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ABSTRACT

A PHENOLOGICAL MODEL FOR A SOUTHERN POPULATION OF MOUNTAIN

PINE BEETLE

by

Catherine E. Wangen, Master of Science

Utah State University, 2021

Major Professor: James Powell, Ph.D.
Department: Mathematics and Statistics

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) attacks living Pi-

nus trees across a widespread area of western North America, causing significant ecological

and economic damage. The ability to make accurate predictions of how MPB populations

across this range will respond to changing temperatures, which directly but non-linearly

affect MPB progress through life stages, is essential for optimal forest management. There

is not currently a predictive phenology model for populations of southern MPB, despite

concerns that those populations may be more susceptible to change from univoltinism to

bivoltinism, which would have devastating impacts on pine forests. While there are models

for northern MPB populations, northern and southern populations are genetically different

in response to temperature, and consequentially southern populations require geographic-

specific model parameters. In this thesis I develop a novel oviposition model for populations

of southern MPB, which I incorporate in a phenological cohort model that allows estima-

tion of previously unknown development rates for the southern MPB teneral adult stage,

completing a southern MPB phenological model.

In Chapter 2 I develop a predictive oviposition model for a southern population of

MPB using the oviposition rate curve developed by McManis et al. (2019), incorporating



iv

variation in both oviposition rate and fecundity. I also introduce a method for determining

the time delay before oviposition, t0. The model can return the probability of oviposition for

a season of MPB attacks using phloem temperature and adult MPB attack data collected

from a single field site over two years. I also develop an asymptotic approximation of MPB

oviposition that is less complex as well as less computationally taxing. The detailed ovipo-

sition model and its asymptotic approximation are compared with other previously used

modeling methods. The predictive capacity of each model is evaluated against laboratory

data collected on southern MPB oviposition.

McManis et al. (2018) parameterized development from eggs through pupation for a

southern MPB population, but were unable to procure developmental data for the difficult-

to-observe teneral adult stage. In Chapter 3 I determine developmental rates for the difficult

to observe teneral adult stage using a cohort phenology model and the field data for a

southern population of MPB. I first present the incorporated models as well as teneral

adult rate curves tested while developing the model. Then I explain the method by which

the teneral adult rate curves were parameterized and how the Brière curve was determined

to be most suitable. The resulting model is then validated using an additional sample

tree from the field data. The complete model is then used to examine the potential for

bivoltinism in a southern population of MPB by increasing the mean temperature and

testing for the successful emergence of a second generation. My model estimates that

that southern MPB are unlikely to become bivoltine in warmer temperatures due to upper

developmental thresholds of teneral adults.

(136 pages)
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PUBLIC ABSTRACT

A PHENOLOGICAL MODEL FOR A SOUTHERN POPULATION OF MOUNTAIN

PINE BEETLE

Catherine E. Wangen

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) attacks living

Pinus trees across a widespread area of western North America, causing significant ecological

and economic damage. The ability to make accurate predictions of how MPB populations

across this range will respond to temperatures, which affect MPB progress through life

stages, is essential. Northern and southern populations of MPB are genetically different

in response to temperature, requiring geographic-specific model parameters. There is not

currently a predictive model for the southern MPB life cycle, despite concerns that those

populations may be more susceptible to increased numbers of generations per year, which

would have devastating impacts on pine forests. In this thesis I develop a novel oviposition

model for populations of southern MPB, which I incorporate into a cohort model that allows

estimation of previously unknown development rates for the southern MPB teneral adult

stage, resulting in a complete southern MPB life cycle model.

In Chapter 2 I develop a predictive oviposition model for a southern population of

mountain pine beetle using the oviposition (egg-laying) rate curve developed by McManis

et al. (2019), incorporating variation in both oviposition rate and fecundity. I also in-

troduce a method for determining the time delay before oviposition, t0. The model can

return the probability of oviposition for a season of MPB attacks using phloem (inner-bark)

temperature and adult MPB attack data collected from the field. I also develop an asymp-

totic approximation of MPB oviposition that is less complex as well as less computationally

taxing. The detailed oviposition model and its asymptotic approximation are compared
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with other previously used modeling methods. The predictive capacity of each model is

evaluated against laboratory data collected on southern MPB oviposition.

McManis et al. (2018) parameterized development from eggs through pupation for a

southern MPB population, but were unable to procure developmental data for the difficult-

to-observe teneral adult stage. In Chapter 3 I determine developmental rates for the teneral

adult stage using a phenology model and the field data for a southern population of MPB.

I first present the incorporated models as well as teneral adult rate curves tested while

developing the model. Then I explain the method by which the teneral adult rate curves

were parameterized and how the Brière curve was determined to be most suitable. The

resulting model is validated using an additional tree from the field data. The complete

model is then used to examine the potential for bivoltinism in a southern population of

MPB by increasing the mean temperature and testing for the successful emergence of a

second generation. My model estimates that that southern MPB are unlikely to become

bivoltine in warmer temperatures due to upper developmental thresholds of teneral adults.
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of data using the Briére rate curve. While it was clear that the Poisson
distribution was least suitable, the Laplace and normal distributions were
investigated further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Histograms for the two distributions considered for 1000 bootstrapped sets
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CHAPTER 1

INTRODUCTION

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins, Coleoptera: Scolyti-

dae), attacks living Pinus trees across a large geographic area in western North America

ranging from Baja California Norte, Mexico, to northern British Columbia and Alberta,

Canada (Dowle et al. 2017). Adults must attack en masse to overwhelm host defenses in

order to successfully kill a Pinus host and reproduce in the inner-bark (phloem), as a host

will successfully repel a small number of attacking MPB. MPB progress through the stages

of their life cycle according to varying temperature thresholds, and thus phloem temper-

atures directly but non-linearly affect development (Bentz et al. 1991; Powell and Logan

2005). These thresholds allow MPB to be successful in a thermal niche where they are

univoltine, and synchronize emergence from dead Pinus hosts in order attack new living

hosts simultaneously.

Changing temperatures have geographically increased that thermal niche and allowed

the MPB range to expand, resulting in MPB-induced tree mortality of over 5.2 million

hectares in western Canada (Meddens et al. 2012). The range of Pinus host species in

western North America extends both northward and southward beyond the known histori-

cal distribution of MPB (Giroday et al. 2012; Sambaraju et al. 2019), indicating that this

expansion could continue further. Increases in temperatures have allowed MPB migration

northward in Canada due to decreased winter mortality, and it is projected billions of dol-

lars in damage could be done in British Columbia by 2054 (Corbett et al. 2015). Factors

delimiting the range of southern MPB populations are less known, and while MPB were

once considered rare to absent south of the USA, MPB were recently found in dead Pinus

strobiformus in Chihuahua, Mexico (Armendáriz-Toledano et al. 2017). Accurate predictive

models are becoming more critical as research suggests all aspects of insect outbreak be-

havior, include voltinism (the number of generations per year), will increase due to climate
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change (Logan et al. 2003).

Thermal input is the main driver of many exothermic life cycles, including insects

in general and MPB in particular. The idea of integrating temperature through time to

predict life history events dates back to the degree day model of de Reamur in 1735, in which

development rate is assumed to be linear above a temperature threshold (Bonhomme 2000).

In more recent times, empirical non-linear models, such as the logistic equation of Davidson

(Davidson 1944), the matched asymptotic curves of Logan et al. (1976), and the Brière

curve (Brière et al. 1999) improve upon degree day models by incorporating non-linearity

at high and low temperature thresholds. While details of thermal response vary among rate

curves, they all provide a way to sum developmental response to varying temperatures over

time and predict timing of observable life history events.

While some models focus exclusively on the development of a typical (median) indi-

vidual, this ignores the intrinsic variability of rates/fecundity in a population. The most

frequently used models incorporating developmental variability are distributed delays (as-

suming development is a Poisson process), individual based (directly sampling from an

assumed distribution of rates, usually normal or lognormal), and cohort-based (requiring a

computational or analytic inversion of the rate distribution to ascertain a distribution of

emergence times). These models can be used to understand the competing requisites of

bet hedging (to avoid catastrophic events) and synchronization (to find/attack hosts and

encounter mates).

Another important consideration is how temperature dependent rate models incorpo-

rate the natural variability in rates. Models that focus only on the development of a median

individual ignores the intrinsic variability of rates/fecundity in a population, which skews

predictions. Instead more frequently used models incorporating developmental variability

by using distributed delays (which assume development is a Poisson process), individual

based variability (by directly sampling from an assumed, usually normal or lognormal, dis-

tribution of rates), and cohort-based (which require a computational or analytic inversion

of the rate distribution to ascertain a distribution of emergence times for each cohort). For
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many insects, this genetic variability in developmental timing is crucial as it increases the

chances that offspring distributed throughout the year will be able to obtain the resources

necessary for survival and reproduction (Hopper 1999). In contrast to these overlapping

generations that optimize resource attainment, many specialist poikilotherms such as MPB

require synchronous emergence from a life stage in order to take advantage of ephemeral

resources for successful mating and reproduction, or to successfully attack a host.

1.1 Southern MPB Oviposition

Similar to other developmental stages of insects, the oviposition process is often con-

trolled by temperature. In contrast, however, behavioral aspects unique to oviposition

create unique modelling challenges. Oviposition includes behavioral factors such as host se-

lection and placement of eggs, as opposed to larval or pupal lifestages in which an organism

is primarily focused on feeding and development with no or minimal movement. There are

many factors of oviposition strategy that can be contradictory, for instance the challenge

of finding a suitable host while there is still the possibility of continuing on to find an even

better host (Janz 2002). The distribution and number of eggs is effectively an optimum

foraging problem for insects that oviposit on discrete patches of larval resources (Ives 1989).

When more than one female oviposits on a single resource, optimal clutch size is dependent

on the competition between larvae of a single female, as well as the competition between

larvae from other females. These pre-ovipositional behaviors can directly affect the timing

of oviposition and are thus important to consider when developing a model. The required

synchrony of MPB attacking a host leads to trade-offs during oviposition, as intraspecific

competition is an inherent aspect of the process.

Additionally MPB, like many insects, exhibit variability in total number of eggs (fe-

cundity) of an individual. To complicate matters, MPB oviposition is difficult to observe

directly as it occurs in the phloem underneath the bark of a host tree, and accordingly

McManis et al. (2019) performed non-invasive x-ray imaging on MPB infested boards. The

authors parameterized an oviposition rate curve for a southern population of MPB account-

ing for variability in fecundity and rate, but suggested no predictive model. While previous
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predictive Dendroctonus oviposition models incorporate one or the other of these sources of

variability, no previous predictive model incorporates both (McManis et al. 2019).

Female MPB have a unique oviposition behavior, in which after mating within the tree

there is a period of several days during which the female is boring further into the host

(Amman 1972; McManis et al. 2019). This egg free distance allows MPB to circumvent

the defensive response of the Pinus host by interrupting resin delivery, as well as conserve

moisture and avoid desiccation. There is not currently a predictive model taking into

account this time to excavate the egg-free gallery, t0, which is important to include in order

to determine when oviposition truly starts. Unlike many other insects in which females

oviposit a single clutch relatively quickly (Ives 1989), MPB females lay individual eggs

over the course of many days as an egg gallery is bored (Amman 1972), leading to great

variability in times of oviposition.

In Chapter 2 I use the oviposition rate curve developed by McManis et al. (2019) to

develop a predictive oviposition model for a southern population of mountain pine beetle,

incorporating both varying oviposition rate and fecundity. I also assess two different meth-

ods for calculating the time delay before oviposition, t0, during which the egg-free gallery

is constructed, and establish that this process occurs at a rate unrelated to oviposition.

The model can predict the probability of oviposition for a season of beetle attacks using

phloem temperature and adult mountain pine beetle attack data collected from the field.

I also derive an asymptotic approximation of MPB oviposition which is simpler and more

computationally efficient. The oviposition model derived from the McManis rate curve and

the asymptotic approximation are compared with other modeling approaches, including a

median model and cohort model previously used to predict oviposition for a northern MPB

population.

1.2 Southern MPB Teneral Adult Rates

The MPB has a univoltine (one-year) life cycle across most of its range, though in

some regions semi-voltine (two-year) emergence is also present. A majority of the MPB life

cycle is spent inside the phloem of a Pinus host, other than for a period of a few days in
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late summer (late July to early September) during which newly developed parent adults

emerge to search for a new living host. MPB females attract males with pheromones for

reproduction, and initiate mass attacks on new host trees. After mating and oviposition,

nearly all adult beetles perish within the tree, and their offspring complete the life cycle in

the following summer.

While wild populations of MPB are most commonly univoltine and occasionally semi-

voltine, there are concerns that warmer temperatures from range expansion or global

warming could lead to wild bivoltine populations, which could have significant impacts

on pine forests. MPB bivoltinism faces the significant barrier of the cold tolerance of cer-

tain lifestages. Though larger larvae have a level of cold tolerance, MPB eggs and pupae

are considered to have the lowest cold tolerance among MPB lifestages and could expe-

rience significant mortality if correct seasonality was not maintained (Bleiker and Smith

2019; Reid and Gates 1970). Mortality occurs with exposure to 0℃ for both egg and pupal

stages, (Bleiker and Smith 2019; Bleiker et al. 2017). A phenology model parameterized for

northern US MPB populations suggests bivoltinism is possible in the southern MPB range

under future warming scenarios (Bentz et al. 2016), though bivoltine MPB have not been

observed in the field (Bentz and Powell 2014).

However, geographic-specific models are required as northern and southern MPB pop-

ulations are genetically different in response to temperature, and southern MPB have been

found to have longer generation times in northern MPB temperatures (Bentz and Powell

2014). McManis et al. (2018; 2019) successfully parameterized a phenology (life-cycle)

model for a southern population of MPB from lab data, using infested phloem in ’sand-

wiches’ between layers of glass. However they were unable to parameterize the teneral adult

stage, which ends when the MPB leave the tree to find a new host, since adults could not

leave the sandwich. Developmental parameters found by for the southern population var-

ied from those found for northern MPB (Régnière et al. 2012), but not enough to account

for longer observed developmental time of Arizona MPB populations, which suggests that

teneral adult rates must be considerably lower in order to account for this time (McManis
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et al. 2018). Soderberg et al. (2021) completed reciprocal translocation experiments with

southern and northern populations of MPB, and observed seasonally appropriate univoltine

emergence at all sites, suggesting that MPB have adapted to remain univoltine even in

warmer environments. In the absence of a model of teneral adult development it is not

possible to predict if the southern population, which is most likely to experience significant

warming, could potentially become bivoltine.

In Chapter 3 I use a phenology model and field data for a southern population of

mountain pine beetle in order to determine developmental rates for the cryptic teneral

adult stage. I first introduce rate models for the earlier life stages using the parameters

of McManis et al. (2018). I develop a model for deviance between the model predictions

and field observations, which is used to connect candidate teneral models to emergence

distributions. Teneral curves were parameterized using field data collected from two trees

for a southern MPB population in Arizona, and the most suitable curve was selected by

comparing nominal and bootstrapped AIC values. The complete model was then cross-

validated using an additional tree from the field data. I then increase mean temperatures

in the model and maintain reasonable constraints for appropriate seasonality to examine

the possibility of bivoltinism in a southern population of MPB.

My results shed light on how the previously unmodeled southern MPB oviposition and

teneral adult life stage differ from northern populations, and can inform future responses

to forest management with a complete phenological model.



CHAPTER 2

OVIPOSITION MODEL FOR A SOUTHERN POPULATION OF MOUNTAIN PINE

BEETLE

2.1 Introduction

Poikilotherms, animals which are unable to self regulate body-temperature, comprise

the vast majority of life on earth. Without the ability to regulate body temperature, these

animals are dependent upon external temperatures for their life cycles, and correspondingly

at risk to be affected by climate change. Thomas et al. (2004) predicted that 13-24% of the

animals in their study area would become extinct due to global warming. Beyond imminent

extinction, changes in temperature are critical for many developmental processes, including

those of insects. The impact of changing temperatures on insect life cycles could increase

both the range and emergence of pest insects (Logan et al. 2003). While the impacts of

changing temperatures on these insects will be observable as they occur, a greater under-

standing is necessary predict these changes and prevent ecological and economic damage.

The idea of integrating temperature through time to predict life history events dates

back to the degree day model of de Réaumur in 1735 (Bonhomme 2000), in which develop-

ment rate is assumed to be directly proportional to temperature above threshold. In more

recent times, empirical non-linear models, such as the logistic equation of Davidson (1944),

the matched asymptotic curves of Logan et al. (1976), and the Brière curve (1999) improve

upon degree day models by reflecting non-linearity at high and low temperature thresholds.

Incorporating rate curves into deterministic models allows for predictions from one year to

the next, such as the circle map model of Logan and Powell (2001). For many insects with a

seasonal life cycle, these models can be used to predict possible changes in generation time

due to warming temperatures. Changes in voltinism, the number of generations/broods an

insect completes in a single year, could result in increased population growth of herbivorous
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forest pests and lead to increased tree mortality (Bentz and Powell 2014). Accurate predic-

tive models are becoming more critical as research suggests all aspects of insect outbreak

behavior, include voltinism, will increase due to climate change (Logan et al. 2003).

