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ABSTRACT

Plug-and-Play SQL

by

Shubham Swami, Master of Science

Utah State University, 2021

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

Programmers invest time and effort into developing a set of queries that meet the needs of

the database’s end-users. As new users and new user needs arise over time, new queries

must be developed. The objective of this research project is to provide a system for plug-

and-play queries for SQL, which is a standard language for accessing and manipulating

databases along with the implementation of the proposed objective.

A plug-and-play query is a freestanding query that can determine if it can be evaluated

without user intervention. We use hierarchies to improve SQL querying in a way that

eliminates the need to write a view to construct virtual tables or a set of tables to run a

query. The hierarchy would be a declarative specification of the desired shape of data rather

than a description of how the data is organized. The advantage is that the common use of

logical or semantic pointers in the SQL queries is eliminated and a natural way to group

data for aggregation is provided. The plug-and-play queries have several advantages, they

are portable and can be used to evaluate any data source.

(48 pages)
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PUBLIC ABSTRACT

Plug-and-Play SQL

Shubham Swami

We present an efficient model to retrieve data from a database by implementing plug-and-

play queries using the query guards. The model is efficient in the sense that it saves time

when writing a query and promotes query portability and reuse. A plug-and-play query is

a freestanding query that can couple to any data socket and self determine whether it can

be evaluated reliably on the data. We use hierarchies to improve SQL querying in a way

that eliminates the need to write a view to construct virtual tables or a set of tables to

run a query. The hierarchy is a declarative specification of the desired shape of data rather

than a description of how the data is organized. The advantage is that the common use of

logical or semantic pointers in the SQL queries is eliminated and a natural way to group

data for aggregation is provided. The plug-and-play queries have several advantages, they

are portable and can be used to evaluate any data source.
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CHAPTER 1

INTRODUCTION

1.1 Problem Motivation

The goal of this research project is to reduce the effort and time required to write

accurate and efficient queries. The technique is to couple a query with a query guard

creating a plug-and-play query. The idea of a plug-and-play query is similar to that of

a plug-and-play device. Such a device can be plugged into any socket and if the socket

provides the necessary (electrical) input or other required input, then the device will play.

Similarly, a plug-and-play query can be plugged into any data source and the query will

“play” producing a desired result.

Query guards for plug-and-play queries have been previously explored in the context

of hierarchical data [1–7]. This research proposed the idea of a hierarchical query guard.

The guard allows the query to couple to any hierarchy that can be converted, cast, or

coerced to the type (hierarchy) needed by the query. Figure 1.1 shows how a non-plug-

and-play query is evaluated on hierarchical data. The programmer must ensure that the

type (hierarchy) of the data matches what the query expects by specifying the appropriate

path expressions in the query. If the right path expressions are not given the query will

fail in the sense that it produces an empty result; it does not produce an error since it is

common in hierarchical data for the hierarchy to terminate with missing data (the data is

referred to as semi-structured, meaning it lacks a completely defined structure, such data

is common in the real world). The query guard approach, shown in Figure 1.2, is to pair

a query with a guard. The guard protects the query by checking whether the data can

be transformed, without losing information, to the type (hierarchy) needed by the query.

Some transformations lose information when the hierarchy is manipulated, but the guard

can alert the programmer to lossy transformations.
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query

for $i in …

let $b = …

where …

return <book>

…

data

Fig. 1.1: Querying hierarchical data

query

for $i in …

let $b = …

where …

return <book>

…

data

transformation

type error/information loss?

guard

+

datatransformed data

Fig. 1.2: Using a query guard

In this thesis, we develop query guards for SQL queries. Unlike previous research the

SQL data model is not a hierarchy, rather it is a set of relations or a so-called “flat” structure

in contrast to a hierarchy. We will call an SQL query with a query guard a plug-and-play

SQL query or just a plug-and-play query. A query guard declares the structure of the data

needed by the query. Surprisingly, this structure is declared as a hierarchy even for SQL

queries for the reasons given below. A query guard turns an ordinary SQL query into a

plug-and-play query and can be reused.

Data can be represented in several shapes. For instance, book data could be represented

in a single (universal) table, or several tables related by foreign keys. A programmer should

not have to first write a view to construct a virtual table or set of tables to run an SQL

query. Instead, SQL queries should be plug-and-play queries that automatically (virtually)

transform the data to that needed by the query.

