 99.77 |
Lactococeus lactis sub. factis 99.77 N I A S o-::2:22; I
Lactococcus lactis sub. lactis 9977 | 0.00+00 N I A S A S o553/ I I R
Lactococcus lactis sub. factis 100 [ 0.00+00 {0.02225633 NN 0.02152607 NN N NN NN N o.0:729c1 [ S
Lactococeus lactis sub. lactis 97.19 0.00£+00_| 0.00657824 [ ©.00091217 I 000063929 0.00405521 [ 000136537 0.0055934 0.0017644 NN M 000533888 0.00584182 0.00724442
Lactococcus lactis sub. lactis 99.77 0.00E+00 I D D D .  0o:c2s:; I D R e e
Lactococcus lactis sub. lactis 9813 [ 0.00E+00 [ 0.0271696: NN N I N S I S S S
Lactococcus lactis sub. lactis 9836 [ | N N A N A I S S
Lactococcus lactis sub. lactis 9624 I 0.00152093 NN N A N R R
Lactococcus lactis sub. lactis 9719 N I S A N A N 000092235 I
Lactococcus facts sub.acti sz 1 ey | |
Lactococeus lactis sub. lactis 9789 I A A S 0.000: - IS O S o000: 02/ IS o.0010249 N
Lactococcus lactis sub. factis 100 [ 2.00€-142 {0,00021927 | IR N I A A A N A N R
Lactococcus lactis sub. factis 100 [ 2.00£-129 | 0.00010964 NN AN S Y N B
Lactococeus lactis sub. factis 97.66 r rr - ¢ ¢ 0 ey ] |
Lactococeus lactis sub. lactis 90.02 | I N 0.0002049¢
Lactococeus lactis sub. lactis 97.89 | Y I o::7-07+c I o.0542599:
Lactococeus lactis sub. lactis 97.89 I 0.072:962¢ I I ) I I 007335109
Lactococeus lactis sub. lactis 98.13 I N N I I 0.077::0::
Lactococcus lactls sub. lactis 98.13 00753037 [ I I N R R
Lactococeus lactis sub. lactis’ 97.89 | N 002325777 I
Lactococeus piscium 100 | I N 00104626
Lactococcus sp. 97.42 I I 0.001317 [N I N
Tactococcus sp. 10 T s I R
Lactococcus sp. 9836 N S A S 03552652 0.021597+ [ R I I R R
L curvatus 100 N I A A A A N M 033305579 000497486 0.07307394 0.00032438
L buchner 100 I 003575751 NN I A A S A NN E—
. Tarcagins .77 T pmmwwy [ | ]
[ Kefiri 100 N N A
i kisonensis 100
Leptotrichiaceae bacterium 9951 I I I
L lactis 96.96 I I 000196 NN A N A N E— L]
oigolactobacilus coryiformTs 100 ) Y ) ) A I A A Y AN MO 0.0::.507
Loigolactobacillus coryniformis subsp. torquens | 100 I I N AN AN SN A S S o.0:257508
il hensis 100 I 0.1:5613 0.04410697 I 0.00471675 N N I AR S R
993 I M 00003655 0.00047946 N I S A S I A B
Streptococcus 96.72 I 0.0006352 NN I A N A I N
100 0.11709268 | 46,5549484 0.18506295 |BI0AB5098| 3.37659111 |SEIDEII0GH J82NI576635| 0.17971378 552965814 40.0135901 0.2288661 0.09161032 0.12472789  0.1640266
100 13.727981 [ EEEEEE | 27.6919256 33.6907504 ||
st 100 0.65612422 [ o.33183083 0.34185767 [N 37689159 0.20641974 [ 024077221 0.08381187 [N o- 05959838_
Streptococcus 98.83 | 0->-::5::c I o.6:c25534 o.21336724 [ o.20200555 I D
99.77 I I 00333052 I I I o :203531 I _____
99.77 | I I 0.:0:96596 I o.137:0148 0.13777266 [ o.06596127 o.06152252 NN I D
98.83 | N 09332025 0.14144131 [ 007832548 0.06653096 [ 0.096590606 0.04266496 NN I D
Streptococ 98.83 | I o.:53::503 0.15230966 [N o.1320912 DN 0.127249¢5 [ EG_G_ GG
'?nepmmccus 98.83 | I .::0215 [ I o.11669169 0.10538206 [N 0.06786139 | I N R
[ 9977 | 0.00€+00 N I N 010516239 I 0.1444375 014063353 [N I NN I R N