In addition to the relationship between rate models and temperature, another consid-

eration is how models incorporate the natural variability in rates. While some models focus

exclusively on the development of a median individual, this ignores the intrinsic variability

of rates/fecundity in a population. The most frequently used models incorporating devel-

opmental variability are distributed delays (assuming development is a Poisson process),

individual based (directly sampling from an assumed distribution of rates, usually normal

or lognormal), and cohort-based (requiring a computational or analytic inversion of the

rate distribution to ascertain a distribution of emergence times). For many opportunistic

poikilotherms this genetic variability in developmental timing is critical, as it increases the

chances that offspring distributed throughout the year will have the resources necessary for

survival (Hopper 1999). Many specialist poikilotherms require synchrony to take advantage

of ephemeral resources and for successful mating and reproduction. This synchrony can lead

to ovipositional trade-offs, as intraspecific competition is a necessary part of the process.

Oviposition strategies are dependent on many factors that are often contradictory, such

as the difficulty of finding a suitable host and the possibility of continuing to find an even

better host (Janz 2002). Many insects oviposit on discrete patches of larval resources (Ives

1989), and the distribution and number of eggs is effectively an optimum foraging problem.

When more than one female oviposits on a resource, optimal clutch size depends not only

on the competition between larvae of a single female, but the competition between groups

of larvae from different females. As with the progress through developmental lifestages, the

oviposition process is controlled by temperature. Unlike these lifestages however, oviposi-

tion is a behavioral life phase, which creates additional modeling challenges. As opposed to

larval or pupal lifestages in which an organism is primarily focused on feeding and develop-

ment with minimal movement, oviposition includes behavioral factors such as site or host

selection and placement of eggs to avoid larval competition and protect offspring. These
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pre-ovipositional behaviors can directly affect the timing of oviposition. Many of these

themes are present in the case of the moutain pine beetle (MPB, Dendroctonus ponderosae

Hopkins, Coleoptera: Scolytidae), a species of economic and environmental concern.

Temperatures directly but non-linearly affect progress through stages of the MPB life

cycle which have varying temperature thresholds (Bentz et al. 1991; Powell and Logan 2005).

Adults must attack a host simultaneously to overwhelm host defenses and successfully

colonize a Pinus host, ovipositing in the inner-bark (phloem) and killing the host tree.

MPB have variable rates of development across their life cycle but require synchrony in

order to successfully reproduce and oviposit in hosts (McManis et al. 2019). Too many eggs

can increase intraspecific competition among the developing larvae and result in reduced

survival (Cole 1962). This increased intraspecific competition ultimately results in less than

optimal reproductive success for food, in this case phloem of a certain thickness in the Pinus

host tree (Amman 1972). Conversely, death of the host is necessary for successful MPB

reproduction, and can only be achieved by the synchronous attack of many beetles (Logan

and Powell 2001). The host tree will successfully expel the beetles via defensive resin if the

number of beetles that attacks a tree is too low.

MPB attack living Pinus trees across an extensive area in Western North America

ranging from Baja California Norte, Mexico, to northern British Columbia and Alberta,

Canada (Dowle et al. 2017). Changing temperatures have broadened the MPB niche geo-

graphically, leading to tree mortality of over 5.2 Mha in the western US (Meddens et al.

2012). The distribution of Pinus host species in western North America extends both north-

ward and southward beyond the known historical distribution of MPB (Giroday et al. 2012;

Sambaraju et al. 2019). Increases in temperatures have allowed MPB migration northward

and eastward in Canada, where it is projected billions of dollars in damage could be done in

British Columbia by 2054 (Corbett et al. 2015), but the possible future effects on southern

MPB populations are less known. Northern and southern MPB populations are genetically

different in response to temperature, requiring geographic-specific model parameters. An

accurate predictive model of southern MPB oviposition is critical to predict possible changes
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in voltinism and range.

Oviposition data among Dendroctonus species is difficult to observe directly as it occurs

in the phloem underneath the bark of a host tree. After mating within the tree there is a

period of several days during which the female is boring further into the host (Sahota and

Thomson 1979). This egg free distance allows MPB to avoid the potentially fatal induced

resin response of the Pinus host as well as to avoid desiccation. Taking into account this

time to excavate the egg-free gallery, t0, is important for determining when oviposition truly

starts, but there is not currently a predictive model. Females then lay individual eggs over

the course of many days as an egg gallery is bored (Amman 1972), unlike many other insects

in which females oviposit a single clutch relatively quickly (Ives 1989). MPB, like many

insects, exhibit variability in both oviposition rate and total number of eggs (fecundity) of

an individual. While previous predictive Dendroctonus oviposition models incorporate one

of these sources of variability, no predictive model incorporates both (2019). McManis et al.

(2019) performed non-invasive x-ray imaging on MPB infested boards and parameterized

an oviposition rate curve for a southern population of MPB accounting for both sources of

variability, but these authors suggested no predictive model.

The goal of this chapter is to develop the predictive oviposition model for a southern

population of mountain pine beetle using the oviposition rate curve developed by McManis

et al. (2019), incorporating both varying oviposition rate and fecundity. We also describe a

method for calculating the time delay before oviposition, t0, and establish that this process

occurs at a rate unrelated to oviposition. Using phloem temperature and adult mountain

pine beetle attack data collected from the field, the model can return the probability of

oviposition for a season of beetle attacks. We also develop a simpler and less computa-

tionally taxing asymptotic approximation of MPB oviposition. The detailed oviposition

model (MPBovi) and its asymptotic approximation are compared with other modeling ap-

proaches, including a median model and cohort model (Gilbert et al. 2004) which were

previously used to predict oviposition for a northern (Utah/Idaho) MPB population. The

predictive capacity of each model is tested against McManis’ laboratory data on southern
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MPB oviposition.

2.2 Models for MPB Oviposition

For insects and other organisms whose oviposition is completely or mostly determined

by temperature, predictive models of the relationship between temperature and phenology

(developmental timing) are based on the idea of relating the fraction of progress through

a lifestage to rate functions of that lifestage (Cobbold and Powell 2011; Logan and Powell

2001). If a(t) represents the fraction of development towards completion of oviposition j by

time t, then

da

dt
= r0(T (t)), a(t0) = 0 (2.1)

where r0T (t) is the rate of oviposition, dependent on the temperature of the organism’s en-

vironment, T (t). The initial condition of a(t0) = 0 indicates oviposition begins immediately

after the egg-free gallery is completed. Equation (2.1) can be solved by integrating

1 = a(t) =

∫ t1

t0

r0(T (τ)) dτ, (2.2)

where oviposition is completed at at time t1, and the next life stage (the development of

eggs) begins. The simplest example of a developmental rate function is the degree day

model,

r(T ) = ψ ·max(T − Tb, 0) (2.3)

in which Tb is the lower temperature threshold, and ψ is 1/degree days required to complete

oviposition.

Basedo on this, Logan and Bentz (1999) developed a model that determines the median

day of oviposition, using where the rate is simply 1/time to the median oviposition state,

and correspondingly to find the median day of oviposition the rate is summed to 1

1 =

median day∑
start day

Di (2.4)
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where D is the proportion of the oviposition completed on day i summed over hours,

Di =

24∑
n=1

r0T (t)∆t (2.5)

and tn is the nth hour of day i with ∆t = hour. Though this allows for a predictive model

with an output of a single day, it does not take into account variability in either fecundity or

rate nor the fact that eggs are distributed continuously along the gallery after the egg-free

length. To include some variability for eggs being laid over time, Gilbert et al. (2004) used

the Extended von Foerester equation (EvF),

δ

δt
u(a, t) + r0[T (t)]

δ

δa
u(a, t) =

1

2
σ2

0

δ2

δa2
u (2.6)

which expands upon Logan and Bentz’s model by assuming rates are normally distributed

with mean r0(T ) and variance σ2
0, and reflects the distribution in times at which different

individual eggs are laid. Then u(a, t) is the density of eggs at time t and fraction of egg

gallery completed a (normalized such that 0 ≤ a ≤ 1), r0[T (t)] is developmental rate at

temperature T (t), and p0(t) = u(a = 1, t) is the distribution of oviposition over time.

The Green’s Function solution to the Extended von Foerster equation

p0(t) =

∫ ∞
0

A(τ)
e

−(1−
∫ t
τ+t0 r0(T (s))ds)2

2σ2
0(t−τ+t0)√

2πσ2
0(t− τ + t0)3

dτ (2.7)

results in a density of eggs based on a distribution of all attacks A(τ) over days τ (Powell

and Bentz 2009). While this model successfully incorporates variability assuming normally

distributed rates, it does not incorporate variability in fecundity.

Taking a different approach, Régnière et al. (2012) used an exponential oviposition

rate constant across individuals, but accounted for variability in fecundity using a lognormal

distribution. Assuming that each female has a fixed potential fecundity, Ω, and that a female

oviposits her remaining potential fecundity, F , at a declining exponential rate dependent
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upon temperature, T , the rate of potential oviposition expenditure is

dF

dt
= −r0(T )F, F (t = t0 + τ) = Ω (2.8)

where oviposition begins at day of attack τ , plus the time required to construct the egg-free

gallery t0. Defining O(t) as the cumulative oviposition at time t, O(t) = Ω − F (t), the

potential fecundity minus the remaining fecundity at time t. Thus for τ < t the cumulative

distribution function for oviposition for females attacking on day τ

p0(t) = 1− e−R(t,τ+t0) (2.9)

and p0(t) = 0 when t0 + τ . Here

R(t, t0 + τ) =

∫ t

t0+τ
r0(T (t′))dt′ (2.10)

is the cumulative oviposition index from beginning of oviposition to time t.

2.3 Lab Results for Southern MPB

McManis et al. (2019) quantified fecundity of individuals from a southern mountain

pine beetle population via non-invasive X-ray imaging of infested boards. Unmated adult

southern MPB were obtained from the Kaibab National Forest, near Flagstaff, AZ. Experi-

mental boards were obtained by cutting sections from a southwestern white pine harvested

in the same region. Each board was infested with one randomly selected female-male

mountain pine beetle pair. Forty infested boards were placed in incubators with constant

temperatures of 10, 20, 27, and 29◦C. Temperatures were selected to give broad coverage

of the oviposition rate curve, emphasizing the upper threshold. During the incubation each

board was X-rayed 3 times per week, and oviposition gallery length for successive days was

measured using the X-ray images. After 30 days boards were stored at 0◦C to stop ovipo-

sition and egg development. The phloem and outer bark were peeled from each board and

the location of eggs and first instars were marked and photographed. Three boards did not
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result in successful galleries and were not included, resulting in 37 boards. Estimated times

of oviposition for each egg were calculated assuming a linear relation between observation

days, then daily counts were used to create a distribution from the observed lab data.

McManis et al. (2019) observed that oviposition rate and fecundity vary independently.

They developed a novel approach to estimating exponential oviposition rates using the X-

ray data. The total fecundity for individual m, Ωm, was found to be related to the fecundity

of the median individual, Ω0, by

Ωm = Ω0δm, (2.11)

where δm is lognormally distributed with mean 1 and variance parameter σ2
egg, following

(Régnière et al. 2012). Their model also included a normal distribution for individual rates,

thus the rate for any individual female m can be written as

rm(T ) = r0(T ) + εm, εm ∼ N(0, σ2
0), (2.12)

where r0(T ) is the exponential rate function of the median individual which Régnière et al.

(Régnière et al. 2012) and McManis et al. (McManis et al. 2019) took to be

r0(T ) = ψ

[
eω(T−Tb) −

(
Tm − T
Tm − Tb

)
e
−ω(T−Tb)

∆b − (
T − Tb
Tm − Tb

)eω(Tm−Tb)−Tm−T∆m

]
(2.13)

and 0 for T /∈ [Tb, Tm]. Here Tm and Tb correspond to the upper and lower temperature

transitions from normal to negligible development at the upper and lower thresholds, ω

describes the expected exponential acceleration of rate with temperature, ψ is proportional

to the maximum development rate, and ∆m and ∆b are the width of the thermal transitions

for the upper and lower thresholds. While McManis successfully described both varying rate

and fecundity, it was not clear how to incorporate both into a predictive model.

In addition to incorporating varying rates and fecundity, there is a period of time after

MPB mate in the phloem during which the female creates a characteristic “J” shaped initial

gallery to avoid host defenses and before beginning oviposition, which we defined as t0. This

period has been shown to temperature dependent in lab experiments, varying 2-13 days at
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various constant temperatures for Dendroctonus species (McManis et al. 2019; Sahota and

Thomson 1979).

Sahota and Thomson (1979) observed variability in both fecundity and oviposition

rate via non-invasive X-ray imaging of spruce beetle (D. rufipennis) oviposition. Spruce

beetle are behaviorally similar to MPB, and relevant as the egg-free distance of Dendroc-

tonus species has been minimally studied. Yet their observations were not suitable for a

predictive model, as their calculation of rates depended on cumulative gallery length for

constant temperatures. The rates correspondingly could not be used for varying tempera-

tures, since mathematically beetles could be required to create negative gallery to achieve

shorter galleries at lower temps. Amman (1972) measured the number of MPB eggs laid

at constant temperatures, by infesting boards and peeling the bark off after 13 days. Due

to this method of data collection the sources of the variability in rate and fecundity were

confounded. Without more frequent measurements it is impossible to distinguish if vari-

ability in the the number of eggs laid during the sampling period is due to ovipositon rate

or fecundity. Thus Amman’s data allowed for a model with constant fecundity (Logan et al.

1995) or oviposition rate (Régnière et al. 2012) but not both.

McManis et al. (2019) X-rayed infested MPB boards incubated at constant tempera-

tures of of 10, 20, 27, or 29◦C over a thirty day period. After 30 days the bark was peeled

off, and the egg free distance of each board, l, was measured directly. Though only female

MPB were visible in the X-ray images, the time delay t0 was calculated using the length of

gallery recorded in X-ray images, and interpolating the time at which the egg-free gallery

was completed assuming a constant speed of movement. Thus for each board and temper-

ature there is an observed value of t0. Although the length of gallery constructed before

oviposition did not vary among temperatures, t0 was found to be up to a week longer for

the 10◦C (the lowest temperature). This difference in t0 required to build the same length

of gallery indicates that gallery construction is a temperature-dependent phase similar to

oviposition. As a temperature dependent process construction of the egg-free gallery could

possibly affect synchronous and seasonally appropriate emergence.
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2.4 Modeling the Time Required to Excavate Egg-Free Distance

We discuss two methods for predicting egg free distance and the hypothesis that the

egg free gallery is constructed at a rate proportional to the oviposition rate. We assume

that there is a linear relationship between the oviposition rate and the velocity of gallery

construction. Integrating the velocity to the average egg free length l0 gives an estimate of

t0. In contrast, the independent method assumes that the 1
t0

value for each board is a direct

observation of the rate of gallery construction. We fit these observations to a rate curve

(2.3) and use bootstrapping to assess whether or not gallery construction and oviposition

occur at related rates.

2.4.1 Egg Free Length Constructed Proportionally to Oviposition

If the velocity of gallery is proportional to the oviposition rate, there exists a constant

d such that

V (T ) = d · r0(T ). (2.14)

where the velocity is the time to create the egg free distance divided by observed t0,

V (T ) =
l0
t0
, (2.15)

with l0 = 6.7356 cm calculated from the data of McManis et al. (McManis et al. 2019). We

estimated for the coefficient d using using a linear regression regression, minimizing

∑
i,j

(Vj(Ti)− d · r0(Ti))
2 (2.16)

where Vj is the jth observation of velocity at Ti=10, 20, 27, 29◦C.

2.4.2 Egg Free Length Constructed Independently of Oviposition Rate

We also pursued an independent approach that assumed the egg free distance is inde-

pendent of oviposition. The parameters for the independent rate of completion of the egg
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free distance, rindep(T ), were fit by assuming observed t0j

t0j (Ti) =
1

rindep(Ti)
+ εj (2.17)

where εj is normal and rindep(Ti) is given by (2.3). Nonlinear regression parameters appear

in Table 2.1.

Life stage Ω Ψ Tb Tm ∆b ∆m

Oviposition 0.0913 0.0309 6.6000 30.9000 1.3613 1.9889

Independent 0.0632 0.1773 5.8992 29.6069 2.5514 2.7269

Table 2.1: This table contains the parameter values for the creation of egg free distance
found in this paper, as well as the ovipositional parameter values found by McManis et al.
(2019).

Determination that Independent Method is Most Appropriate

Assuming that the velocity of gallery construction is proportional to oviposition rate

would have been both mechanistic and minimized the number of new parameters needed,

as the related rate would be,

rrelated(t) =
1

t0
=

d

lobs
r0(T (t)) (2.18)

with rrelated being proportional to the parameters of r0 by d
l0

. However comparing our

predicted values of t0 from the related method to those found by McManis et al. (2019)

indicated that the predicted values were particularly error prone at extreme temperatures

(Figure 2.4) and that the independent method was more consistent with observations, and

the independent rate curve appears more suitable.