Surprisingly we can use hierarchies to improve SQL querying. Unlike in a hierarchical

model, our hierarchy will be a declarative specification of the desired shape of the data
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rather than a description of how the data is organized. A hierarchy can eliminate the

common use of “logical or semantic pointers” in SQL queries (e.g., key to foreign key joins)

and provide a natural way to “group” data for aggregation. For example, the following

Symbiota query finds who collected Asteraceae specimens in 2018.

SELECT botanist.name

FROM taxa, collection, botanist

WHERE taxa.tid = collection.tid AND botanist.id = collection.pid

AND taxa.taxon = ’Asteraceae’ AND collection.year = 2018

The query does a join between the taxa, collection, and botanist tables and applies

the appropriate selection conditions, and projects the name. The query explicitly uses

logical pointers (foreign key to key associations) from the taxa table to the collection

and botanist table. This query can be simplified with an SQL query guard as follows.

GUARD botanist.name {

taxon {

collection.year

}

}

SELECT name

WHERE taxon = ’Asteraceae’ AND year = 2018

The query uses the graph of foreign key relationships between tables to build a hierarchy,

similar to using a NATURAL JOIN to join the tables. If there are several name columns in the

database, the column is disambiguated in the guard. However, the above query is portable

to data collections that have different shapes (i.e., we do not care how many steps are

involved in “joining” the tables) and naturally “groups” the data. Suppose for instance we

only wanted those collectors who collected more than 40 specimens then we could modify

the query as follows.

GUARD botanist.name {
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taxon {

collection.year

}

}

SELECT botanist.name

WHERE taxon = ’Asteraceae’ AND collection.year = 2018

AND COUNT(taxon) > 40

Querying against a hierarchy simplifies grouping and aggregation (as in XQuery) which in

SQL is specified in separate clauses (a COUNT is forbidden in a WHERE clause).

1.2 Single motivating example

In this example, we explore the use of a query guard from its specification through its

implementation. This illustrates the use and advantages of query guards. Suppose that we

want to retrieve the name of every person who has been the manager for the team “New

York Yankees”. Note that we construct this query without much concern over how the data

is physically structured, rather our goal is to specify a query that will work on any data

source.

GUARD manager {

firstName

lastName

teams {

name

}

}

SELECT DISTINCT firstName, lastName

WHERE teamName =’New York Yankees’

ORDER BY firstName



5

Several names indicate how the query is intended to be used. There is the first and last

name of a manager and a team name. Moreover, the manager must have managed the

indicated team in the given year.

The first step in evaluating the guard is to semantically match the names in the guard

to the names in the database. In this thesis we assume a perfect semantic match, our focus

is on structural matching. If this guard is evaluated on the Lahman Baseball database (a

history of baseball data from its inception through 2020) then labels in the guard match

to columns or tables in the database, e.g., firstName matches nameFirst in the players

table. For the baseball database, the semantic matching also yields that the data needed

involves three tables: the players table, the managers table, and the teams table.

The next step is to determine how these three tables are related. We use the graph

of foreign keys to determine the shortest path among the tables. In the baseball database,

the managers table has a foreign key into both the teams and players table, so all three

tables are related through the managers table.

The final step is to generate a query on the baseball database. The generated query is

given below.

SELECT DISTINCT nameFirst, nameLast

FROM ( SELECT DISTINCT people."namelast", people."namefirst"

FROM teams LEFT JOIN managers ON (managers.lgid = teams.lgid

AND manager.yearid = teams.yearid

AND maager.teamid = teams.teamid)

LEFT JOIN people ON managers.playerid = people.playerid

) AS generatedFromClause

WHERE name=’New York Yankees’

ORDER BY nameLast

Finally, if the user were to write the query manually, they would issue the following

query.

SELECT DISTINCT nameFirst, nameLast
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FROM people JOIN managers ON (people.playerID = managers.playerID)

JOIN teams ON (teams.yearID = managers.yearID

AND teams.lgID = managers.lgID

AND teams.teamID = managers.teamID)

WHERE teams.name = ’New York Yankees’

ORDER BY nameLast

But this query would work only on the Lahman baseball database. If the database were

structured differently, then the query would fail because the tables and joins between the

tables would differ. In contrast, the query with the guard would succeed since it could

adapt to the differently structured schema.

1.3 Contribution

This research project creates a system to evaluate plug-and-play queries for SQL, the

most widely used database query language. In this thesis, we show that a hierarchical table

structure can be used to generate SQL queries that are capable of retrieving data efficiently.