Streptococcus thermophilus 9883 | 0.00E+00
Streptococcus thermophilus 100 0.00E+00
Streptococcus thermophilus 9977
Streptococcus thermophilu 100
Streptococcus p 9859
phi 99.06
Streptococcus pl 99.77
Streptococcus thermophilu 9977
u p 100
Streptococcus phi 9977
Streptococcus ‘mophilu: 99.77
Streptococcus thermophilu 98.83
phi 100
Streptococcus phi 9977
Streptococcus thermophilu 9977
Streptococcus p 9977
phi 9977
Streptococcus phil 99.77
Streptococcus thermophilu 97.89
o 98.83
Streptococcus phi 98.83
Streptococcus phi 99.77
Streptococcus p 98.13
phi 9859
Streptococcus phi 9977
Streptococcus thermophilu 9295 | 1.00E-148
Streptococcus o 97.42__| 0.00E+00
phi 92.68 | 6.00E-147
Streptococcus i 9649
Streptococcus (hermop hilus 9836
u 98.13
uncultured L bacterium 97.9
uncultured Lactobacillales bacterium 9953 | 0.00E+00
uncultured Lactococcus sp. 9836 | 0.00E+00
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APPENDIX K: DADA2 FILTERED > 0.01% RELATIVE ABUNDANCE OPERATION

TAXONOMIS UNIT IDENTIFICATIONS FOR EACH NON-CHEESE-AMPLICON

SEQUENCE VARIANT WITH SAMPLES ANONYMIZED

Cheese Identity

Best Match (OTU Identification) Percent | lue
Identity

Acinetobacter baumannit 100 | 0.00£v00
Acinetobacter baumannii 100 | 0.00£+00
Macrococcus caseolyticus 99.58 1.00E-116
Macrococcus caseolyticus 100 0.00E+00
Pediococcus parvulus 100 0.00E+00
Rothia marina 100 0.00E+00
tobacillus malefermentans 100 0.00E+00
ecundilactobacillus malefermentans 100 0.00E+00
Staphylococcus uberis 100 0.00E+00
Thermus thermophilus 100 0.00E+00
Thermus thermophilus 99.52 0.00E+00
Trueperella pyogenes 100 0.00E+00
uncultured Stre sp. 97.89 0.00E+00
uncultured Stre sp. 97.89 0.00E+00




7

APPENDIX L: DADA2 FILTERED > 0.01% RELATIVE ABUNDANCE OPERATION
TAXONOMIS UNIT IDENTIFICATIONS FOR EACH CHEESE-RELATED-AMPLICON