The related method results in a poor fit to tobs (Figure 2.4), because variability in

observed t0 and l0. The assumption that the rate is related to the velocity introduces

this compounding factor that may have reduced the fit. In addition, the related method
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is inherently restricted by the oviposition curve. The derivation of the related rate curve

ultimately results in a rate that is the oviposition rate multiplied by the constant d
l0

. Thus

the parameters of Tb, Tm, and the temperature where max rate occurs, Topt, cannot differ

from the initial oviposition rate curve. As seen in Figure 2.5, the more suitable independent

rate curve has significantly different values for these parameters.

To computationally verify that the parameters of the independent method are distinct

from the parameters of the oviposition and related method, the related method rate curve

was fit to 1000 bootstraps of the infested board data by minimizing (2.16). All of the

independent curve parameters differed from the oviposition curve parameters significantly.

The temperature thresholds Tb and Tm were smaller in 87.3% and 100% of bootstrapped

cases (Figures 3.26 and 3.27). The temperature at which maximum rate is achieved, Topt,

was calculated for each of the bootstrapped independent curves. The nominal Topt value of

24.59◦C, and 100% of the bootstrapped Topt values were less than the oviposition curve of

27.01◦C.

While the independent method was ultimately much more suitable for predicting the

time required to excavate the egg free distance, this highlights the fact that that excavating

egg free distance has differing temperature thresholds, and is a biologically distinct process.
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Fig. 2.1: Histogram of minimum temperature thresholds (Tb) generated for 1000 boot-
strapped fits of the independent rate curve. In 87.3% of cases Tb was smaller than the
related Tb of 6.6◦C, which is noted by the vertical line.

Fig. 2.2: Histogram of maximum temperature (Tm) thresholds generated for 1000 boot-
strapped fits of the independent rate curve. In 100% percent of cases Tm was smaller than
the related method Tm of 30.9◦C, which is noted by the vertical line.
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Fig. 2.3: Histogram of optimum temperature thresholds (Topt) generated for 1000 bootstraps
of the related method rate curve. In 100% of cases the temperature at which the maximum
rate occurred, Topt was greater than the related value of 27.0067, which is noted by the
vertical line.
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2.4.3 Variability in Time for Egg-Free Gallery Construction

We wanted to be certain that the variability of predicted t0 values would remain rea-

sonably low, as high variability could poorly estimate t0 at varying field temperatures, and

necessitate using a more computationally taxing cohort model. This was done by calculat-

ing the variance between the predicted and observed rates, and using the the Extended von

Foerester model (2.7) to project the overall variability in predicted time to complete the

egg-free length at constant and varying field temperatures.

We estimated σ2 = 0.031, and using EvF found the impact of variability was small at

15, 20, and 25◦C (2.6), and more significant at 10◦C, with a variance in median completion

time of ±2 days. This variance in time is relatively minor, particularly considering that field

temperatures are close to 10◦C only a small percentage of the time during the excavation of

the egg-free distance. When calculating the distribution with the field phloem temperature

data (Figure 2.7) the variability was much smaller for an increase of 5◦C, which is more likely

to occur than a decrease with current temperature warming predictions. Since the impact

of variability was so small, we chose to neglect variability in order to reduce computational

complexity. Thus, to calculate the time to begin oviposition, cumulative daily rates were

used in equation (2.3), and t0 was calculated by integrating to 1.
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Fig. 2.4: Observed t0 values in the laboratory for constant temperature with predicted
values of both the related (blue) and independent (orange) methods. Values of t0 were
recorded for infested boards incubated at constant temperatures of at 10, 15, 25, and 29◦C.
The temperature thresholds of the related method result in a poorer fit at the extremes
as well as overall, while the new thresholds of the independent method allow for a more
suitable fit to the data.
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Fig. 2.5: A comparison rate curve for the related method (blue) and independent method
(orange), as well as the related method rate curves resulting from fitting to 1000 bootstraps
of the infested board data (gray). Though the bootstrapped curves do vary with different
fits, the related curve thresholds are significantly different than the oviposition rate curve.
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Fig. 2.6: Probability distributions of t0 for the independent method projected using the
EvF equation using constant phloem temperature data. Variability in t0 decreases as tem-
perature increases, with a noticeably wider distribution for 10◦C. Even at that temperature
most egg-free gallery is predicted within two days of median emergence, indicating that the
complexity of the cohort model is not necessary.
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Fig. 2.7: Probability distributions of t0 for the independent method projected using the EvF
equation using field phloem temperature data. Though the variance noticeably increases
with a decrease in the mean phloem temperature, for an increase in phloem temperature
that is more likely to occur under current global warming regimes, the variance is much
less pronounced. (Field phloem temperatures were collected at hourly intervals in 2015 at
Lockett Meadows, Cococino National Forest, AZ.)
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2.5 Calculating the Distribution of Oviposition

In this section we derive the detailed ovipositional model, MPBovi. First we determine

the distribution of oviposition, povi, conditioned on egg quantiles of remaining fractional

fecundity, f . We then determine the distribution of f , in order to weight each quantile

of remaining fecundity. After determining the distribution of f , we sum over quantiles

to calculate the density of eggs, pegg conditioned on an attack date τ . The procedure is

illustrated using hourly phloem temperature data, T (t), and attack data , A(τ), collected

in 2015 at Lockett Meadows, Cococino National Forest, AZ.

2.5.1 Distribution of Oviposition Quantiles

After a gallery is initiated at a time τ , there is a delay period, t0, before oviposition

begins, calculated using the method in section 2.2. Thus when t ≤ t0 + τ , the maximum

potential fecundity is Ω. Using this condition and solving (2.8) for F produces the following

equation for remaining potential fecundity for a time t :,

F =


Ω

[
e
−
∫ t
t0+τ

r0(T (t′)−ε)dt′
]
, t > t0 + τ

Ω, t ≤ t0 + τ

. (2.19)

Here r0(T (t′)) is the rate of oviposition and ε is the normal variability in rates. Since the

data collected by McManis et al. (2019) is eggs over time, the oviposition model is in terms

of the cumulative oviposition at time t, O(t) = Ωm − F , resulting in the following model:

O(t) =


Ω
(

1− e−
∫ t
t0+τ r0(T (t′))dt′)

)
+ ε, t > t0 + τ

0, t ≤ t0 + τ

(2.20)

where (1− e−
∫ t
t0+τ r(T (t′))dt′

) is the fraction of remaining oviposition at time t.

The time at which the nth egg is laid satisfies following equation:

n = Ω

(
1− e−

∫ t
t0+τ

(r0(T (t′))−ε)dt′
)
. (2.21)
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Let f be the remaining fraction of potential fecundity, that is f = 1− n
Ω . Solving (2.21),

f = e
−
∫ t
t0+τ (r0(T )−ε)dτ

= e(ε(t−t0−τ)−R(t,t0+τ)), (2.22)

where R(t, t0 + τ) is the cumulative oviposition index between t0 + τ in equation (2.10). We

then invert equation (2.22) for ε,

ε =
ln(f) +R(t, t0 + τ)

t− t0 − τ
. (2.23)

Since ε ∼ N(0, σ2) is truncated on the right, we know that for any positive ε the

cumulative distribution function is

P (t′ > t for egg n ) =

∫ ε

−∞

1√
2πσ2

e−s
2/2σ2

ds (2.24)

Taking the derivative of this CDF results in the PDF of oviposition over time conditional

upon remaining fraction fecundity and attack date:

p(t|τ, f) = d
dt

(∫ ε
−∞

1√
2πσ2

e−s
2/2σ2

ds
)

= 1√
2πσ2

e−ε
2/2σ2 ∣∣ d

dtε
∣∣ (2.25)

We can conclude that, for any particular f ,

povi(t|t0 + τ, f) =
Cf√
2πσ2

e
−
(

ln(f)+R(t,t0+τ)
t−t0−τ

)2
/2σ2

∣∣∣∣−(ln(f) +R(t, t0 + τ))

(t− t0 − τ)2
+

r0(T (t))

t− t0 − τ

∣∣∣∣
(2.26)

where Cf is a normalization constant related to the truncation. Note that while
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Fig. 2.8: The probability distribution function povi created when using field phloem temper-
ature data as input for different values of f . The earlier an egg is laid, the less it is affected
by the variability in rates as all MPB begin oviposition simultaneously in the model, hence
the steep peak for the 0.05 percentile eggs. As oviposition continues and the MPB continue
on with varying rates, the probability distribution of any particular egg spreads across a
longer period of time.
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ε ∼ N(0, σ2), (2.24) is truncated such that 0 ≤ r0(T ) + ε, in order to avoid inplausible

negative rates. Correspondingly, all distributions required normalization. The remaining

fractional fecundity f has a noticeable effect on the probability of oviposition, as the vari-

ation in rates results in longer distributions for later eggs (Figure 2.8).

2.5.2 Distribution of Egg Quantiles is Approximately Uniform

In order to use (3.2) in a predictive model, it was necessary to determine the distribution

of the f , π(f), and we determine π in this section. While computational tests suggested

f was uniformly distributed, it is not initially clear why this should be so. For females

1, ...m, ...M , the individual fecundity of the nth individual female can be represented by:

Ωm = Ω0δm (2.27)

with δm = eγm , and γm ∼ N(−1
2σ

2
egg, σ

2
egg) (Régnière et al. 2012). The average fecundity of

the Arizona mountain pine beetle in McManis et al (2019) was estimated at Ω0 = 89.8, and

we can calculate σegg directly from the histogram of observed female fecundity in McManis

et al (2019), who hypothesized that π(f) was uniform. Taking the log of the observed

values in the histogram and calculating the standard deviation results in σegg = 0.6316.

Using equation (2.22), the nth egg of the mth individual female is in quantile

fm,n = 1− n

Ωm
. (2.28)

We used the lognormal function in Matlab to create 200 lognormally distributed δm

(Figure 2.9). The corresponding f values were calculated by taking the fractional fecundity

for each egg (integer) until Ωm. Note that as ovipositing females lay at least one egg, we

did not sample n = 0. Since n 6= 0, there are less observations between 0.9 and 1.0 (2.10),

but if n were continuous the distribution would be perfectly uniform.
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Fig. 2.9: The distribution of potential maximum fecundity, Ωm, used to create Figure 2.10.
The average potential fecundity of a southern MPB population was assumed to be Ω0 = 89.8
as seen in McManis et al. (2019).

Fig. 2.10: The histogram of remaining potential fecundity, f , values created for 200 in-
dividuals using the lognormal potential fecundity, Ωm (Figure 2.9). Since all MPB reach
maximum fecundity in egg (integer) increments the distribution is uniform despite differ-
ences in maximum fecundity, except for the uppermost bin. Since all ovipositing females
lay at least one egg, there are fewer values in the uppermost bin.
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To see why this should be so analytically, consider (2.5.2). Despite the varying value of

Ωm, the number of eggs n increases uniformly for each Ωm resulting in uniformly increasing

fractional values for n
Ωm

as the value of n approaches Ωm. More explicitly, Ωm are is large,

we can approximate x = n
Ωm

as a continuous variable. Then taking the derivative of x

results in

df

dx
=

d

dx
(1− x) = 1, (2.29)

indicating that the change in f is constant and therefore the continuous distribution would

be uniform. In addition, f is effectively an empirical CDF, and correspondingly the CDF

has a uniform distribution, as seen in Example 3.1 of Embrechts and Hofert (2013).

2.5.3 Distribution of Eggs

We can calculate the probability of oviposition for any given t and τ by integrating,

povi(t|t0 + τ) =

∫ 1

0
p(t|t0 + τ, f)π(f)df (2.30)

where we assume π(f) ≈ U(0, 1). This was performed computationally by first calculating

the value of t0 as described in Section 2.4. Then povi(t|t0 + τ) was calculated for uniformly

distributed values of f using cumulative trapezoidal integration of the temperature depen-

dent oviposition rates (2.3), and computationally normalized (Figure 2.11). Finally, (2.30)

was approximated using trapezoidal quadrature in f and evenly spaced increments of with

∆f = 0.05.

For any individual tree, there are multiple attack dates τ , each with a corresponding

numbers of attacks that day. The probability density of eggs on any particular day can

therefore be represented by

pegg(t) =

∫ τmax

τmin

A(τ)povi(t|t0 + τ)dτ (2.31)

where A(τ) is the number of attacks on the tree on day τ . This was calculated by weighting

the povi (2.30) calculated for each day of attack by the number of attacking beetles that
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day, then summing the densities and normalizing them.

The procedure is illustrated for field conditions in Figure 2.12. Phloem temperatures

and number of attacks observed on sample days for a baited tree were used to initialize

the model. The output of the model reflects the fluctuations in both number of attacking

beetles and phloem temperature.
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Fig. 2.11: The probability distribution function povi created when using field phloem tem-
perature data. The probability of oviposition decreases rapidly from an initial peak as the
variability in rates and fecundity begins to take effect. Oscillations in the curve reflect
diurnal temperature swings.
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Fig. 2.12: The weighted probabilities of oviposition are combined and normalized in order
to create the probability of oviposition for a single tree over a season. a) The probability
distributions of povi created when using field phloem temperature data and attack data as
input and weighted individual dates of attack. Each distribution represents a single date of
attack weighted by the number of attacking beetles. Weighted distributions were summed
and normalized in order to calculate pegg. b) The probability distribution function pegg
created when using field phloem temperature data and attack data as input. The shape
of the curve is reflective of multiple attack dates, varying number of beetle attacks, and
changing phloem temperatures seen in a).
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2.6 Asymptotic Approximation for Distribution of Oviposition

In practice the oviposition model is computationally taxing and the variance in rates

is relatively small, so we explored Laplace’s method to find an asymptotic approximation

for povi (2.30). Laplace’s method approximates integrals of the form

I =

∫ b

a
e−λφ(u)F (u)du. (2.32)

For λ >> 1, the integral at may be written

I =

√
2π√
λφ∗uu

e−λφ(u∗)(F (u∗) +O(λ−1)), (2.33)

where u∗ ∈ (a, b) satisfies δφ
δu(u∗) = 0 and φ∗uu = δ2φ

δu2 (u∗) > 0 (Logan 2013).

We must first use substitution to get (2.33) in the form of (2.26). Let u = ln(f), then

du = df
f = e−udf ⇒ df = eudu. Substituting into equation (2.30) and adjusting the limits

of integration gives

pa(t|t0 + τ) =

∫ 0

−∞
exp

[
−(u+R(t, t0 + τ))2

2σ2(t− t0 − τ)2

]
|r(T (t))(t− t0 − τ)− u−R(t, t0 + τ)|

(t− t0 − τ)2
√

2πσ2
eudu.

(2.34)

For equation (2.34) to have the form of equation (2.32), let

λ =
1

σ2
, (2.35)

φ =
(u+R(t, t0 + τ))2

2(t− t0 + τ)2
, (2.36)

and

F (u) =
|r(T (t))(t− t0 + τ)− u−R(t, t0 + τ)|

(t− t0 + τ)2
√

2πσ2
eu. (2.37)

Taking the derivative to find the critical point, u∗,

∂φ

∂u
=
u+R(t, t0 + τ)

(t− t0 + τ)2

set
= 0. (2.38)
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This gives

u∗ = −R(t, t0 + τ) (2.39)

and

φ∗uu =
1

(t− t0 + τ)2
. (2.40)

Then

F (u∗) = eu
∗ |r(T (t))(t− t0 + τ)|√

2πσ2(t− t0 + τ)2
= e−R(t,t0+τ) r(T (t))√

2πσ2 |t− t0 + τ |
, (2.41)

and substituting into (2.33), we find

I ≈
√

2π√
1

σ2(t−t0+τ)2

1

|t− t0 + τ |
√

2πσ2
e−R(t,t0+τ)r(T (t)). (2.42)

The oviposition distribution may therefore be approximated

pa(t|t0 + τ) = e−R(t,t0+τ)r(T (t)) +O(σ2). (2.43)

Notably, this approximation is equivalent to the closed form of the distribution found by

Régnière et al. (2012). Taking the derivative of Régnière’s cumulative fractional oviposition

(2.9) results in the oviposition density,

pReg(t|t0 + τ) = r(T (t))e−R(t,t0+τ) (2.44)

although the authors did not comment on this. It is also worth noting that

∫ ∞
τ+t0

e−R(t,t0+τ)r(T (t))dt =

∫ ∞
0

esds = 1 (2.45)

if s = R(t, t0 + τ) and ds = r(T (t))dt; thus the approximation is already normalized.
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2.7 Model Behavior and Comparison with Data

The models derived in this paper, MPBovi and the asymptotic model, as well as the

EvF cohort model and the median model, are compared to lab data obtained from MPB

infested boards by McManis et al. (2019). Observed values of t0 were used (instead of model

t0 to exclusively compare oviposition distributions to the lab data. The oviposition rate

and variance found by McManis et al. (2019) were used in each model, though the rate was

divided by ln 2 for the EvF model to reflect the timing of the median event. Model output

was weighted using the total realized fecundity for each infested board, then normalized to

create a distribution. The lab data distributions were created using daily increments, and

integrals approximated using trapezoidal quadrature and hourly time steps.