We also provide a robust querying system to the programmers which would save their time

and effort to write SQL queries that can retrieve data accurately. Through this research

project, we will analyze, evaluate and describe the concept of Plug-and-Play SQL.
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CHAPTER 2

EXAMPLES AND USE CASES

2.1 The Baseball Database

We have used Lahman’s Baseball Database for our project, This is an open-source

collection of baseball data and is frequently updated and maintained. We configured the

baseball data on the Postgres Relational Database Management System. This database

has 29 tables as shown in Figure 2.1, however, we have used only a few tables from this

database for our project. The open-source data is available in the form of comma-separated

values (csv files) and since there is a regular update to these data values, adjustments were

needed to achieve normalization to use it on this project.

Some of the adjustments are:

1. The data for the divisions and the leagues table was not explicitly provided, therefore

these tables were manually added after extracting the csv data.

2. Initially, no constraints were included in the database, so the primary key and the

foreign keys referencing the other tables in the database were manually added.

3. Upon adding the foreign keys and primary keys there were a lot of data anomalies

and this resulted in a data loss.

4. The Postgres DBMS does not allow column names to start with a numeric character

because of the reason that it becomes easy for the parser to decipher the SQL state-

ments and the execution of these statements becomes faster too. For this reason, the

column names that started with numbers were refactored e.g., columns 2B and 3B

were refactored to H2B and H3B respectively.
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2.2 Data Cleaning

While setting up the database, when we added the key constraints there were a lot of

cases where the referential integrity was violated. We had to remove all the conflicting data

in the database. The playerID’s like “thompar01”, “thompan01” and a few others were

present in the tables like fieldingof, pitching and others but not in the people table (people

table is the master table for this database) and so these tuples were truncated.

2.3 The Baseball Database Schema:

The schema for the baseball database is shown in Figure 2.1. However, we have

confined our examples ( section 2.4) to a few tables (people, batting, pitching, appearances,

managers, and teams table) for this project.

2.4 Queries

We have implemented a few queries and their corresponding plug-and-play queries to

execute and evaluate the project. The running examples are as follows:

Query 1: Query to retrieve the name of every person who has been the manager for the

team ”New York Yankees”.

SQL Query:

SELECT DISTINCT nameFirst, nameLast

FROM (people JOIN managers ON

(people.playerID = managers.playerID))

JOIN teams ON (teams.yearID = managers.yearID AND

teams.lgID = managers.lgID AND teams.teamID = managers.teamID)

WHERE (teams.name = ’New York Yankees’ AND yearID >= ’1913’) order by nameLast;

Plug-and-Play Query:

GUARD
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Fig. 2.1: Lahman’s baseball database complete schema

managers{

plyrmgr

namefirst

namelast{

teams{

yearID

name

}
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}

}

SELECT DISTINCT nameFirst, nameLast

WHERE (teams.name =’New York Yankees’ AND yearID>= ’1913’)

ORDER BY nameLast;

Query 2: List the name of each player with more than 200 hits in a season in their career

(hits made is the ”H” column in the “batting” table).

SQL Query:

SELECT DISTINCT nameFirst, nameLast FROM people

JOIN batting ON people.playerID = batting.playerID

WHERE (batting.H >200 ) order by nameLast;

Plug-and-Play Query:

GUARD

batting {

namefirst

namelast

H

}

SELECT DISTINCT nameFirst, nameLast

WHERE (H >200) order by nameLast;

Query 3: List all the pitchers who have a first name as “Roger”.

SQL Query:

SELECT nameFirst, nameLast from people

where nameFirst="Roger" AND playerID IN

(SELECT playerID from pitching);

Plug-and-Play Query:
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GUARD

pitching {

name{

namefirst

namelast

}

}

SELECT DISTINCT nameFirst, nameLast

WHERE nameFirst ="Roger";

Query 4: List the first name and last name of every player that has played center field

(use the “appearances” table) at any time in their career for the Atlanta Braves. List each

player only once.

SQL Query:

SELECT DISTINCT nameFirst, nameLast FROM people

JOIN appearances ON people.playerID = appearances.playerID

WHERE (teamID="ATL" AND G_cf != 0 )

ORDER BY nameLast;

Plug-and-Play Query:

GUARD

appearances{

g_cf

team{

teamID

}

namefirst

namelast

}
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SELECT DISTINCT nameFirst, nameLast

WHERE (teamID="ATL" AND G_cf != 0 ) ORDER BY nameLast;

Query 5: List the first name and last name of every player that has pitched for the team

named the “Brooklyn Dodgers”. List each player only once.