SEQUENCE VARIANT WITH SAMPLES ANONYMIZED

Cheese Identity
Best Match (OTU Identification) Percent | ¢ alue A
Identity
Lacticaseibacillus paracasei 100 0.00E+00 014 6 B
Lacticaseibacilus paracasei 10| 0.00E+00 0,03 [ I NN N 0> [ N S N
L illus paracasei 100 | 0.00E+00 1| | I
Lacticaseibacillus paracasei 100 0.00E+00 [ 1 1 0.02 [
Lacti us 100 0.00E+00 | o.17 I I
L 100 | 0.00E+00 0.01 [N 0.0 [N I R
Lactobacillus delbrueckii 100 0.00E+00 X
L helveticus 100 0.00E+00
Lactobacillus helveticus 100 0.00E+00
L illus helveticus 99.77 | 0.00E+00
L illus helveticus 99.77 | 0.00E+00
L illus helveticus 99.77 0.00E+00 I
1 helveticus 99.77 I
L helveticus 99.77 I
| helveticus 99.77 I
Lactobacillus helveticus 99.77 I
Lactobacillus helveticus 99.77 1
Lactobacillus helveticus 99.77 I
L illus helveticus 100 I
Lactococcus lactis 97.77 I
Lactococcus lactis 97.19 [ 1 [ ]
Lactococcus lactis sub. lactis 100 38.56 [NOERS 13.74 [ INESN
Lactococcus lactis sub. lactis 99.77 I [ ]
Lactococcus lactis sub. lactis 100 I R ]
Lactococcus lactis sub. lactis 99.77 I I
Lactococcus lactis sub. lactis 9836 0.20 [ 0.24 I
Lactococcus lactis sub. lactis 99.77 1 o.127 [ I
Lactococcus lactis sub. lactis 99.77 I 0.13 [ [ 1
Lactococcus lactis sub. lactis 99.77 1 I
Lactococcus lactis sub. lactis 99.77 I N I I
Lactococcus lactis sub. lactis 99.77 I o.15 [ I
Lactococcus lactis sub. lactis 98.58 1 o.15 [ I
Lactococcus lactis sub. lactis 99.77 I 0.13 [ I
Lactococcus lactis sub. lactis 9859 1 I
Lactococcus lactis sub. lactis 99.77 I N I
Lactococcus lactis sub. lactis 99.77 I R I
Lactococcus lactis sub. lactis 99.77 I N I
Lactococeus lactis sub. lactis 99.77 I I
Lactococcus lactis sub. lactis 99.77 I I I
Lactococcus lactis sub. lactis 99.77 I [
Lactococcus lactis sub. lactis 99.77 I I R I
Lactococcus lactis sub. lactis 99.77 I N I
Lactococcus lactis sub. lactis 100 0.02 I 0.02 [ I
Lactococcus lactis sub. lactis 99.77 1 I
Lactococcus lactis sub. lactis 98.13 N I I
Lactococcus lactis sub. lactis 98.36 T .01 I
Lactococcus lactis sub. lactis 97.89 1 1 I
Lactococcus lactis sub. lactis 97.89 I I R L]
Lactococcus lactis sub. lactis 98.13 I R B
Lactococcus lactis sub. lactis 98.13 I N
Lactococcus lactis sub. lactis 97.89 I 1 .01
Lactococcus sp. 98.36 1 ]
[ curvatus 100 1 |
Lentilactobacillus buchneri 100 1 [ 1
L kefiri 100 I .12 [
Loigolactobacillus coryniformis 100 I N B
Loigolactobacillus coryniformis subsp. torquens 100 I N
illu 100 | ] o.14
Streptococcus thermophilus 100 0.19 [NEH0S 6778
Streptococcus thermophilus 100 13.7: [
Streptococcus thermophilus 100 X
Streptococcus thermophilus 98.83 |
Streptococcus thermophilus 99.77
Streptococcus thermophilus 99.77
Streptococcus thermophilus 98.83
Streptococcus thermophilus 98.83
rermophilu 98.83
tr thermophi 99.77
Streptococcus thermophilu 98.83
tr thermophilu: 100
tr t 99.77
Streptococcus thermophilus 100
Streptococcus thermophilus 98.59
Streptococcus thermophilus 99.06
Streptococcus thermophilus 99.77
Streptococcus thermophilus 99.77
Streptococcus thermophilus 100
Streptococcus thermophilus 99.77
thermophilus 99.77
Streptococcus thermophilus 98.83
thermophilus 100
Streptococcus thermophilus 99.77 | 0.00E+00
Streptococcus thermophilus 99.77 | 0.00E+00
tr thermophilu: 99.77 | 0.00E+00
tr thermophi 99.77 | 0.00E+00
rermophilu 99.77 | 0.00E+00
tr thermophil 97.89 | 0.00E+00
Streptococcus thermophilu 98.83 | 0.00E+00
Streptococcus thermophilus 9883 | 0.00E+00
Streptococcus thermophilus 99.77__| 0.00E+00
Streptococcus thermophilus 9813 | 0.00E+00
Streptococcus thermophilus 9859 | 0.00E+00
Streptococcus thermophilus 99.77 | 0.00E+00




APPENDIX M: DEBLUR SAMPLE CLUSTERING

Tree scale: 0.01 +
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APPENDIX N: DEBLUR RELATIVE ABUNDANCE IN CLUSTER ORDER WITH

REGION OF MANUFACTURE

Relative Abundance

Lactococcus  Streptococcus Other
lactis thermophilus  Lactobacilli  Species

Cheese! Cluster  Region

G 1 Ireland 0.18

J 1 Ireland 22.61

H 1 Ireland 14.38

D 1 Australia 18.11

B 1 Vermont _ .

K 1 California _ -
E 1 Ireland 32.44 -
C 2 uen (S N
F 2 Ireland _ .

L 2 California _ -
Cc 2 New York _ -
M 2 California _ -
A2 oregon [NSOHENN .
O 2 Wisconsin _ -
N 2 Wisconsin _ -

1Cheeses as described in Table 1.
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