Values of R2 were calculated for the EvF, asymptotic, and derived oviposition models

over the range of the laboratory data (0-30 days), using bins of 24-hour width to match

the laboratory data. McManis incubated MPB infested boards at four constant tempera-

tures, but only total eggs counted were available for 29◦C before day 7. Thus probability

distributions are not present for 29◦C, but cumulative distributions were created with the

remaining data.

The probability distributions reflect the differences in model assumptions (Figure 2.13).

MPBovi and the asymptotic model both peak in the beginning and decrease rapidly, MPBovi

has a greater maximum probability due to incorporating variability in fecundity and rate.

While fecundity and rates begin to vary over time, the model assumes that all beetles

begin at the same time. The EvF model instead derives from variation around the median,

and correspondingly the EvF model predicts peak oviposition later, with spread on both

sides from the median. While the EvF model is somewhat more successful at the higher

temperatures than at 10◦C, both the asymptotic and derived model are closer to the timing

of the laboratory data (Figure 2.13). The EvF model has the poorest R2 values in all cases,

though is somewhat more successful for cumulative oviposition at 20◦and 27◦C (Table 2.2).

The asymptotic model has higher R2 values than the derived model in each case, and is

much higher for the 10◦C probability distribution function.
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EvF Asymptotic MPBovi

10◦C 0.0001 0.5706 0.0199

20◦C 0.2436 0.7761 0.6829

27◦C 0.2102 0.6329 0.5176

Table 2.2: Table of the calculated R2 values for the probability distribution functions of
discussed models. All models performed most poorly with the laboratory data at 10◦C, and
the asymptotic model performed best at all temperatures.

For all of the models except MPBovi, a majority of the oviposition at 10◦C is predicted

to occur past the observation window of the lab data (Figure 2.13). Both the asymptotic

and MPBovi exponentially decrease in proportion to the rate, and 10◦C is near the lower

temperature threshold, thus oviposition is predicted to take much longer. The nature of

the EvF model is that predictions are based upon the median, and correspondingly it is

also affected by the low changes in rates, as the median individual takes much longer to

complete oviposition. MPB oviposition takes place in late summer, thus 10◦C is the least

reflective of field oviposition temperatures, and less likely to affect a predictive model. It

is also uncertain how much MPB oviposition at a constant temperature of 10◦C is directly

comparable to MPB in the field experiencing fluctuating temperatures.

The cumulative distributions provide additional context of model success (Figure 2.14)

over time. The EvF model had the lowest R2 values at all temperatures, and the asymptotic

model had the highest R2 values for all except 27◦C, where MPBovi had a slightly higher

value (Table 2.3). MPBovi is best at predicting the first half of cumulative oviposition at

10◦C due to the predicted initial peak in emergence, while the asymptotic model and
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Fig. 2.13: The probability distribution functions of the lab data and the discussed models for
10◦C, 20◦C, and 27◦C. Due to the relationship between the computational models and the
lower oviposition rate at 10◦C, all but MPBovi predicted a sizable proportion of oviposition
to occur past the observation period. MPB oviposition is unlikely to occur during an
extended period of 10◦C in the field, as MPB oviposit in the late summer. Note that
though the median model may initially appear to be different than the EvF model, the long
tail of the EvF distribution results in the delayed median as is plotted.
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Fig. 2.14: The cumulative oviposition functions of the lab data and the discussed models
for 10◦C, 20◦C, 27◦C, and 29◦C. While the asymptotic model had the highest R2 value for
all temperatures except 27◦C, MPBovi also fits the data well, particularly at 10◦C. The
EvF model was least successful in all cases. Due to missing lab data, the 29◦C plots were
manually adjusted to begin at the fraction of fecundity remaining at day 7 in the lab data,
as lab data was unavailable before day 7.
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EvF Asymptotic MPBovi

10◦C 0.7932 0.9984 0.8625

20◦C 0.5322 0.9922 0.9860

27◦C 0.4213 0.9250 0.9363

29◦C 0.3368 0.9710 0.9583

Table 2.3: Table of the calculated R2 values for the cumulative distribution functions of
discussed models. The EvF model was the least suitable at all temperatures, with lower R2

values near the temperature thresholds. The asymptotic and MPBovi were both suitable
with similar R2 values, though the derived model has a higher R2 value for 10◦C.

EvF lag significantly behind. The asymptotic model is very successful at 20◦C, nearly

matching the lab data for the first half of oviposition, after which it begins to under predict.

2.8 Conclusion

In this paper we developed models to address challenges in predicting ovipositional

phenology for a southern population of MPB. Models were parameterized with and com-

pared to oviposition data collected by McManis et al. (2019). We introduce a method

for determining the time delay before oviposition, t0, which was found to be independent

of oviposition rate. A novel oviposition model with lognormal variability in fecundity and

normal variability in oviposition rate, MPBovi, was derived, as well as a simpler and more

computationally efficient asymptotic approximation. When comparing MPBovi and the

asymptotic approximation, as well as the previously used EvF model, to the lab data, both

of the new models were more successful at reflecting the observed distribution of eggs.

We found that the time required to complete the egg-free gallery was not well described

in by the oviposition rate, and instead better predicted using an independent rate curve.

Assuming that the rate of completion of the egg free distance is proportional to the oviposi-

tion rate, resulted in greater error near the temperature thresholds, and estimated optimum

temperature differing significantly from the oviposition model. An independent model with

new parameters, with bootstrapped parameters that differed significantly from the ovipo-

sition rate curve parameters, more accurately described the time required to excavate the

egg free distance.
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We compared two novel oviposition models, the derived model MPBovi which incor-

porates varying fecundity and rate, as well as an asymptotic approximation, with other

models that have been used to describe MPB oviposition. Both models have their positive

and negatives, and compare more favorably to lab data than previously used median and

cohort (EvF) models. Since oviposition occurs in the phloem under the bark, we were un-

able to directly compare the model output with field observations. We were able to compare

the output of the models to the laboratory data of McManis et al. (2019). This was not

ideal as the oviposition rate curve used in each model was calibrated via this data, but

it does allow for some degree of validation. The asymptotic model is the best fit for the

laboratory data in terms of R2, but it is not clear if that would be the case with a larger

sample size, which would better express the variability of fecundity and rate. It would be

worth investigating further if the predictive power of the derived model is more useful on

a larger scale, as both sources of variability have been found to exist in previous research

(McManis et al. 2019). Regardless, the asymptotic model also has the benefits of simplicity

and computational efficiency.

Quantifying temperature dependent lifestage events, particularly those that vary along

latitudinal climes, is an important step to predicting life cycles in a changing climate, and

preventing ecological and economic damage. Our methodologies for predicting southern

MPB oviposition provide a basis for analysis not only of MPB populations, but also other

Dendroctonus species and other insects with temperature dependent thresholds and variable

fecundity/rate. The southern MPB oviposition model is also suitable to be used in a

phenology model for the entire life cycle, which is the subject of the following chapter.



CHAPTER 3

A TENERAL ADULT RATE MODEL FOR A SOUTHERN MOUNTAIN PINE

BEETLE POPULATION

3.1 Introduction

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins Coleoptera: Scolyti-

dae) attacks living Pinus trees across a widespread area in Western North America ranging

from Baja California Norte, Mexico, to northern British Columbia and Alberta, Canada

(Dowle et al. 2017). Adults must attack a host simultaneously to overwhelm host defenses

and successfully colonize, reproducing in the inner-bark (phloem) and killing the host tree.

Phloem temperatures directly but non-linearly affect MPB progress through the stages of

their life cycle which have varying temperature thresholds (Bentz et al. 1991; Powell and

Logan 2005). These thresholds allow MPB to be successful in a thermal niche where they

are univoltine and synchronize emergence.

Changing temperatures have broadened that niche geographically, leading to tree mor-

tality of over 5.2 Mha in the western US (Meddens et al. 2012). The distribution of Pinus

host species in western North America extends both northward and southward beyond the

known historical distribution of MPB (Giroday et al. 2012; Sambaraju et al. 2019). In-

creases in temperatures have allowed MPB migration northward in Canada, where it is

projected billions of dollars in damage could be done in British Columbia by 2054 (Corbett

et al. 2015). MPB induced Pinus mortality also has notable ecological effects, including

changing forests from carbon sinks to carbon sources until trees regrow (Arora et al. 2016).

Factors delimiting the southern edge of the MPB distribution in the US are less known,

and while MPB are considered rare to absent south of the USA/Arizona border, MPB were

recently found in dead Pinus strobiformus in Chihuahua, Mexico (Armendáriz-Toledano

et al. 2017).
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The MPB has a one-year (univoltine) life cycle in most of its range, though in some

regions semi-voltine (two-year) emergence occurs. A majority of the MPB life cycle is spent

inside a host tree, except for a period of a few days in late summer (late July to early

September) during which newly developed parent adults emerge from the previous Pinus

host in search for a new one. MPB females initiate attacks on new hosts, attracting males

with pheromones, allowing for an attack en masse to overcome host defenses. After mating

and oviposition, most adult beetles perish within the tree, and their offspring begin the

process again in the following year.

While wild populations of MPB are univoltine or semi-voltine, there are concerns that

warmer temperatures from global warming or range expansion could lead to bivoltine pop-

ulations. Bivoltinism could have devastating impacts on pine forests, but a key barrier

for MPB bivoltinism is the cold tolerance of certain lifestages. MPB eggs and pupae are

considered to have the lowest cold tolerance among lifestages (Bleiker and Smith 2019; Reid

and Gates 1970), while larger larvae are the most cold tolerant. While supercooling points

are indicative of immediate mortality, mortality also occurs with extended exposure to 0℃

for both egg and pupal stages (Bleiker and Smith 2019; Reid and Gates 1970). Successful

bivoltine MPB have not been observed in the field (Bentz and Powell 2014), although a

phenology model parameterized for northern US MPB populations suggests bivoltinism is

possible in the southern MPB range under future warming scenarios (Bentz et al. 2016).

However, northern and southern MPB populations are genetically different in response

to temperature, requiring geographic-specific model parameters (Bentz and Powell 2014).

McManis et al. (2018; 2019) successfully parameterized a phenology (life-cycle) model for

a southern population of MPB from lab data, except for the teneral adult stage, which

ends when MPB leave the tree. Since MPB lab experiments often involve infested phloem

in enclosed containers, leaving the container is not possible. Developmental parameters

were found to vary from those found for northern MPB (Régnière et al. 2012), but not

sufficiently to account for longer observed developmental time of Arizona MPB populations,

which suggests that teneral adult rates must be substantially lower (McManis et al. 2018).
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Soderberg et al. (2021) performed reciprocal translocation experiments with northern and

southern populations of MPB, and observed seasonally appropriate univoltine emergence

at all sites, indicating southern MPB have adapted to maintain univoltism even in warmer

environments. How these differences between northern and southern populations would

affect the possibility of bivoltinism is unknown, but possibly critical, as one would expect

southern populations to be more susceptible to increased temperatures as they occupy the

warmer regions of the MPB range.

The goal of this chapter is to determine developmental rates for the cyptic teneral

adult stage using a phenology model and field data for a southern population of mountain

pine beetle. We first introduce rate models for earlier life stages and teneral adult rate

curves tested as we developed the model. Teneral curves were parameterized using two

trees and the best curve was selected by comparing nominal and bootstrapped AIC values.

The resulting model is then validated using an additional tree from the field data. We then

examine the possibility of bivoltinism in a southern population of mountain pine beetle by

increasing mean temperatures and reasonable constraints for appropriate seasonality.

3.2 Field Data for a Southern MPB Population

Field data from a southern population of MPB was collected at Lockett Meadows, in the

Cococino National Forest near Flagstaff Arizona, from 2015-2017. Populations in this area

are currently univoltine, and two full MPB life cycles were observed (2015/2016, 2016/2017).

Data from Tree 2 (2015/2016) and Tree 1 (2016/2017) were used to calibrate the model,

and Tree 3 (2015/2016) was used only for validation because emergence was sparse. Phloem

temperatures, number of beetle attacks, and number and timing of emerging beetles were

collected.

Phloem temperature was measured at hourly intervals for north and south sides of each

tree using battery operated temperature recorders. North and south sides were chosen as

previous field data indicates that the southern side of a tree often has an increased mean

temperature due to ensolation, which may cause significant differences in developmental

timing for beetles collected on different tree sides. Phloem temperatures were recorded
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from 6/4/2015 to 6/27/2017 for trees observed in the 2015/16 season, and from 8/9/2016

to 9/19/2017 for trees observed in the 2016/17 season. Phloem temperatures varied not only

seasonally (Figure 3.1) but also during time of day (Figure 3.2). The phloem temperature

of particular tree and side i is referred to as Ti.

Attacks were observed in late summer of 2015 and 2016. When MPB flight was oc-

curring in the tree stand, a MPB pheromone bait was attached to each tree on the north

bole aspect at 4.5 ft. from the ground. Tree baits were removed approximately 1 week

later when about 10-15 attacks were observed on the tree. Once attacks were initiated,

attacks were monitored every other day around the entire circumference of each tree bole

from 1 ft to 5 ft above the ground. On each observation day, the entire sample space was

surveyed, counting attacks that were indicated by either frass or resin exuding from small

holes. A permanent marker was used to place a mark near each attack so that it would

not be counted in following days. Attacks were monitored until no attacks were observed

for 2 consecutive observation days. Observations occurred at intervals of 2-4 days, without

differentiation between sides. Thus all attacking beetles from the end of the previous ob-

servation to the current observation are included in a day of attack. The number of attacks

on side i on attack date τn is denoted Ai(τn).

At the end of the attack season, emergence cages were fixed to the north/south aspects

of the bole, and the number of emerging beetles was counted the following year. Emergence

was counted separately for the north and south sides of trees as southern sides have earlier

emergence due to higher temperatures (Figure 3.4). Emerging beetles were counted at 2-6

day intervals. Similarly to the attack data, all emerging beetles from the end of the previous

observation to the current observation are included on observed day of emergence.

While three trees were observed each field season, due to a lack of observed attacks

and/or emergence only three trees were suitable for inclusion. Data from Tree 2 (2015-16)

(Figures (3.1), (3.3), (3.4)) and Tree 1 (2016-17) were used for parameterization and cross-

validaing the model. Emergence data for Tree 3 (2015-2016) was very sparse (3.24), and

thus it was used only for model validation instead of parameterization. Numerical data for
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Fig. 3.1: Phloem temperatures from north side of Tree 2 from June 18th, 2015 to June 18,
2016. There is a strong seasonality to the temperatures, with an over 30◦C change between
summer and winter. Temperatures below freezing can be fatal to life stages that do not
develop cold tolerance. Temperatures near the 20◦C are considered optimal for most life
stages.

Fig. 3.2: Phloem temperatures from the north and south sides of tree 2 from June 18th,
2015 to June 26, 2015. The south side of the tree is noticeably warmer during the day,
with higher peak temperatures which could result in increased cumulative development and
affect emergence.
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Fig. 3.3: Number of MPB gallery entrances (“attacks”) observed on the two trees in 2015.
The number of MPB attacks is accumulated from the previous date of observation. Attack
dates are in Juilan day format, where January 1st is 1. Attacks were counted without
discerning between the north and south sides of a tree.
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Fig. 3.4: Number of emerged MPB from both sides of Tree 2 in 2016. Emergence on the
southern side of the tree was earlier than the northern side, due to warmer temperatures
which increase the rate of development.

Fig. 3.5: Number of emerged MPB from the north and south sides of Tree 3 in 2016. While
emergence for the northern side of the tree was less irregular, emergence was only observed
on two days for the southern side. Due to this spare emergence Tree 3 was used only for
model validation.
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all three trees discussed can be found in Appendix A.

3.3 Model Development

In order to determine a developmental rate curve for the cryptic teneral adult stage, we

incorporated a novel oviposition model (Chapter 2), southern MPB rate curves developed

by McManis et al. (2018), a previously developed MPB cohort model (Gilbert et al. 2004),

and previously developed as well as novel forms for teneral adult rate curves. An important

aspect of oviposition is that variability occurs not only in oviposition rate, but also in

fecundity. We also developed a method of calculating the time delay before oviposition, t0,

and incorporated that into our predictive oviposition model. This oviposition model was

used as input to the cohort model incorporating stage-specific rate and known variability.