SQL Query:

SELECT DISTINCT nameFirst, nameLast from people

WHERE playerID IN

(SELECT masterID from pitching

WHERE (teamID="BRO" AND

(yearID = ’1912’ OR yearID= ’1911’ OR yearID>=’1932’ )));

Plug-and-Play Query:

GUARD

pitching {

teamID

yearID

name {

namefirst

namelast

}

}

SELECT DISTINCT nameFirst, nameLast

WHERE (teamID=’BRO’ AND (yearID = ’1912’ OR yearID= ’1911’ OR yearID>=’1932’));

Query 6: Yankee Batters - For each year, list how many different players batted for the

New York Yankees.

SQL Query:
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SELECT yearID, COUNT(playerID) as ’Number of Batters’ FROM batting

WHERE (teamID="NYA" AND yearID>="1913")

GROUP BY yearID ORDER BY yearID;

Plug-and-Play Query:

GUARD

batting {

playerID

yearID

teamID

}

SELECT yearID, COUNT(playerID) as ’Number of Batters’

WHERE (teamID="NYA" AND yearID>="1913") GROUP BY yearID ORDER BY yearID;

Query 7: List the first and last names of people who pitched for “Montreal Expos”.

SQL Query:

SELECT DISTINCT m.nameFirst, m.nameLast FROM

people m,pitching a,teams t

WHERE (m.playerId = a.playerId

AND t.teamId = a.teamId

AND t.lgID = a.lgID

AND t.name like ’%Montreal Expos%’

AND t.yearID = a.yearId);

Plug-and-Play Query:

GUARD

batting {

hr

name {

nameFirst
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nameLast

}

team {

name

}

}

SELECT DISTINCT nameFirst, nameLast

WHERE name like ’%Montreal Expos%’;
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CHAPTER 3

PLUG-AND-PLAY SQL IMPLEMENTATION

In this section, we define the code structure for our application. Most of the code

is written in Java and the ANTLR grammar has all the lexer and parser rules for SQL

along with the proposed guard clause. The code structure for the application is shown

in Figure 3.1. There are five main modules in the application, the database module is

responsible for configuring the data source, establishing a connection, and extracting the

data. The grammar module contains all the lexer and parser rules for the SQL and query

guard, the parser and lexer codes that are generated by the ANTLR jar, and the custom

listener, to parse the tree. The data pull module contains the logic to generate queries

and evaluate each query based on its execution plan. The data pull model also re-formats

the output and makes it suitable to display in the form of applications. The join graph

module manipulates the paths and provides the infrastructure to obtain the shortest path

between tables. Lastly, the tree module communicates with the listener and the data pull

module to generate the queries, and glue them to the emitted from clause. These modules

have been elaborated in individual sections below.

3.1 ANTLR

ANTLR is abbreviated as Another Tool for Language Recognition and is widely used to

build languages, frameworks, and tools. In this project, we use ANTLR as a tool to generate

the lexer and parser code for the implemented SQLite grammar. We use this parser to read,

interpret and process the plug-and-play query. Figure 3.2 shows the working of the ANTLR

jar.

3.1.1 Grammar

Grammar is defined as a list of rules, namely the lexer and parser rules. The convention
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Plug-and-Play SQL

database

DB

ForeignKey

Table

grammar

MyListener

SQLite.g4

Lexer

Parser

Tokens

datapull

SQLPull

joinGraph

Edge

Path

PathsTable

Graph

tree

PatternTree

Fig. 3.1: Plug and Play SQL- Code Structure

Fig. 3.2: ANTLR Compiler

followed is, writing the parser rules in lowercase characters and the lexer rules in uppercase

characters. The syntax to write an ANTLR grammar is as follows:

grammar grammar_name;

@headers {...}

@members {...}

imports {...}

parser_rules{}

lexer_rules{}

The syntax for writing a rule is as follows:

Rule_Name : Rule_Definition ;
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Type Lexeme

K GUARD GUARD

IDENTIFIER name

null {

IDENTIFIER hr

null }

Table 3.1: Lexical Analysis

The ANTLR tool uses SQLite.g4 grammar in this project and compiles it to generate the

parser and lexer code.

To run the generated parser and lexer code we need the run time library of ANTLR

along with the parser and lexer code. For this purpose, we have used antlr-4.7.1-complete.jar

in our project.

3.1.2 Lexer

Lexer in ANTLR is like a prerequisite for the parser. A lexer can be defined as some-

thing that converts each character from the input string (plug-and-play query in this project)

into a token.