3.3.1 Review of Models Describing Southern MPB Phenology

Oviposition and Gallery Construction

There is a time period after MPB mating during which the female is boring deeper into

the phloem but has yet to begin oviposition, which we defined as t0. This egg-free gallery

length allows MPB to avoid the induced resin response of the Pinus host, as well as reduce

dessication. We parameterized a rate curve for the pre-oviposition stage my minimizing sum

squared error with Matlab ’s fmincon function for laboratory data of MPB development

at constant temperatures. The rate curve used by McManis et al. (2019) is written

r0(T ) = ψ

[
eω(T−Tb) −

(
Tm − T
Tm − Tb

)
e
−ω(T−Tb)

∆b − (
T − Tb
Tm − Tb

)eω(Tm−Tb)−Tm−T∆m

]
, (3.1)

and 0 for T /∈ [Tb, Tm]. Here Tm and Tb correspond to the upper and lower temperature

transitions from normal to negligible development at the upper and lower thresholds, ω

describes the expected exponential acceleration of rate with temperature, ψ is proportional

to the maximum development rate, and ∆m and ∆b are the width of the thermal transitions

for the upper and lower thresholds. Parameters for the time required to produce the egg-free
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gallery appear in Table 3.1.

Using the relationship between the maximum fecundity and the normal variability in

oviposition rates, the probability of oviposition of the f th quantile given an attack date τ is

povi(t|τ, f) =
1√

2πσ2
e
−
(

ln(f)+R(t,t0+τ)
t−t0

)2
/2σ2

∣∣∣∣−(ln(f) +R(t, t0 + τ))

(t− t0)2
+
r0(T (t))

t− t0

∣∣∣∣ (3.2)

where t0 is the time delay before oviposition, and R0(t, t0 + τ) is the integral of the rates

(3.1) from t0 + τ to t. Integrating across quantiles, where π(f) is approximately uniform

(described in detail in Chapter 2).

povi(t|τ) =

∫ 1

0
p(t|τ)π(f)df. (3.3)

Finally, for any individual tree, there are multiple attack dates τ , each with a corre-

sponding numbers of attacks that day. The resulting density of eggs for any particular day

can therefore be represented by

pegg(t) =

∫ τmax

τmin

A(τ)povi(t|τ)dτ. (3.4)

Individual distributions are determined computationally for an attack date τ by the fol-

lowing method. The value of t0 is calculated by using hourly time and phloem temperature

vectors as input to the rate equation (3.1) with the egg free rate parameters (Table 3.1).

Hourly rates are summed into daily rates using the trapezoidal rule. The trapezoidal rule is

again used to obtain a cumulative approximation to the integral, and these are integrated

from start date τ until the rate summation is 1, which is the time at which the egg free

distance is completed.

Then distributions for specific values of f beginning at τ + t0 are then calculated using

equation (3.2). Cumulative rates are computed by using the trapezoidal rule on the rates

equation (3.1) using the oviposition parameters for a southern population of MPB (3.1), and

each PDF is then normalized. The process is repeated for f = 0.05, 0.10, ..., 0.095 resulting



52

in oviposition density (3.3) approximated using trapezoidal quadrature.

Parameterized southern MPB rate curves

McManis et al. (2018) obtained rate curve parameters for southern MPB lifestages

using experimental observations. MPB eggs were placed inside a “phloem sandwich” of

phloem between sterilized glass and plexiglass plates. After inserting MPB eggs, the sand-

wiches were held at constant temperatures, which were chosen to asymmetrically sample

the range of developmental temperatures across the previously developed rate curve for the

northern population. Development of each individual was monitored on a daily basis to

observe developmental milestones. However, the final, teneral adult stage, which ends upon

leaving the tree, was not parameterized because completion of the teneral adult stage could

not be observed, as MPB were unable to leave the sandwich. The process of parameterizing

this unobservable lifestage is a novel development of this paper. In contrast to northern

MPB populations, McManis observed normal variability in rates and fit the rate curve (3.1)

accordingly (Table 3.1).

Lifestage ψ ω Tb Tm ∆b ∆m σ

Egg-free gallery 0.1813 0.0622 5.9394 5.9394 29.6756 2.5471 2.7909

Oviposition 0.0913 0.0309 6.6000 30.9000 1.3613 1.9889 0.32

Eggs 0.0326 0.2045 6.0251 31.9309 0.5410 5.5031 0.038

First instar 0.0521 0.1517 4.6029 31.7661 0.0117 5.4256 0.2181

Second instar 0.0431 0.1374 5.9791 31.8337 0.0413 4.4534 0.1524

Third instar 0.017 0.1856 6.0115 31.2656 0.0 4.3079 0.1650

Fourth instar 0.0545 0.1694 14.9999 31.4364 0.0 5.2947 0.1354

Pupae 0.0166 0.1658 6.3504 30.8041 0.0 3.5426 0.0673

Table 3.1: Egg-free gallery parameters found in Chapter 2 and life stage parameters for a
southern population of MPB found by McManis et al. (2018; 2019)

.
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Extended von Foerster Cohort Model

The output of our oviposition model was used as input for the egg to pupae cohort

model utilizing the parameters from McManis et al. (2019). While some models focus

exclusively on the development of a median individual, this ignores the intrinsic variability

of rates in a population. A cohort model provides an efficient way in order to incorporate

the variability in rates over time for individuals in the cohort. McManis et al. (2019)

determined rates had normal variance, which allows us to use the Extended von Foerster

(EvF) equation developed by Gilbert at al. (2004),

∂

∂t
uj(a, t) + rj [T (t)]

∂

∂a
uj(a, t) =

1

2
σ2
j

∂2

∂a2
uj . (3.5)

Here j is the developmental lifestage index, uj(a, t) is the population density at time t and

age a (normalized such that 0 ≤ a ≤ 1), rj [T (t)] is developmental rate at temperature T (t),

and σ2
j is the variance in development for life stage j. The density, uj(a, t), and emergence

distribution, pj(t), are related by pj(t) = uj(a = 1, t). The EvF equation reflects that since

individuals are aging slower and faster than the mean, there is a flux forward and backward

in age relative to the median individual, which is effectively diffusion among ages. The

Green’s Function solution to the Extended von Foerster equation,

pj(t) =

∫ ∞
0

pj−1(τ)
e

−(1−
∫ t
τ rj(T (s))ds)2

2σ2
j

(t−τ)√
2πσ2

j (t− τ)3
dτ, (3.6)

was used with oviposition providing the initial distribution, that is pegg(t) = p0(t) (Powell

and Bentz 2009). Parameters for southern MPB populations estimated by McManis et al.

(2018) were used for the egg, L1-L4 and pupal stage rate curves (Table 3.1).

The EvF equation allows us to project each emergence cohort on day τ into a subsequent

distribution of emergence, including the effects of normal variability. Equation (3.6) was

evaluated numerically by obtaining hourly rates using the phloem temperature data, then

using trapezoidal integration to sum the rates over each day. Thus the rates are in daily
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increments, but incorporate hourly variability. To avoid excess integration, the cumulative

integral of the rates was calculated in advance; integrals between τ + t0 and t could then

be rapidly approximated as a difference in cumulants between daily indices.

3.3.2 Potential Teneral Adult Rate Curves

For the unknown rate of teneral development we used five different rate curves of

varying complexity. Adult emergence predicted using competing rate curves could then be

compared with field observation to determine which candidate curves were most descriptive.

Logistic

The first teneral adult curve we considered used the logistic equation of Davidson

(1944),

rlogistic(T ) =
rmax · e(T−TC)/∆b

1 + e(T−TC)/∆b
(3.7)

which plateaus at a peak developmental rate of rmax, TC specifies the developmental thresh-

old, and ∆b determines the sensitivity to that threshold. In order to reflect the upper

thresholds seen in MPB development, we adjusted (3.7),

rlogmax(T ) =
rmax · e(T−Tb)/∆b

1 + e(T−Tb)/∆b
− rmax · e(T−Tm)/∆m

1 + e(T−Tm)/∆m
. (3.8)

Here Tb and Tm are the lower and upper temperature thresholds, while ∆b and ∆m determine

the sensitivity to those thresholds (Figure 3.6).

Logan

The rate curve used by Logan et al. (1976) as well as Hansen et al. (2011),

rLogan(T ) = ψ
(

[eω(T−Tb) − 1]− [eω(Tm−Tb) − 1]e−(Tm−T )/∆m

)
(3.9)

for Tb < T < Tm, and 0 otherwise. Here Tm is the upper temperature threshold, Tb is the
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lower temperature threshold, ψ controls the peak rate, ω controls the rate acceleration at

lower temperatures, and ∆m controls the thickness of the upper threshold boundary (Figure

3.7).

Brière

The rate curve developed by Brière et al. (1999)

rBrière(T ) = ψ
T

Tm
(
T

Tb
− 1)

√
1− T

Tm
(3.10)

for Tb < T < Tm, and 0 elsewhere. Here Tm is the upper temperature threshold, Tb is the

lower temperature threshold, and ψ controls the peak rate.

We applied a normalizing factor computationally, allowing us to directly use rmax as a

parameter (3.8). The temperature where rmax occurs, Topt, was calculated using equation

(3.8), and thus the normalizing constant

N = Topt(Topt − Tb)
√
|1− Topt

Tm
| (3.11)

can be used in equation 3.10 such that

rBrièreMax(T ) = rmax ·
T

N
(T − Tb)

√
|1− T

Tm
|. (3.12)

Non-parametric rate curves

We also developed two non-parametric rate curves using piece-wise linear functions.

The simpler, triangular curve, referred to as non-parametric curve 1 (NP1), has a minimum

temperature threshold Tb, a maximum temperature threshold Tm, a maximum rate rmax,

and an optimal temperature Topt at which rmax occurs (Figure 3.9). The second curve

(NP2) includes an additional temperature break point, T1, where the rate is equal to r1,

with r1 < rmax (Figure 3.10).
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Fig. 3.6: The logistic rate curve with an upper threshold peaks at a developmental rate of
rmax. The lower and upper temperature temperature thresholds, Tb and Tm, indicate the
temperatures at which the steepness of the curve begins to decrease or increase, respectively.
The sensitivity (slope of curve) at those thresholds is determined by ∆b and ∆m.
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Fig. 3.7: While it is obvious that the Logan rate curve is greater than zero between the
upper and lower thresholds, Tb and Tm, the other parameters affect the rate less directly.
The maximum rate is linearly increased due to multiplication with psi, with larger values
increasing the maximum rate. The steepness of the lower threshold is affected by ω, while
the steepness of the upper threshold is affected by ∆m.

Fig. 3.8: The Brire rate curve begins to increase at the lower threshold, Tb, peaks at a rate
proportional to ψ, then decreases until the rate is zero at the upper threshold, Tm.
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Fig. 3.9: The NP1 curve begins to linearly increase beginning at the lower threshold, Tm
until a maximum rate of rmax is reached at optimal temperature Topt, then linearly decreases
from rmax to until the rate is zero at the upper threshold, Tm.

Fig. 3.10: The NP2 curve begins to linearly increase beginning at the lower threshold, Tm un-
til a rate of r1 is reached at T1, then linearly increases fto rmax at Topt, the mid-temperature
threshold. The curve then decreases until the rate is zero at the upper threshold, Tm.
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3.4 Inferring Teneral Adult Rates

In this section we describe the likelihood framework relating predicting emergence to

observations, by which we determined a suitable teneral adult rate curve. The MPB field

emergence data is described and linked to emergence; the distribution of deviance is also

discussed. The process of bootstrapping emergence data is described, allowing us to draw

inference regarding possible teneral adult rate curves.

3.4.1 MPB Emergence Data

Teneral adult rate curves are parameterized using emergence data from the Arizona

MPB population in Lockett Meadows, Cococino National Forest, AZ. Attack data from the

previous year was used as input for the oviposition model, the output of which was used

as input for the EvF cohort model as described in (3.3.2). The complete data set can be

found in Appendix A.

Field observations of MPB emergence were recorded every 4-6 days. The total number

of observed beetles for a tree on side i is the sum of beetles emerged on that side, Ni. The

predicted emergence for a tree side i between observation days was weighted by the total

number of beetles that emerged from the tree in order to be directly compared to the field

data,

predi,k = Ni

∫ tk

tk−1

p8(t)dt. (3.13)

3.4.2 Determining Appropriate Distributions for Deviance

In order to determine the best error model for the deviance between predicted and

observed adult emergence, we calculated the negative log likelihood (NLL) using normal,

Laplace, and Poisson distributions. For given data and a candidate rate curve, parameters

for rate curves and error distributions were determined by minimizing NLL computationally.

The Akaike Information criterion (AIC) (Burnham 2002),

AIC = 2 NLL + 2(number of parameters), (3.14)
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was used to allow deviance models to compete on an equal footing.

Laplace Deviance Distribution

If the errors have a Laplace distribution, for a single observation on side i on day k,

obsi,k,

Prob(obsi,k|predi,k) =
1

2αi
exp

[
−
∣∣obsi,k − predi,k

∣∣
αi

]
(3.15)

for a particular tree, where αi is an additional parameter specifying the variance. Corre-

spondingly the NLL function for a single tree is

NLL =
∑
i

∑
k

log (2αi) +
1

αi

∣∣obsi,k − predi,k
∣∣ . (3.16)

Normal Deviance Distribution

If the errors have a normal distribution, for a single observation on a tree,

Prob(obsi,k|predi,k) =
1√

2πσ2
i

exp

[
−
(
obsi,k − predi,k

)2
2σ2

i

]
, (3.17)

where σ2
i is the variance. Correspondingly, the NLL function for a single tree is

NLL =
∑
i

∑
k

[
1

2
log(2πσ2

i ) +
1

2σ2
i

(
obsi,k − predi,k

)2]
. (3.18)

Poisson Deviance Distribution

If the errors have a Poisson distribution, for a single observation on a tree,

Prob(obsi,k|predi,k) =
e−predi,k(predi,k)

obsi,k

obsi,k!
(3.19)

for the kth observation on tree side i. Correspondingly the NLL function for a single tree is

NLL =
∑
i

∑
k

[
predi,k − obsi,k log(predi,k) + log(obsi,k!)

]
. (3.20)
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3.4.3 Computation and Bootstrapping

Errors and AIC were calculated by using the Matlab fmincon function to minimize

NLL on bootstrapped emergence data. Bootstrapping was performed by randomly selecting

with replacement from the emergence data of all days for the number of total observations

for all days. Each individual beetle was considered an observation for a day, as was any day

where no emergence was recorded. As an interesting consequence, this resulted in selections

where days with no emergence were picked more than a single time. Correspondingly,

bootstraps were weighted to take into account multiple selections of days where there was

zero emergence.

The Briére rate curve for teneral adults had the smallest nominal, or best-fit to non-

bootstrapped data, AIC value across trees and error models, and was correspondingly used

to determine the most suitable deviance distribution with the field data from Tree 2. After

the appropriate distribution was determined, the process was repeated using all of the po-

tential teneral adult curves. Bootstrapping was then performed on both trees. If parameter

estimates did not converge across error distributions for a particular set of bootstrapped

data, it was removed from the data set.

3.4.4 Deviances have Laplace Distribution

The nominal AIC values (values for unbootstrapped data and the Briére rate curve)

were AIC Laplace = 179.7149, AIC Normal = 193.6050, and AIC Poisson = 231.2407.

Calculating the ∆AIC between the distributions (with ∆AIC> 5 as the difference considered

to be significant improvement), the Laplace distribution ∆AIC values are 13.8901 for the

Normal distribution and and 51.5258 for Poisson distribution, indicating that the Laplace

distribution better describes the deviances in the context of the data, which was confirmed

by the bootstrapped data. All of the bootstrapped Laplace AIC values were less than

the nominal Poisson AIC, and 99.4% of the normal AIC values were smaller (3.11). Thus

even considering realistic redistributions of the data, the Poisson distribution was the least

descriptive.
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Fig. 3.11: Histograms for the three distributions considered for 1000 bootstrapped sets of
data using the Briére rate curve. While it was clear that the Poisson distribution was least
suitable, the Laplace and normal distributions were investigated further.

Fig. 3.12: Histograms for the two distributions considered for 1000 bootstrapped sets of
data using the Briére rate curve including the nominal (non-bootstrapped) AIC values.
The Laplace nominal AIC is 179.7149, normal is 193.6050. A ∆AIC of 13.8901 indicates
the Laplace distribution is a significantly better fit. We found 99.6% of Laplace AIC values
were smaller than the corresponding normal AIC value in pairwise comparison of bootstraps,
giving us high confidence the Laplace distribution was found to be more suitable than a
normal distribution.



63

The Laplace and normal bootstrapped AIC values were much closer, as can be seen

in Figure 3.12. Considering bootstrapped resampling of the data, only 41.1% of the boot-

strapped normal AIC values were smaller than the nominal Laplace AIC, as opposed to

91.3% of the bootstrapped Laplace AIC values being smaller than the nominal normal AIC.

Comparing individual bootstraps pairwise, 99.6% of Laplace AIC values were smaller than

the corresponding normal AIC value. The significant ∆AIC value as well as the better

performing bootstraps highly suggested that the Laplace distribution was most suitable for

the data, and thus was used for teneral adult rate curve selection.

3.5 Results and Validation

In this section we present the parameters and AIC values for the bootstrapped emer-

gence for Tree 1 and 2, using the Laplace deviance model. We then investigate which rate

curve and set of parameters is most suitable for the teneral adult model, using bootstrapped

distributions and cross-validation to assess the suitability of parameters. With the chosen

teneral adult rate curve we validate using the field data for Tree 3, and compare with

observed emergence in the field.

3.5.1 Teneral Adult Rates and Rate Curve Selection

Teneral adult rate curve parameters were fit by minimizing Laplace NLL as shown

(3.16), testing all five candidate rate models. As seen in Figures 3.13 and 3.14, temperature

thresholds and maximum rates vary among the rate curves, but the curves are somewhat

similar, notably at inflection points. Nominal parameters for the various teneral adult rate

curves can be seen in Table 3.2 (Tree 2) and Table 3.3 (Tree 1). For both trees the Briére

rate curve had the smallest nominal AIC value, indicating it could be the best fit. Note that

since emergence data is different for each tree, NLL/AIC values cannot be compared across

trees, but calculating the ∆AIC between curves for an individual tree allows comparison

among the competing teneral adult rate curves.

For Tree 2, the ∆AIC between the Briére curve the curve with the next lowest nominal

AIC value, the Logistic curve, was not significant at 3.3802, but the Briére curve was a
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significantly better fit than all other curves. The ∆AIC for the Tree 1 Briére curve is not

significant for the NP1 and Logistic curves, which all had nearly the same value (Table 3.3).

The Tree 1 Briére, NP1, and Logistic curves all have ∆AIC> 5 for the Logan and NP2

curves. We were confident in removing the NP2 and Logan curves from consideration based

on the ∆AIC values, and further analyzed the bootstrapped AIC values of the Briére curve

to the Logistic and NP1 curves using the nominal values and pairwise bootstraps.

The Tree 2 NP1 bootstrapped AIC values were lower than the Briére nominal AIC

value in 88.93% of cases, while 59.40% of the Briére AIC values were lower than the NP1

nominal. The Logistic AIC values were lower than the Briére nominal AIC value in 57.67%

of cases, and the Briére AIC values were lower than the Logistic nominal in 73.53% of cases.

The Tree 1 NP1 bootstrapped AIC values were lower than the Briére nominal AIC

value in 28.13% of cases, and 37.47% of the Briére AIC values were lower than the NP1

nominal. The Logistic AIC values were lower than the Briére nominal AIC value in 28.80%

of cases, and in comparison the Briére AIC values were lower than the Logistic nominal in

38.53% of cases.

p Briére NP1 Logistic Logan NP2

1 Tm = 27.2079 Tm = 31.0004 Tm = 27.0832 Tm = 29.3404 Tm = 30.0218
2 Tb = 11.3539 Tb = 10.0305 Tb = 15.0430 Tb = 4.6950 Tb = 6.1280
3 rmax = 0.0197 T1 = 24.0002 ∆m = 1.0500 ∆m = 5.5022 T1 = 14.5194
4 rmax = 0.0205 ∆b = 0.9336 ω = 0.1036 T2 = 23.3252
5 rmax = 0.0161 ψ = 0.0076 r1 = 0.0058
6 rmax = 0.0191
σ 0.0009 0.0020 0.009 0.0009 0.0010
AIC 179.7149 191.3895 183.0231 198.4058 196.2578
p 4 5 6 6 7

Table 3.2: The parameters for the teneral adult curves discussed in for Tree 2 found by
minimizing Laplace AIC as discussed in 3.16. The rmax value is not one of parameters of
the Logan curve, but was calculated via the parameters above to be 0.0146.
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p Briére NP1 Logistic Logan NP2

1 Tm = 26.0813 Tm = 27.9051 Tm = 24.7417 Tm = 25.8880 Tm = 28.5829
2 Tb = 12.6750 Tb = 12.9662 Tb = 16.057 Tb = 6.5494 Tb = 9.3783
3 rmax = 0.0216 T1 = 21.0696 ∆m = 0.9000 ∆m = 5.0124 T1 = 13.7564
4 rmax = 0.0240 ∆b = 0.9000 ω = 0.1405 T2 = 21.0873
5 rmax = 0.0200 ψ = 0.0135 r1 = 0.0060
6 rmax = 0.0192
σ 0.0013 0.0012 0.0013 0.0025 0.0025
AIC 146.5389 146.4500 146.9061 161.6491 160.9793
p 4 5 6 6 7

Table 3.3: The parameters for the teneral adult curves discussed in for Tree 1 found by
minimizing Laplace AIC as discussed in 3.16. The rmax value is not one of parameters of
the Logan curve, but was calculated via the parameters above to be 0.0173.

While for a simple pairwise comparison of the Briére AIC values to the NP1 and Logistic

values was overwhelmingly in favor of the Briére curve (Table 3.4), the percentage for which

the ∆AIC was greater than 5 was much smaller. For Tree 2, the ∆AIC was at least 5 for

14.00% of the NP1 bootstrap AIC values, and 6.47% of the Logistic AIC values. For Tree

1, the ∆AIC was at least 5 for 32.93% of the NP1 bootstrap AIC values, and 27.47% of the

Logistic AIC values.

The Briére curve was determined to be the best rate curve fit due to lower nominal

fits for both trees, nominal ∆AIC values indicating it is the best fit for Tree 2, and overall

better performance when bootstrapped.

Pairwise Significant

Model Tree 2 Tree1 Tree 2 Tree 1

Logistic 98.27 78.40 6.47 27.47

NP1 96.27 78.60 14.00 32.93

Logan 100.00 95.87 99.93 75.60

NP2 99.8 87.00 97.40 84.13

Table 3.4: The percentage of pairwise bootstraps (for 1500 bootstraps) for which the AIC
value was at greater as well as significant (∆AIC> 5) than the corresponding Briére boot-
strap for the considered teneral adult rate curves, for each tree.
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Fig. 3.13: The parameterized teneral adult rate curves for Tree 2 found by minimizing
Laplace NLL as discussed in 3.16. The overlap of the curves at approximately 15 and 27◦C
suggests an underlying mechanism of MPB teneral development. The Briére curve had the
lowest nominal AIC value suggesting it is most suitable for Tree 2.

Fig. 3.14: Parameterized teneral adult rate curves for tree 1 found by minimizing Laplace
NLL as discussed in 3.16. Overlaps in rate curves at inflection points near 15 and 27◦C are
present as seen in Tree 2. The Briére curve is again the most suitable curve nominal curve,
with the lowest nominal AIC value.
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Fig. 3.15: Histograms of the AIC values found by minimizing Laplace NLL for Tree 2
for 1500 bootstrap samples of the field emergence data. We found 73.53% of Briére AIC
values lower than the Logistic nominal value, the next lowest AIC value, while the Logistic
bootstrap AIC values were lower than the Briére nominal value in 57.67% of cases.

Fig. 3.16: Histograms of the AIC values found by minimizing Laplace NLL for Tree 1 for
1500 bootstrap samples of the field emergence data. We found 38.53% of Briére AIC values
lower than the NP1 nominal value, the next lowest AIC value, while the NP1 bootstrap
AIC values were lower than the Briére nominal value in 28.80% of cases.
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Fig. 3.17: Histograms of the AIC values found by minimizing Laplace NLL for Tree 2 for
1500 bootstrap samples of the field emergence data. For the Tree 2 bootstraps, 6.47% of
Briére AIC values were at least 5 lower than the corresponding Logistic AIC values, the
next lowest nominal NLL value.

Fig. 3.18: Histograms of the AIC values found by minimizing Laplace NLL for Tree 1 for
1500 bootstrap samples of the field emergence data. For the Tree 1 boostraps 32.94% of
Briére AIC values were at least 5 lower than the corresponding NP1 AIC values, the next
lowest nominal NLL value.
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3.5.2 Parameter Value Selection for Briére Rate Curve

After determining that the Briére curve was the most suitable rate curve to predict

southern MPB teneral adult development, we wished to determine whether or not the set

of parameters obtained for Tree 2 or Tree 1 would result in more accurate predictions. In

order to determine this we cross-validated the data by calculating the NLL for each tree

using the parameters of the other tree (Table 3.5).

Field Data Used Tree 1 Tree 2

NLL with Tree 1 Curve 136.5389 296.0648

NLL with Tree 2 Curve 161.2320 169.7149

Table 3.5: A table of the NLL values for each tree using the fitted parameters, as well as
those calculated via cross validation. Tree 1 was the least suitable in cross validation, with
a higher NLL value due to incorrectly predicting emergence later than observed in the field.

While the Tree 2 parameters had larger NLL than the Tree 1 parameters using the

Tree 1 field data as input, the Tree 1 parameters performed notably poorly with the Tree 2

field data. Though the parameterized curves appear to be quite similar (Figure 3.19), the

differences in parameters resulted in a notable change in the cumulative distributions (Figure

3.20). The Tree 1 parameters were consequentially different enough for the change in the

timing/density of emergence to greatly increase the NLL value. This is particularly evident

when the distributions are used to calculate predicted field emergence for the days of field

observation for the southern side of Tree 2 (Figure 3.21). The Tree 2 parameters correctly

predict the peak of MPB emergence, while the Tree 1 parameters predict emergence too late,

but also across a longer time period. This results in a much greater difference in predicted

emergence, particularly on days 594 and 597 (Figure 3.21) and thus a much larger NLL

value.

Additionally, we investigated the distributions of parameters fitted to the 1500 boot-

straps of the emergence data. The parameter distributions are broader and less defined for

the Tree 1 parameters, indicating that the fits are less suitable (Figure 3.22). We created

90% confidence intervals for each parameter and each tree, and the confidence intervals were
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Fig. 3.19: The teneral adult curves found by minimizing Laplace AIC for Tree 1 and Tree 2.
Though the curves appear to be quite similar, but the differences in parameters are enough
for Tree 2 to outperform Tree 1 in cross-validation.

Fig. 3.20: The teneral adult cumulative predicted using field phloem and MPB attack data
as input. Though there are similarities between the curves, the Tree 1 parameters result in
a delayed and extended prediction of emergence and thus a much higher NLL value, missing
the peak of observed adult emergence.
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Fig. 3.21: Using the number of emerged beetles as weights in the emergence distribution
more accurately reflects the sweeping emergence used for parameterization. The plots of
predicted beetles for each day of field observation indicate not only that the Tree 2 param-
eters are a more suitable fit, as expected as this tree was used to create those parameters,
but also indicate why the NLL for Tree 1 parameters was much higher.
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Fig. 3.22: Distributions of Tm, Tb, and rmax obtained from fitting parameters to 1500 boot-
straps of field emergence data for each tree, with nominal parameter lines in black and
90% confidence interval bounds in purple. The Tree 2 distributions more close matched the
nominal fits, had smaller confidence intervals, and were more appropriately distributed.
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wider for Tree 1 in all cases. (Figure 3.22). Confidence intervals for Tree 2 were 39.68%

the width for rmax, 43.41% for Tb, and 25.63% for Tb than the respective Tree 1 confidence

intervals. Due to the more successful cross validation and smaller confidence intervals, the

parameters from Tree 2 were determined to be more suitable for predicting southern MPB

teneral adult development.

3.5.3 Validation with Field Data

Predictions using the Briére curve, parameterized with Tree 2, data, were compared

with observations of emergence from Tree 3 from from the 2015-2016 season . Despite

having a comparable number of attacks in the previous year, an abnormally small amount

of MPB emergence was observed for Tree 3 (Figure 3.24). This caused difficulty when

attempting to fit parameters for this tree, as non-emergence of MPB was a minimum NLL

for teneral rate curve fitting, which is why Tree 3 was reserved for validation. The Briére

rate curve from Tree 2 was still relatively successful for predicting MPB emergence on Tree

3. The peak predicted emergence for the north side of the tree was at day 597, which

was only three days off from the observed peak of 594. The predicted date of median

cumulative emergence was approximately three days behind the observed, and the timing

was also close from 60-90% of total emergence completed. (Figure 3.23). The time frame

of predicted emergence was correct, except for a lack of of emergence on days 575 and 589.

The model correctly predicted minimal emergence from the south side of Tree 3, though the

peak date of emergence was predicted at 587 instead of 594. Still, a majority of cumulative

emergence was predicted in the same time frame was the observed (Figure 3.24).
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Fig. 3.23: The cumulative fraction of oviposition observed in the field and predicted by the
model for the north side of Tree 3. The predicted date of median cumulative emergence
was only approximately three days behind the observed day of emergence, and very close
from 60-90% of total emergence completed.
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Fig. 3.24: The cumulative fraction of oviposition observed in the field and predicted by the
model for the south side of Tree 3. The difference in the predicted median emergence was
approximately 7.5 days. Unusually low emergence was observed in the field, and while the
model correspondingly overestimated emergence, the majority of oviposition was predicted
to be completed on day 600 as seen in the field.
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3.6 Adaptive Phenology and Possibility of Changes in Voltinism

In addition to determining and parameterizing a suitable teneral adult rate curve for

a southern population of MPB, additional goals of this paper were to assess the adaptive

phenology of southern MPB and the possibility of bivoltinism. In order to determine the

comparative adaptive phenology of southern and northern MPB populations, we compared

the southern MPB teneral adult rate curve calibrated here to the rate curve parameterized

to the northern population by Régnière et al (2012). We also compared generation time and

emergence using each teneral rate curve in our phenology model for the southern population,

with the 2015-2016 field attack and phloem temperature data as input.

3.6.1 Comparison of Parameters and Emergence

The teneral adult rate curve for a southern population of MPB found in this paper

differs significantly from the one used for a northern population by Régnière et al. (2012),

which was fit using equation (3.1). Though not all of the parameters of the two rate

curves are directly comparable, we are able to compare the maximum rate and temperatures

thresholds. All of the bootstrapped rmax for the southern population values were smaller

than 0.0255, far below the northern rmax of 0.0752 (Figure 3.25). Taking into account the

lognormal variance of the northern population by multiplying rmax by exp(±σNorth), where

σNorth = 0.190 (Régnière et al. 2012), the lower value of rmax for the northern population

is still 0.0622, which is much higher than the southern population. (Figure 3.28)

All of the values of Tm were below the northern Tm of 35◦C, with a maximum value

of 31.60 (Figure 3.27). While the values of Tb are closer to the northern MPB threshold

of Tb = 4.2 for the NP2 and Logan rate curves, these curves also have the higher nominal

and bootstrapped AIC values and are less credible fits for southern MPB teneral adult

development. The distribution of the lower temperature threshold of Brière, Logistic, and

NP1 curves do not have values lower than 6.5◦C.

The nominal values, as well as the distribution of parameters, indicate that teneral

adult development in southern populations of MPB occur at lower maximum rate and

within a narrower range of temperature, which makes evolutionary sense for a population
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adapted to maintain univoltism in a warmer southern range. None of the Brière curves
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Fig. 3.25: Histograms of the values of rmax obtained from 1500 bootstraps of teneral adult
rate curves for Tree 2. All values of rmax were lower than the curve previously parametrized
northern MPB teneral adult rate curve rmax of 0.0198 (Régnière et al. 2012). The Logan
rmax parameter was calculated computationally by finding the maximum point of each fitted
curve.
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Fig. 3.26: Histograms of the values of Tb obtained from 1500 bootstraps of teneral adult rate
curves for Tree 2. Though the Logan and NP2 curve have lower and unevenly distributed
parameter thresholds, the three curves with the lower nominal and bootstrapped AIC values
have distributions of Tb much greater than the northern MPB lower threshold of 4.5◦C.

Fig. 3.27: Histograms of the values of Tm obtained from 1500 bootstraps of teneral adult
rate curves for Tree 2. All values are much lower than the northern MPB Tm of 35◦C.
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Fig. 3.28: The rate curve parameterized for a northern MPB population, using 3.1 and
the northern MPB parameters (Régnière et al. 2012), as well as the teneral adult curve for
a southern population of MPB determined by this paper. The gray cloud of curves is a
plot of rate curves created using the 1500 bootstrapped parameters of Tree 2, indicating a
substantially different rate curve for the southern vs. northern MPB population. The lines
above and below the northern MPB curve indicate the maximum and minimal variability
expected, which is still far different than the southern MPB rate curve.

Fig. 3.29: Emergence distributions, calculated using the cohort model with the northern
MPB teneral adult rate curve of Régnière et al. (2012) and the southern MPB teneral adult
rate curve developed in this paper. The northern MPB rate curve results in emergence that
is unseasonably early and noticeably unsynchronized due to a lower Tm and rmax.
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from the bootstrapped data, or the final parameterized curve, overlap with the northern

MPB rate curve within the temperature thresholds (Figure 3.28).

We also wanted to compare the predicted emergence between the southern and northern

MPB using the corresponding teneral rate curve in the southern population cohort model

with the same MPB attack and phloem temperature data. Due to the lower temperature

thresholds and higher rate, northern MPB began to emerge much earlier than southern

MPB, and nearly all emergence occurred before the actual timing of emergence (Figure

3.29). Much of this early emergence also occurs during the winter, which would result in

pupal mortality and poorly timed adult emergence.