A token is a meaningful translation of the input query string by the lexer and an

alphanumeric string inside a token is a lexeme. e.g., We have the plug-and-play query:

GUARD

name {

hr

}

The lexer would obtain the Lexemes given in Table 3.1 from a plug-and-play query.
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3.1.3 Parser

We can define a parser as a program that takes in the tokens as its input, evaluates

these tokens for the rules, and creates a logical structure, called the Abstract Syntax Tree.

From Table 3.1 the parser takes in the tokens and generates the abstract syntax tree

as shown in Figure 3.3.

Fig. 3.3: AST generated from tokens

3.1.4 Listener

Since we have the AST generated by the parser, we will now move towards walking this

tree structure. By walking this tree, we want to code the functionality for each node in the

AST. To implement this we can write our custom listener class in java. The aforementioned

listener class is described in detail in the implementation section.

3.1.5 ANTLR Summary

• The ANTLR grammar is a set of lexer and parser rules.

• The ANTLR run-time library compiles the grammar into useful programs, which

include lexer and parser code.

• Lexer translates input string to tokens.

• The parser uses tokens from the lexer to generate an AST.
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• A listener can be implemented to walk the AST and handle events corresponding to

each node.

3.2 Parsing the Query Guard

A plug-and-play query is different from an ordinary query in the sense that it includes

a guard clause that determines the hierarchy of the data. The guard clause is interpreted

and compiled to emit a FROM clause. We glue the emitted FROM clause with the remaining

portion of the query to generate an ordinary SQL query and retrieve the data.

The plug-and-play SQL query is different as it replaces the conditions required to join

the tables, with a hierarchical structure enclosed in “{” and “}”.

Syntax:

GUARD {

name1,name2 ... {

name1, name2 ...

}

}

Let’s compare an ordinary SQL query with a Plug and Play SQL Query. An example

ordinary SQL query is given below.

SELECT

DISTINCT p.nameFirst, p.nameLast

FROM

people p,

pitching a,

teams t

WHERE

p.masterId = a.masterId

AND t.teamId = a.teamId

AND t.lgID = a.lgID
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AND t.name like ’%Montreal Expos%’

AND t.yearID = a.yearId

The corresponding Plug-and-Play SQL query is given below.

GUARD

batting {

hr

name {

nameFirst

nameLast

}

team {

name

}

}

SELECT DISTINCT nameFirst, nameLast

WHERE name like ’%Montreal Expos%’;

The guard clause is interpreted by the parser because of the following rules defined in

the ANTLR grammar.

outer_guard_clause[DB db]

:K_GUARD guard_clause

;

guard_clause

: (any_name (opening_brace guard_clause closing_brace)?)+

;

opening_brace
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: ’{’

;

closing_brace

: ’}’

;

The grammar acts as input to the antlr4.7.1.jar. This jar file interprets and compiles

the grammar into the corresponding lexer and parser.

Fig. 3.4: Lexical Analysis

The generated parser is then used to parse the query guard and obtain the Abstract

Syntax Tree as shown in Figure 3.5.

3.3 Graph of Foreign Keys

In this project, we have implemented a Graph structure to store, process, and retrieve

paths between two tables in the database.

3.3.1 Edge
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Fig. 3.5: Abstract Syntax Tree- Query Guard

Join Graph

Edge Path Paths Table Graph

Fig. 3.6: Join Graph: Code Structure

An edge is a foreign key relationship between two vertices. In our code, we declare an

Edge class that has a Foreign Key attribute that gets set in a constructor and we retrieve

this edge or foreign key using a getter method.

3.3.2 Path

A path is a list of foreign keys. In subsection 3.3.1, we defined a foreign key relationship

as an edge therefore a path in our code is a list of foreign keys. As its attributes, a path

contains a from table, a to table, and the foreign key relationship between them.

The main function of the Path class is to generate a join condition in between the
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two tables and join conditions are generated recursively after some processing on the list of

foreign keys.

3.3.3 Paths Table

So, a paths table usually represents the shortest path that connects a pair of tables.

The paths table initially stores all the paths between two tables but after some logical

processing, the paths table is optimized to store the shortest paths.

3.3.4 Graph

This graph is a set of vertices and edges, where vertices are tables in the database. Our

objective is to generate a join condition between two tables using the best path between

them.

The graph of Foreign Keys represents the graph of join relationships established by the

foreign keys. The Graph also plays an important role in computing the shortest paths.

3.4 Implementation Description

In this chapter, we will provide a detailed description of the project implementation.

The flowchart to explain how the algorithm works has been described with the help of

Figure 3.7.

A step by step description of how the plug-and-play query implementation is as follows:

3.4.1 Connect to Database

As stated earlier, we have used the baseball database by Sean Lehman for our project

on the Postgres RDBMS.

The code has a database module that performs the following tasks:

1. Establishes a connection to the baseball database using JDBC and Postgres server.

2. The DB.java has been implemented as Singleton Class to ensure that only one instance

exists throughout the project.
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Fig. 3.7: Implementation Flowchart

Fig. 3.8: Database Flowchart

3. Upon establishing a connection to the database successfully, the DB class retrieves

the database metadata, including the table names, column names, primary keys, and

foreign keys.

4. After the data retrieval step, the foreign keys are coupled with the path informa-

tion, i.e., the foreign keys along with the path (source and destination table and the

corresponding column information) is stored into a list.
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5. The stored paths are then evaluated and used to obtain the best paths.

Figure 3.9 shows how the connection to the Database is established in the implemented

application.

Fig. 3.9: Establishing connection to the database

3.4.2 Implement a query guard

The difference between an ordinary SQL query and a plug-and-play query has been

determined in Subsection 2.4 from Chapter 2. As a running example, we will use the same

query guard to showcase the implementation.

The plug-and-play query used in Figure 3.10 uses the graph of foreign key relationships

between the tables to build a hierarchy, similar to using a natural join to join the tables.
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Fig. 3.10: Enter Query Guard to generate queries

3.4.3 Parsing the Query Guard

This project has the SQLite grammar implemented, which acts as an input to the

ANTLR jar. The ANTLR jar compiles the grammar into the corresponding lexer and

parser which are used to parse the query guard.

3.4.4 Obtaining the AST

Upon parsing the query guard, an Abstract Syntax Tree is generated. The AST for

our query guard is shown in Figure 3.5

3.4.5 The Custom Listener

We have implemented a MyListener class, that is a custom listener. This custom
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listener class extends the listener class generated by the ANTLR tool (SQLiteBaseListener).

The listener as the name suggests listens to the events, or in simpler words, we parse the

obtained tree using the custom listener we have implemented. The SQLiteBaseListener

provides the enter and exit methods for every node that we visit while parsing the tree.

These enter and exit methods are executed upon walking the tree.

While walking the tree, visiting and exiting each tree node calls the corresponding

enter and exit methods for that tree node in MyListener. The generated base listener class

has the same enter and exit methods too, however they are abstract(declarations without

implementation) and so a custom listener is required to implement the enter and exit tree

node functionality during our walk and so we override these methods in the MyListener

class. The MyListener methods take the context of a treenode (ctx) as an argument, which

contains data from our input SQL statement, the ctx contains the number of children nodes,

index information, and other details about the input string. All this data makes it easier

to populate the pattern tree while entering and exiting a tree node.

3.4.6 Populating the Pattern Tree

As discussed earlier, we have implemented a Pattern Tree class in java that is popu-

lated when the query guard is parsed, The pattern tree holds the hierarchy of the tables

and column values that are inside the query guard. Mostly the pattern tree works in syn-

chronization with the MyListener and SQLPull classes so as to organize the guard into the

hierarchical structure and support query generation.

3.4.7 Compute the shortest paths

When the connection to the database is established, the paths that include the foreign

keys, source, and destination tables, and source and destination column values are stored.

We want to obtain the shortest or the best paths amongst all the paths between any two

tables. The optimal paths would help us generate queries that can retrieve data from the

database faster.
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3.4.8 Generate SQL Queries

After computing the best paths between the tables in a hierarchy, we want to build a

SQL query corresponding to the guard clause (The queries generated in this step correspond

to the hierarchy from the guard clause only, they do not include the entire plug-and-play

query). In the project, we have implemented an SQLPull.java class that performs the task

of generating the SQL queries from the paths. The foreign keys, columns, and tables are

used to generate queries. The unique foreign keys along with the from table and to table

are used to generate the join conditions.

While generating the join condition, a left outer join is performed. A left outer join

returns all the tuples from the left table and the matching tuples from the right table. After

the join conditions have been generated, the generated condition acts as a FROM clause

and the columns to be retrieved are glued to this FROM clause along with the SELECT

statement and the ORDER BY clause if any to generate the queries which represent the

query guard hierarchy.

3.4.9 Evaluate the EXPLAIN plan

After the queries representing the hierarchy of the query guard are generated, they

are estimated for the rows they generate. So basically we evaluate the EXPLAIN plan for

each of the generated queries by appending the EXPLAIN keyword to each query. The

EXPLAIN plan of a query describes how a particular query executes and instead of giving

the requested tuples as an output, the metadata on the query execution is rendered as an

output which includes the row count that the query generates.