3.6.2 Possibility of Bivoltinism

One of the goals for our model was to determine the potential of bivoltinism as tempera-

tures warm. Due to the ecological and economic effects of MPB Pinus mortality, bivoltinism

could have devestating effects. Not only would there be two generations of MPB, but the

second generation would be unaffected by winter mortality. The timing of MPB genera-

tions is a key part of possible bivoltinism, as cold tolerance is developed at during larval

lifestages. Since the physiology of developing cold tolerance is complex and mortality occurs

at different temperatures for different populations, we focused on the inability of eggs and

pupae to survive at freezing temperatures.

Using the 2015 field data as input we increased the mean phloem temperatures and,

using the output of one generation as input for the second generation, calculated the median

date of the second generation emergence (Figure 3.30). Initially, as temperatures increased,

the median day of second emergence decreased. However, the median day begins to increase

at 5.0 degrees as temperatures above the upper temperature threshold result in decreased

teneral rates. The earliest date of median emergence was October 30th for 5.0-5.5 ◦C added.

Not only are MPB unable to fly at cooler temperatures, eggs must be laid early enough

in the season for the MPB to be in the proper life stage (larvae or brood adult) to avoid

mortality at freezing temperatures, with previous research suggesting eggs laid after August

30th would not survive (Powell and Bentz 2009). October 30th is seasonally inappropriate,



82

Fig. 3.30: The plot of median date of a second (bivoltine) southern MPB population using
the parameterized teneral adult rate curve, and increasing the mean of the field phloem
temperature data. While generation time initially decreases with increasing temperature,
it reaches a minimum median day of emergence at 304 (October 30th), when 5◦are added..
This date is far too late for successful MPB emergence. The model also indicates that further
increasing temperatures could slow MPB teneral adult development as temperatures exceed
the maximum temperature threshold.
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suggesting that bivoltinism in southern MPB populations will not occur due to increased

temperatures.

The details of MPB cold tolerance amongst life stages are more complex than simply

measuring the median day of second emergence. Climate change is not directly comparable

to across-the-board increases in mean temperature. We did not assess whether future gener-

ations could survive projected winter temperatures during more vulnerable MPB life stages.

However, low developmental rates and the southern MPB phenology model indicates that

the upper thermal threshold of teneral MPB development limits teneral adult emergence

much later than required for successful bivoltinism, even without the possible limitations

of development of other life stages.

3.7 Conclusion

In this paper we calibrate a suitable teneral adult rate curve for a southern population

of MPB using field phloem temperatures, attack, and emergence data. We determined the

most appropriate distribution of deviance between predicted and observed emergence via

bootstrapping of emergence data. Model competition via AIC as indicated that the Brière

rate curve was the best rate curve for available data. Cross-validation between the two trees,

as well as parameter distributions, allowed us to choose the most suitable set of parameters.

Validation was performed with an additional tree, indicating that, despite limited data, the

model was able to predict southern MPB emergence.

Using bootstrapping, we were able to compare a spectrum of possible teneral adult

rate curves to a previously developed curve for a northern popualtion of MPB, as well

as model the differences in emergence between the parameterized Brière curve and the

northern curve. This analysis indicated that southern MPB have clearly different maximum

rates and thresholds, which allows them to maintain synchronous emergence under warmer

temperatures. Modeling the possibility of bivoltinism using the southern MPB teneral adult

rate curve in the EvF cohort model suggests that southern MPB are unlikely to become

bivoltine with warmer temperatures. However, a more refined approach which takes into

account temperatures at specific life stages could be helpful, since MPB life stages experience
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cold mortality at variable cold temperatures.

Climate change has the potential to affect insect seasonality differently across latitudes.

While previous research showed that southern and northern MPB populations must have

differing teneral adult rates, a teneral adult rate curve for a southern population of MPB

had not been developed in order to determine possible changes in MPB voltinism. This

paper determined a suitable teneral adult rate curve with significantly narrower temperature

thresholds and lower maximum rates, with the consequences that bivoltinism is unlikely to

occur in a southern population of MPB under warmer temperatures.



CHAPTER 4

CONCLUSION

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins Coleoptera: Scolyti-

dae) attacks Pinus trees across a large area in western North America (Dowle et al. 2017),

succeeding in a thermal niche that synchronizes development, allowing for mass attacks that

overwhelm host defenses, and avoids winter mortality. The ability to predict temperature

dependent lifestage events, particularly those that vary across a thermal-geographic niche,

is critical to understanding MPB responses and preventing ecological and economic dam-

age. McManis et al. (2018) parameterized developmental models for the egg through pupal

stage of a southern population, and while those differed from parameters found for northern

populations (Régnière et al. 2012), they did not fully describe the observed difference in

generation time for southern MPB developing in northern temperatures (Bentz et al. 2001).

Southern MPB are more likely to experience significant warming and possible changes in

voltinism, but prior to this thesis there was not a complete phenological model.

In this thesis I developed a phenological model for a southern MPB population, intro-

ducing a novel oviposition model that incorporates varying rates and fecundity, as well as

parameterized development of the teneral adult stage in southern MPB for the first time.

The southern MPB oviposition models provided in Chapter 2 provide a basis not only for

those populations, but other insects with temperature dependent thresholds that have vari-

able rate and fecundity. The MPB ovipositon model can be used in a phenological model

for the entire life cycle, and the phenological model allows for determination of a suitable

teneral adult rate curve for a southern population of MPB in Chapter 3.

In Chapter 2 I introduced a method for determining the time delay before oviposition,

t0, incorporating previous data in order to create the first predictive model for this life phase.

I also developed a novel oviposition model that uses lognormal variability in fecundity and

normal variability in oviposition rate, and derived a simpler asymptotic approximation of the
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oviposition model. These models address the unique challenges of predicting phenology for

a southern population of MPB, and were parameterized with and compared to oviposition

data collected in the lab by McManis et al. (2018) as well as other previously used models.

The time required to complete the egg-free gallery, t0, was best predicted assuming

independence from the oviposition rate. Temperature thresholds of oviposition were found

to be significantly different than the thresholds for the rate to egg-free distance. Corre-

spondingly, using oviposition rates created large predictive errors near the temperature

thresholds. The independent model more accurately described the egg-free distance, and

differences in rate parameters was affirmed via bootstrapping of the t0 data.

I compared the new oviposition models, MPBovi, its asymptotic approximation, as

well as the previously used median and cohort (EvF) models, to McManis’s lab data at

constant temperatures of 10, 20, 27, or 29◦C over a thirty day period. Though both models

have their positives and negatives, they compared more favorably to the lab data than the

previously used median and EvF models. This was not an independent comparison, as the

rate parameters of the oviposition rate curve used in each model were determined via this

data, but it allowed for validation of the other aspects of the models. Oviposition is difficult

if not impossible to observe in the field as it occurs in the phloem underneath the bark,

and consequentially it was not possible to compare the output of the models directly to

data from the field. Overall the asymptotic model was the best fit for the laboratory data

with the highest R2 values, but this might change with a larger sample size. The derived

MPBovi model included the variability of both fecundity and rates, and this variability

would be less captured by a smaller sample size. Further investigation would be worthwhile

to determine if the predictive power of MPBovi is more useful in larger-scale real world

settings, as both sources of variability have been clearly observed (McManis et al. 2019).

Even so, the asymptotic model is much simpler and computationally efficient, and may be

more practically useful if the difference in predictive accuracy remains small.

In Chapter 3 I used field phloem temperatures, attack, and emergence data from a

southern population of MPB to determine and parameterize teneral adult rate curves. A
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Laplace distribution was determined to most appropriately reflect the deviance between

predicted and observed emergence via bootstrapping of emergence data. Nominal fits and

model competition via AIC found that the Brière rate curve was the best fitting rate curve

for the data from the two trees used. The distributions of the parameters for the two trees

used, as well as cross-validation between the trees, allowed for confident selection of a single

set of parameters. Validation was successfully performed with an additional tree, confirming

that even with the limited data that the model is able to accurately predict southern MPB

teneral adult emergence.

I was able to compare the bootstrapping results of the parameterized Brière curve, as

well as the other teneral adult rate curves that were considered, to a previously parameter-

ized rate curve for a northern population of MPB. The distributions of parameters indicate

that the southern MPB have significantly different temperature thresholds and maximum

rates than northern MPB, with lower rates that allow them to maintain synchonous emer-

gence under warmer temperatures. I also modeled the possibility of bivoltinism by increasing

the mean temperature of the field phloem data using the EvF cohort model with the south-

ern MPB teneral adult rate curve. This assessment indicated that bivoltinism is unlikely

in a southern MPB population, as the upper thresholds of development create a minimum

median day of emergence of October 30th that is far too late in the year for survival of

MPB eggs and pupae. A more thorough assessment which takes into account the exposure

of these life stages to freezing temperatures would be worth exploring, and very possibly

make the date of October 30th even less feasible.

Changes in temperature due to climate change have the potential to affect insect sea-

sonality differently across latitudes, and while previous research has shown that northern

and southern MPB populations have different developmental rates, particularly in the ten-

eral adult stage, a complete phenological was not present due to the absence of teneral

adult stage parameters. The parameterized teneral adult curve in this thesis, in addition

to the oviposition model which incorporates varying fecundity, allows a complete cohort-

based phenological model to predict the southern MPB life cycle. This phenological model
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indicates that southern MPB populations have adapted to warmer temperatures and are

unlikely to successfully complete a bivoltine life cycle, and that there are significant differ-

ences between the southern and northern MPB teneral adult stage. The model presented in

this thesis can be used for forest management and prediction as changing climate continues

to affect MPB and other insect populations.
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APPENDIX A

MPB Field Data

Julian Day Tree 1 Tree 2 Tree 3

216 0 9 33

218 0 4 7

221 0 0 81

222 0 1 46

224 0 5 61

226 0 39 60

229 0 73 27

231 0 20 24

233 0 11 19

236 0 1 2

238 0 1 2

240 0 2 0

244 0 0 0

Table A.1: Attack data from three trees in Lockett Meadows, Cococino National Forest,
AZ, 2015.
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Julian day Tree 1 Tree 2 Tree 3

214 0 0 0

217 0 0 0

221 0 0 0

223 1 0 0

228 41 0 0

231 79 8 0

234 40 24 0

236 37 23 0

238 20 11 0

242 18 7 0

244 1 4 0

249 5 2 0

252 0 1 0

257 0 1 0

Table A.2: Attack data from three trees in Lockett Meadows, Cococino National Forest,
AZ, 2016.

Julian Day 1N 1S 2N 2S 3N 3S

210 0 0 0 3 2 0

215 0 0 0 1 0 0

218 0 0 0 0 0 0

222 1 2 5 3 0 0

224 7 0 4 1 2 0

229 14 7 6 29 23 19

232 51 1 3 33 0 0

235 34 6 41 8 4 1

237 12 1 3 4 1 0

239 37 2 36 2 6 0

243 39 4 25 1 5 0

245 15 4 11 0 2 0

250 1 0 15 1 0 0

253 0 0 0 0 0 0

Table A.3: Emergence data from three trees in Lockett Meadows, Cococino National Forest,
AZ. Trees were attacked in 2015 and observance was observed in 2016.
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Juliday Day 1N 1S 2N 2S 3N 3S

192 0 0 0 0 0 0

195 0 1 0 1 0 0

199 0 0 1 0 0 0

202 0 0 2 0 0 0

206 0 0 0 2 0 0

212 1 5 0 0 0 0

213 0 0 0 0 0 0

215 3 2 0 0 0 1

216 0 2 0 0 0 0

219 6 7 0 0 0 0

221 5 5 0 0 0 0

223 17 7 0 0 0 0

225 15 5 0 0 0 0

227 5 0 0 0 0 0

229 0 3 0 0 0 0

231 0 6 0 0 0 0

233 0 1 0 0 0 1

235 0 0 0 0 0 1

244 0 0 0 0 0 2

Table A.4: Emergence data from three trees in Lockett Meadows, Cococino National Forest,
AZ. Trees were attacked in 2016 and observance was observed in 2017.
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APPENDIX B

Code for Major Models

B.1 Southern MPB Oviposition Model Code

function [y] = ovipos(NUMFEMALES,TAUS,PHLOEM_TEMPS,START_DAY)

% Creates MPB oviposition PDF for an Arizona population with given

% temperature, population inputs, with terms accounting for the

% accumulation of variance across temperatures. This model is derived

% from the McManis et al (2019) oviposition rate model. Parameters for

% getrates() are the Southern MPB population oviposition parameters

% in this thesis.

%

% Number of attacking females given as a row vector (NUMFEMALES).

% Length should beequal and corresponding to TAUS.

%

% Attack days (TAUS) given as a row vector in Julian days corresponding

% to NUMFEMALES.

%

% START_DAY is first Julian day of PHLOEM_TEMPS records.

%

% PHLOEM_TEMPS is phloem temperatures as column vector given in C

% degrees for each hour of a year, starting at midnight on START_DAY.

% Vector should extend at least 45 days past TAUS(end).

%

% %% Example command use %%
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%

% numfemales = [9 4 1 5 39 73 20 11 1 1 2];

% taus = [216 218 222 224 226 229 231 233 236 238 240];

% phloem = ones(1,17520).*25;

% startday = 168;

% output = ovipos(numfemales,taus,phloem,startday)

%

%

%% Define variables and Initialize Matrices

%Oviposition parmaters

p =[0.0913 0.0309 6.6000 30.9000 1.3613 1.9889]

% d value for calculation of t0

d = 1;

eggfree = 1;

%Sigma from McManis et al. 2019 paper

q= 0.32;

%Creating uniform vector of f-values

fvalues = linspace(0.05,0.95,19);

%Creating vector of taus from input TAUS

taus = TAUS;

%Vector for number of females created from NUMFEMALES for weighting PDFs

numfemales = NUMFEMALES;

%Initializing matrices

all = [];

final = [];

%% Creating time/temp vector that begins at START_DAY
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%defining dt

dt=(1/24);

%First day of time is start date for phloem temps

tmin= START_DAY;

%Last day is day of last attack plus 45 days

tmax=TAUS(end)+45;

%nt is number of blocks needed

nt=(tmax-tmin)/dt+1;

%Time separated in units of days but in increments of hours

t=linspace(tmin,tmax,nt);

%Eliminate last block that is extra

t(end)= [];

%Create vector of phloem temps for tmin-tmax above

T = PHLOEM_TEMPS(1:length(t));

%% Calculate rates, cumulative rates, t0 (delay time)

%Calculate oviposition rates

rates = getrates(T,p(1,:));

%Get cumulative sum of rates

cumrates = dt.*cumtrapz(rates);

%Taking the integral that will be later used for delay times

int = cumtrapz(getrates_t0(T)).*dt;

%Define taus for the tau loop

usetau = TAUS;

%Begin loop which creates PDFs for each tau

for m = 1:length(usetau)

tau = usetau(1,m);
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%Find index of tau in t

tau_index=find(t>=tau,1);

%Find the index value for end of egg-free distance excavation

endeggfreeindex = find((int - int(tau_index))>=eggfree,1);

%Use that index to find the day t0 ends, subtract tau to get t0

t0 = t(endeggfreeindex)-tau;

%Calculate cumulative rates R with delay time removed

if isempty(endeggfreeindex)== 1

R = 0;

t0 =0;

else

R=max(0,cumrates-cumrates(endeggfreeindex));

end %End of R calculation

% Loop calculating PDFs for uniform f for current tau

%Loop to calculate PDFs for uniform f vector

for k = 1:length(fvalues)

%Use specific f for loop

f = fvalues(k);

%Create tt to avoid division by zero below

tt=max(dt,(t-tau-t0));

%Epsilon used in PDF calculation

eps = (R+log(f))./tt;

%Derivative of epsilon used in PDF calcuation

deps = (t>t0+tau).*abs(-(R+log(f))./(tt.^2)+(rates./tt) );

%PDF calculation

PDF =(1/sqrt(2.*pi.*q.*q)).*exp(((-1./(2.*q.*q)).*(eps.^2))).*deps;

%Normalization of PDF
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nPDF = PDF./trapz(PDF*dt);

%Placing PDF for specific f in a matrix

all(k,:)=nPDF;

end %of calculation for uniform f vector

%Sum down columns to get resultant P(some egg)

p_egg=sum(all);

%Normalize PDF

p_egg=p_egg./(trapz(p_egg*dt));

%Place PDF for this tau in final matrix

final(size(final,1)+1,:) = p_egg;

end %of tau loop

%% Weighting and normalization of PDF for input tree

%Weighting by number of starting NUMFEMALES

tree = diag(numfemales(1,:))*final;

%Summing PDF for all taus

tree = sum(tree);

%Normalizing PDF

tree = tree./(trapz(tree)*dt);

%% Reshape PDF from hours to days and correctly size vector for vfpredmodel

%Reshape vector into matrix where each column is a day

treematrix = reshape(tree,24,tmax-tmin);

%Sum to get PDF in terms of days

treeday = dt*sum(treematrix);

%Create vector of length required for vfpred

treeinput = zeros(1,730);

%Place final PDF in vector
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treeinput(1:(length(treeday)))=treeday;

[y] = treeinput; %Define output

function [rates] = getrates(T,p)

% Rates function as seen in Régnière et al (2012) and McManis et al (2009).