3.4.10 Ordering the queries on the number of rows they produce:

We store the queries generated and the number of rows it produces in a hash map and

then sort this hash map by values in descending order to rank the queries according to the

number of rows they produce.
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3.4.11 Emit the From Clause

After ordering, these queries serve as a FROM clause for the SELECT statement

from the initial plug-and-play query. The plug-and-play query excluding the query guard

hierarchy is split and combined with the emitted FROM clause to obtain the final executable

queries. These final queries are rendered on the application in the form of a combo box

that gives the user an option to select the query they want to execute along with the

corresponding generated query in a text area. Figure 3.11 shows the screenshot of our

JavaFX application that displays all the generated queries.

Fig. 3.11: Generated Queries

3.4.12 Execute Final Queries

As shown in Figure 3.12, the user selects the Query they want to execute and hits

the Execute Query button on the application. The DB.java has the JDBC methods to

execute the query, the final query selected by the user is executed to retrieve the respective
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results. The results are then formatted and organized in the form of tabular data and then

displayed on the result page of the application. The application also provides buttons to

save the retrieved data in the form of a txt file.

Fig. 3.12: Results
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CHAPTER 4

PLUG-AND-PLAY EVALUATION

In this chapter, we provide a comparative analysis of the ordinary SQL queries with

plug-and-play queries. We described a few example queries and their respective plug-and-

play queries in Subsection 2.4 from Chapter 2.

Table 4.1 shows the cost comparison of manual SQL queries with the queries generated by

the plug-and-play application.

Query No. Manual Query Cost Generated Query Cost

Query 1 318.61 2009.71

Query 2 3684.72 3684.72

Query 3 0.29 709

Query 4 3906.91 3924.3

Query 5 2500.25 2677.22

Query 6 3040.94 3040.94

Query 7 2004.75 8958.4

Table 4.1: Cost Analysis

Although, the Postgres documentation states that “the estimated costs and row counts

may vary slightly because EXPLAIN’s statistics are random samples rather than exact and

the costs are inherently somewhat platform-dependent.”, upon executing and evaluating

these queries, we identified some work items that need to be addressed to achieve faster and

more efficient query generation and execution.

4.0.1 The Column Name Ambiguity

As a part of our current implementation, we configure the data source and store all

the metadata from the database. The guard clause includes column names that we want
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to retrieve. To retrieve this database we perform a search on all the tables in a database

that have the specified column in the guard clause, evaluate the keys, and generate the join

conditions in these tables.

There is a possibility that the column names are ambiguous e.g., columns like playerID,

name, and teamID are present in multiple tables, and to generate the queries all tables are

looked up and evaluated.

After generating the join conditions, the EXPLAIN plan for all the queries is evaluated

and the queries are ordered in the non-decreasing order of the number of rows they generate.

This can lead to inaccurate results because of the ambiguity.

4.0.2 Query Identification

As discussed earlier, the column name ambiguity generates queries on all the tables

that have a particular column, and because of this the user needs to identify the correct

query from the list of queries being generated.

4.0.3 Solution

To overcome the column name ambiguity and the query identification problem, we

propose the following solution: We will modify the ANTLR grammar to accept the table-

Name.columnName syntax. We will also make changes to the lookup logic to support the

modified guard clause and this would help us in restricting the column search domain and

instead of looking a particular column into all the tables, we will look up a column into the

specified table which would result in less number of queries being generated, faster query

generation and execution and accurate results.
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CHAPTER 5

RELATED WORK

To the best of our knowledge, there is no previous work in querying SQL using hi-

erarchies, in fact, the relational model replaced the hierarchical model [8] and is widely

considered an improved successor. But there has been previous research in querying hier-

archical data with the wrong shape that can be broadly classified into several categories.

Query relaxation/approximation - One way to loosen the tight coupling of path expres-

sions to the hierarchy of data is to relax the path expressions or approximately match them

to the data by exploring a space of hierarchies that are within a given edit distance [9–11].

Though such techniques work well for small variations in hierarchy or values, there can be

a very large edit distance among a pair of instances which we would like to consider as

the same data. Relaxing a query to explore all hierarchies within a large edit distance is

overly permissive, and includes many hierarchies which do not have the same data. Query

correction [12] and refinement [13] approaches are also best at exploring only small changes

to the hierarchy.

Hierarchical search engines - Hierarchical search engines (c.f., [14,15]) de-couple queries

from specific hierarchies, similar to our aims, and can find data in differently-shaped hier-

archies. But like query relaxation, search engines are overly permissive, and once data is

found, a search engine does not transform that data to a hierarchy needed by a query.

Structure-independent querying - The idea of using a least common ancestor (LCA)

has been explored for querying data independent of its hierarchy. Schema-free XQuery

uses the meaningful LCA [16], XSeek exploits node interconnections [15], and others use

the smallest LCA [17]. In contrast to all of the above research, none of these approaches

are data transformations, that is they do not transform values (subtrees in the hierarchy),

rather they can only utilize values from the source hierarchy; data transformations need to

produce values in the shape of the target hierarchy.
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Declarative transformations - There are declarative languages for specifying transfor-

mations of hierarchical data [18, 19]. These languages hide from users many specification

details that would be needed in a language such as XSLT. However, each transformation

depends on the hierarchy of the input and would have to be re-programmed for a different

hierarchy. It would be more desirable if a programmer could simply declare the desired

hierarchy in a single guard.

Schema integration - Data can be integrated from one or more source schemas to a

target schema by specifying a mapping to carry out a specific, fixed transformation of the

data [20]. Once the data is in the target schema, there is still the problem of queries that

need data in a hierarchy other than the target schema. In some sense schema mediators

integrate data to a fixed schema, which is the starting point for what query guards do.

The different problem leads to a difference in techniques used to map or transform the

data. For instance, tuple-generating dependencies (TGDs) are a popular technique for

integrating schemas [21, 22]. Part of a TGD is a specification of the source hierarchy from

which to extract the data. Specifying the source hierarchy will not work for a query guard,

a query guard must be agnostic about the source. A second concern for query guards is that

the transformation must be fully automatic. A third difference is the need to determine

potential information loss, which is an important part of a query guard, but absent from

such mappings for data integration. For schema mediation, if a programmer programs

a data transformation that loses information, that information is gone and subsequent

queries on the transformed data will never know about the information loss. Fan and

Bohannon explored preserving information in data integration, namely by describing schema

embeddings that ensure invertible mappings that are query preserving [23]. Query guards

focus on an important special case of the mappings they investigated. Query preservation

concerns all possible queries, while query guards are designed to check a single query. Our

approach for quickly determining whether a mapping is invertible (or in our terminology

reversible) is based on the concept of closeness, and in those cases where mapping is not

reversible we can identify weaker, but still useful classes of mappings that permit some
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information loss.

We also note that our research focuses only on the structure, not the semantics, of the

data because Semantic Web technologies, i.e., ontologies, already address the orthogonal

semantic matching problem. Hence, solutions developed by the Semantic Web community

can be used to semantically match in plug-and-play queries.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we have demonstrated the use of hierarchies to query a database. We

also introduce and implement the plug-and-play query, to provide an efficient system to

the programmers, that makes it easier to develop accurate queries. We have discussed how

to write a query guard to translate a manual SQL query to a plug-and-play query. We

have described how the query guards are manipulated and the shortest paths between the

tables are computed using the graph of foreign keys. The application provides a fast way

to generate queries and retrieve data from the database. The plug-and-play application is

also easy to use and understand, by the use of ER diagrams or schemas it becomes easier

for anyone to understand the structure of a database, which means that anyone can use the

application without having to learn a lot. We have evaluated and analyzed this application,

along with the aspects that can help in extending the application. Some of the features

identified as future work are described in 6.2

6.2 Future Work

6.2.1 The column name ambiguity

As identified and described in chapter 4, the column name ambiguity is one of the

aspects that needs to be resolved to achieve better efficiency and accuracy while generating

and executing queries.

6.2.2 DBMS Support

The Plug-and-Play SQL application currently works with the Postgres DBMS, thus

generalizing this project to support all the relational database management systems to
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obtain a generic application is another important feature.

6.2.3 Multiple guard clauses

Currently, our implementation supports one guard clause per SQL query, however,

the grammar can be modified to extend this project to allow multiple guard clauses in a

plug-and-play SQL query, and this would simplify implementing a lot of complex queries.

6.2.4 The WITH clause

Our implementation does not store the dynamic table structures that can be created

using the WITH clause. Extending this application to store dynamically created tables and

then use these dynamically created tables to retrieve requested data would be an important

add-on.

This application was implemented in an effort to save time to implement queries, however,

in a short period of time our application testing was done to a limited scope. This

application, after implementing the identified future work items would need extensive

testing to identify some important fixes or features.
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