% T is temperature vector

% p is vector of parameters from McManis thesis pg 62 (2018)

% p(1) = omega

% p(2) = Psi

% p(3) = Tb

% p(4) = Tm

% p(5) = DeltaB

% p(6) = DeltaM

[rates] = max(0, p(2).*((exp(p(1).*(T-p(3))))-(((p(4)-T)./(p(4)-p(3)))...

.*exp((-1*p(1)*(T-p(3)))./p(5)))-(((T-p(3))./(p(4)-p(3)))...

.*exp((p(1).*(p(4)-p(3)))-((p(4)-T)./p(6))))));

function [rates] = getrates_t0(tmps)

% Rates function as seen in Régnière et al (2012) and McManis et al (2009).

% T is temberature vector

% p is vector of parameters from McManis et al, (2018)

% b(1) = omega

% b(2) = Psi

% b(3) = Tb

% b(4) = Tm

% b(5) = DeltaB

% b(6) = DeltaM
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b = [0.0632 0.1773 5.8992 29.6069 2.5514 2.7269];

[rates] = max(0, b(2).*((exp(b(1).*(tmps-b(3))))-(((b(4)-tmps)...

./(b(4)-b(3))).*exp((-1*b(1)*(tmps-b(3)))./b(5)))-(((tmps-b(3))...

./(b(4)-b(3))).*exp((b(1).*(b(4)-b(3)))-((b(4)-tmps)./b(6))))));
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B.2 Southern MPB Phenology Model Code

function [y]=vfpredmodel(NUMFEMALES, TAUS, START_DAY, PHLOEM_TEMPS)

% Predict MPB phenology for an Arizona population with given

% temperature, population inputs, with terms accounting for

% the accumulation of variance across temperatures and life

% stages.

%

% Number of attacking females given as a row vector

% (NUMFEMALES). Length should be equal and corresponding to

% TAUS.

%

% Attack days (TAUS) given as a row vector in Julian days

% corresponding to NUMFEMALES.

%

% START_DAY is first Julian day of PHLOEM_TEMPS records.

%

% PHLOEM_TEMPS is phloem temperatures as column vector given

% in C degrees for each hour of a year, starting at midnight

% on START_DAY. Vector should be 2*24*365=17520 hrs long.

%

% Example command use:

% numfemales = [9 4 1 5 39 73 20 11 1 1 2];

% taus = [216 218 222 224 226 229 231 233 236 238 240];

% phloem = ones(1,17520).*25;

% startday = 168;

% time2=[startday:(startday+729)];

% pout=vfpredmodel(numfemales, taus, startday, phloem);

% figure
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% plot(time2,pout)

% legend(’Oviposition’,’Egg’,’L1’,’L2’,’L3’,’L4’, ...

% ’Pupae’,’Adult Emergence’)

%

%% Input Parameters %%

%Matrix of rates parameters for southern population

global p %Set p to global so it can be used by ovipos()

% p = [omega Psi Tb Tm DeltaB DeltaM]

% except for p(8,:), teneral adult

p =[0.0913 0.0309 6.6000 30.9000 1.3613 1.9889

%Oviposition

0.2045 0.0326 6.0251 31.9309 0.5410 5.5031

%Eggs

0.1517 0.0521 4.6029 31.7661 0.0117 5.4256

%First Instar

0.1374 0.0431 5.9791 31.8337 0.0413 4.4534

%Second Instar

0.1856 0.0170 6.0115 31.2656 0 4.3079

%Third Instar

0.1694 0.0545 14.9990 31.4364 0 5.2947

%Fourth Instar

0.1658 0.0166 6.3504 30.8041 0 3.5426

%Fifth Instar

% r_max T_b T_m

0.0197 11.3539 27.2079 NaN NaN NaN];

%Teneral adult (Brière curve)
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% Set variance parameters

sigma=[ 0.032 %Oviposition

0.038 %Eggs

-0.2182 %First Instar

0.1524 %Second Instar

0.165 %Third Instar

0.1354 %Fourth Instar

0.0673 %Pupae

0.0009]; %Teneral Adult

%Calculation of nus from sigma

nus= (sigma.^2)./2;

%% Defining time vectors %%

tmps=PHLOEM_TEMPS;

%Define temperature as input temperature

nh=24;

%Number of hours in a day

ndays=365+365;

% 2*365 = 730, 2 years of time

nt=nh*ndays;

%Total number of hours in 730 days

tmin=START_DAY;

%Smallest time is start day of phloem temps

tmax=ndays+tmin;

%Max day is two years from start date

dt=(tmax-tmin)/nt;

%Time step (1hr)
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tmps=reshape(tmps,nh,ndays);

%Reshape temperatures so each column is a whole day of data

treal=linspace(tmin,tmax-(tmax-tmin)/ndays,ndays);

%Real time vector that begins at tmin

tcalc=treal-tmin;

%Time vector that starts at zero - convenient for setting up

%convolution matrix

tol=1e-8;

%Tolerance used for numerical calculations

%% Lifestage calculations

%Use oviposition model for first input

pout=zeros(8,ndays);

%Initialize matrix for output of emergence distributions

pinput = ovipos(NUMFEMALES,TAUS,PHLOEM_TEMPS,START_DAY);

%Call oviposition model for initial input

pout(1,:)= pinput;

%First distribution is ovipositing adults (istg=1)

%Calculate rates and integrate variabilities for each stage

for istg=2:8

%get rates for current stage:

%eggs

if (istg == 2)

rates = getrates(tmps, p(2,:));
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%L1

elseif (istg == 3)

rates = getrates(tmps, p(3,:));

%L2

elseif (istg == 4)

rates = getrates(tmps, p(4,:));

%L3

elseif (istg == 5)

rates = getrates(tmps, p(5,:));

%L4

elseif (istg == 6)

rates = getrates(tmps, p(6,:));

%Pupae

elseif (istg == 7)

rates = getrates(tmps, p(7,:));

%Adult emergence/teneral adult

else (istg == 8);

rates=(briere(tmps,p(8,:)));

end %of calculating rates for current stage

rates=sum(rates);

% add up developmental increment for this day by summing over

% hours in the day (down columns)

crates=dt*cumtrapz(rates);

% cumulative rates over days for this stage

crates1=1-crates;

% to make the calculation efficient
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nu=nus(istg);

% variance for this stage

%pre-calculate some factors which will be used over and over

%in loop for efficiency

texp(2:ndays)=1./(4*nu*tcalc(2:ndays));

%1/denominator of exp of Green’s function

tden(2:ndays)=1./sqrt(4*nu*pi*tcalc(2:ndays).^3);

%1/sqrt(stuff) of Green’s function

% the following loop integrates the contribution of variance

% for non-constant temperatures by summing along diagonals

% in an upper triangular matrix

for i=1:ndays-1

i1=i+1:ndays;

% pttau is the Green’s function which weights the

% contributions of variances and development

pttau=exp(-texp(i1-i+1).*(crates1(i1)+crates(i)).^2).*tden(i1-i+1);

%because of singularity in pttau it is wise to normalize

wts=trapz([0 pttau]);

if (wts<tol)

% don’t normalize those pttaus which are just small

wts=1;
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end % of normalization

pout(istg,i1)=pout(istg,i1)+pttau*pinput(i)/wts;

end % of integrating variance

pinput=pout(istg,:);

% input for next life stage is end of last stage

end % of life stage calculations

y=pout; %Output

%% Functions called by vfpredmodel %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [y] = ovipos(NUMFEMALES,TAUS,PHLOEM_TEMPS,START_DAY)

% Creates MPB oviposition PDF for an Arizona population with given

% temperature, population inputs, with terms accounting for the

% accumulation of variance across temperatures. This model is derived

% from the McManis et al (2019) oviposition rate model. Parameters for

% getrates() are the Southern MPB population oviposition parameters

% in this thesis.

%

% Number of attacking females given as a row vector (NUMFEMALES).

% Length should beequal and corresponding to TAUS.

%

% Attack days (TAUS) given as a row vector in Julian days corresponding

% to NUMFEMALES.
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%

% START_DAY is first Julian day of PHLOEM_TEMPS records.

%

% PHLOEM_TEMPS is phloem temperatures as column vector given in C

% degrees for each hour of a year, starting at midnight on START_DAY.

% Vector should extend at least 45 days past TAUS(end).

%

% Example command use: Using the same inputs as vfpredmodel(), the PDF

% can be plotted using a time vector created similiarly to lines 196

% to 201.

%

%% Define variables and Initialize Matrices

global p

% d value for calculation of t0

d = 1;

eggfree = 1;

%Sigma from McManis et al. 2019 paper

q= 0.32;

%Creating uniform vector of f-values

fvalues = linspace(0.05,0.95,19);

%Creating vector of taus from input TAUS

taus = TAUS;

%Vector for number of females created from NUMFEMALES for weighting PDFs

numfemales = NUMFEMALES;

%Initializing matrices

all = [];

final = [];
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%% Creating time/temp vector that begins at START_DAY

%defining dt

dt=(1/24);

%First day of time is start date for phloem temps

tmin= START_DAY;

%Last day is day of last attack plus 45 days

tmax=TAUS(end)+45;

%nt is number of blocks needed

nt=(tmax-tmin)/dt+1;

%Time separated in units of days but in increments of hours

t=linspace(tmin,tmax,nt);

%Eliminate last block that is extra

t(end)= [];

%Create vector of phloem temps for tmin-tmax above

T = PHLOEM_TEMPS(1:length(t));

%% Calculate rates, cumulative rates, t0 (delay time)

%Calculate oviposition rates

rates = getrates(T,p(1,:));

%Get cumulative sum of rates

cumrates = dt.*cumtrapz(rates);

%Taking the integral that will be later used for delay times

int = cumtrapz(getrates_t0(T)).*dt;

%Define taus for the tau loop

usetau = TAUS;

%Begin loop which creates PDFs for each tau

for m = 1:length(usetau)
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tau = usetau(1,m);

%Find index of tau in t

tau_index=find(t>=tau,1);

%Find the index value for end of egg-free distance excavation

endeggfreeindex = find((int - int(tau_index))>=eggfree,1);

%Use that index to find the day t0 ends, subtract tau to get t0

t0 = t(endeggfreeindex)-tau;

%Calculate cumulative rates R with delay time removed

if isempty(endeggfreeindex)== 1

R = 0;

t0 =0;

else

R=max(0,cumrates-cumrates(endeggfreeindex));

end %End of R calculation

% Loop calculating PDFs for uniform f for current tau

%Loop to calculate PDFs for uniform f vector

for k = 1:length(fvalues)

%Use specific f for loop

f = fvalues(k);

%Create tt to avoid division by zero below

tt=max(dt,(t-tau-t0));

%Epsilon used in PDF calculation

eps = (R+log(f))./tt;

%Derivative of epsilon used in PDF calcuation

deps = (t>t0+tau).*abs(-(R+log(f))./(tt.^2)+(rates./tt) );

%PDF calculation
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PDF =(1/sqrt(2.*pi.*q.*q)).*exp(((-1./(2.*q.*q)).*(eps.^2))).*deps;

%Normalization of PDF

nPDF = PDF./trapz(PDF*dt);

%Placing PDF for specific f in a matrix

all(k,:)=nPDF;

end %of calculation for uniform f vector

%Sum down columns to get resultant P(some egg)

p_egg=sum(all);

%Normalize PDF

p_egg=p_egg./(trapz(p_egg*dt));

%Place PDF for this tau in final matrix

final(size(final,1)+1,:) = p_egg;

end %of tau loop

%% Weighting and normalization of PDF for input tree

%Weighting by number of starting NUMFEMALES

tree = diag(numfemales(1,:))*final;

%Summing PDF for all taus

tree = sum(tree);

%Normalizing PDF

tree = tree./(trapz(tree)*dt);

%% Reshape PDF from hours to days and correctly size vector for vfpredmodel

%Reshape vector into matrix where each column is a day

treematrix = reshape(tree,24,tmax-tmin);

%Sum to get PDF in terms of days

treeday = dt*sum(treematrix);
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%Create vector of length required for vfpred

treeinput = zeros(1,730);

%Place final PDF in vector

treeinput(1:(length(treeday)))=treeday;

[y] = treeinput; %Define output

function [rates] = getrates(T,p)

% Rates function as seen in Régnière et al. (2012)

% and McManis et al. (2018).

% T is temperature vector

% p is vector of parameters from McManis et al. (2018)

% p(1) = omega

% p(2) = Psi

% p(3) = Tb

% p(4) = Tm

% p(5) = DeltaB

% p(6) = DeltaM

[rates] = max(0, p(2).*((exp(p(1).*(T-p(3))))-(((p(4)-T) ...

./(p(4)-p(3))).*exp((-1*p(1)*(T-p(3)))./p(5)))- ...

(((T-p(3))./(p(4)-p(3))).*exp((p(1).*(p(4)-p(3)))-...

((p(4)-T)./p(6))))));

function [y] = briere(tmps,p)

%Brière curve for teneral adult rates

% p = p(8,:)

% p = (rmax, T_B, T_M)
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%Example code:

% % p = [0.0197 11.3539 27.2079];

% % T = linspace(0,40,100);

% % output = briere(T,p);

% % plot(T,output)

m=2; %for sqrt Brière

Tb=p(2); a=p(1); Tm=p(3);

% find the curve’s max using Brière formula:

Topt=(2*m*Tm+(m+1)*Tb+ sqrt( 4*m^2*Tm^2+(m+1)^2*Tb^2- ...

4*m^2*Tb*Tm))/(4*m+2);

% value at max, to normalize the shape function to peak of 1

norm=Topt.*( Topt -p(2) ).*(( abs(1-(Topt./p(3))) ).^0.5);

% now the max rate is exactly the parameter a=p(1);

r = a.*tmps/norm.*( tmps -Tb ).*(( abs(1-(tmps./Tm)) ).^0.5);

output = r.*(tmps>=p(2)).*(tmps<=p(3));

% make sure output is zero outside developmental range

[y] = output;

function [rates] = getrates_t0(tmps)

% Rates function as seen in Régnière et al (2012) and McManis et al (2009).

% T is temberature vector

% b is vector of barameters from McManis thesis bg 62 (2018)

% b(1) = omega

% b(2) = Psi

% b(3) = Tb

% b(4) = Tm

% b(5) = DeltaB

% b(6) = DeltaM
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b = [0.0632 0.1773 5.8992 29.6069 2.5514 2.7269];

[rates] = max(0, b(2).*((exp(b(1).*(tmps-b(3))))-(((b(4)-tmps)...

./(b(4)-b(3))).*exp((-1*b(1)*(tmps-b(3)))./b(5)))-(((tmps-b(3))...

./(b(4)-b(3))).*exp((b(1).*(b(4)-b(3)))-((b(4)-tmps)./b(6))))));


	A Phenological Model for a Southern Population of Mountain Pine Beetle
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Southern MPB Oviposition
	Southern MPB Teneral Adult Rates

	OVIPOSITION MODEL FOR A SOUTHERN POPULATION OF MOUNTAIN PINE BEETLE
	Introduction
	Models for MPB Oviposition
	Lab Results for Southern MPB
	Modeling the Time Required to Excavate Egg-Free Distance
	Egg Free Length Constructed Proportionally to Oviposition
	Egg Free Length Constructed Independently of Oviposition Rate
	Variability in Time for Egg-Free Gallery Construction

	Calculating the Distribution of Oviposition
	Distribution of Oviposition Quantiles
	Distribution of Egg Quantiles is Approximately Uniform
	Distribution of Eggs

	Asymptotic Approximation for Distribution of Oviposition
	Model Behavior and Comparison with Data
	Conclusion

	A TENERAL ADULT RATE MODEL FOR A SOUTHERN MOUNTAIN PINE BEETLE POPULATION
	Introduction
	Field Data for a Southern MPB Population
	Model Development
	Review of Models Describing Southern MPB Phenology
	Potential Teneral Adult Rate Curves

	Inferring Teneral Adult Rates
	MPB Emergence Data
	Determining Appropriate Distributions for Deviance
	Computation and Bootstrapping
	Deviances have Laplace Distribution

	Results and Validation
	Teneral Adult Rates and Rate Curve Selection
	Parameter Value Selection for Briére Rate Curve
	Validation with Field Data

	Adaptive Phenology and Possibility of Changes in Voltinism
	Comparison of Parameters and Emergence
	Possibility of Bivoltinism

	Conclusion

	CONCLUSION
	BIBLIOGRAPHY
	APPENDICES
	A  MPB Field Data
	B  Code for Major Models
	Southern MPB Oviposition Model Code
	Southern MPB Phenology Model Code



