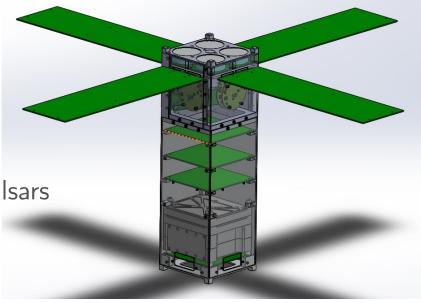
Optimal Attitude Guidance for the EXACT and IMPRESS Cubesats using Graph Methods with Pruning

SSC21-V-03

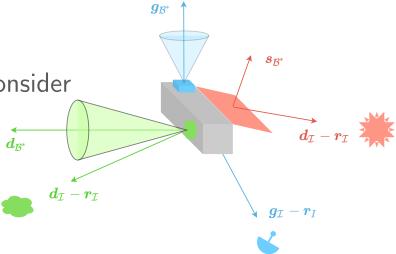
Athanasios Pantazides, Demoz Gebre-Egziabher


Two scientific cubesats

• EXACT:

- Deep-space navigation with x-ray pulsars
- X-ray detector payload

• IMPRESS:


- Solar physics mission
- Same detector payload
- Both have a detector, solar panels, and radio that have pointing requirements

Model of IMPRESS/EXACT

Motivating an attitude guidance problem

- At a given time, there may be **many** reasonable attitudes for a satellite.
- Attitude history affects the decision
 - battery level, onboard data
- There is an overall mission objective to consider

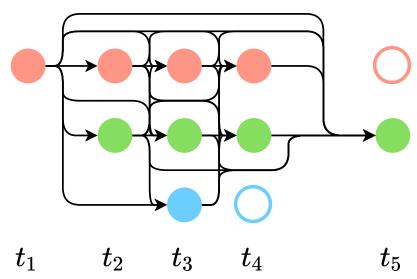
Mission planning problem

- Assume a mission in which we wish to transmit as much data to the ground (G) as possible by the end
- Also, battery level E should not be depleted

$$\max_{C_{\mathcal{B}\mathcal{T}}(i) \ \forall i \in \{0,\dots,N\}} G(N)$$

subject to

$$\begin{aligned} \boldsymbol{x}(i+1) &= \boldsymbol{f}_k \big(i, \boldsymbol{x}(i) \big) & \forall i \in \{0, ..., N\} \\ E(i) &> E_{min} & \forall i \in \{0, ..., N\} \end{aligned}$$


Prior work

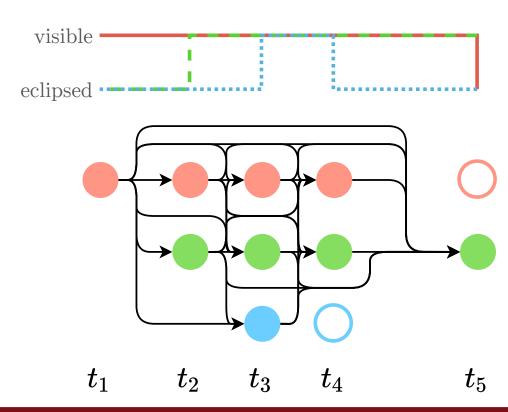
- Integer programming/graph methods:
 - M. Lemaître et al. 2002, J. F. Cordeau et al. 2005, S. Spangelo et al. 2015, Y. She et al. 2018
- Optimal control:
 - B. Wie et al. 2002, J.T. Hwang et al. 2014, W. Qiu and C. Xu
 2020

Graph introduction

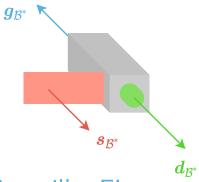
- Want to work towards a graph-based formulation
- Nodes contain information, edges define transitions

Modeling the satellite

• State:

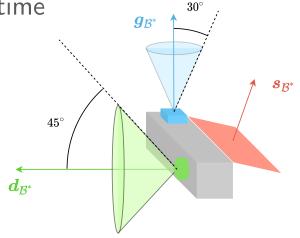

$$m{x} = egin{bmatrix} ext{vec}(m{C}_{BI}) & \text{Attitude} \\ E & \text{Battery level} \\ S & \text{Data volume stored onboard} \\ G & \text{Data volume downlinked} \end{bmatrix}$$

- Attitude is directly chosen at each discrete time step
- \bullet E, S, G are propagated with discrete dynamics


Graph and paths

- Know orbit, target visibility a priori
- Once the nodes and edge rules are defined, can form a **graph**:
- Each path through this graph yields a specific history of battery level and downlinked data

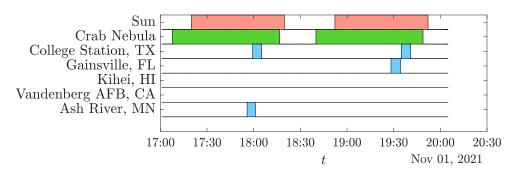
Case studies for IMPRESS and EXACT

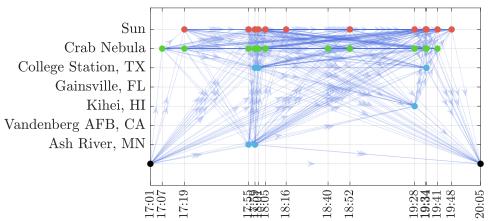

- ISS orbit: circular 400 km, 55° inclination
- Targets:
 - Sun
 - Sun (IMPRESS)/Crab Nebula (EXACT)
 - Ash River, MN; Vandenberg AFB, CA; Kihei, HI; Gainesville, FL;
 College Station, TX

Case studies for IMPRESS and EXACT

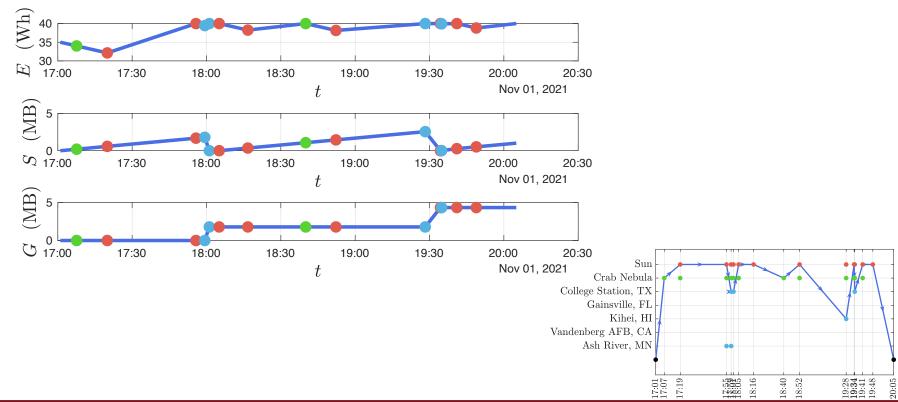
• Two orbits simulated with arbitrary starting time

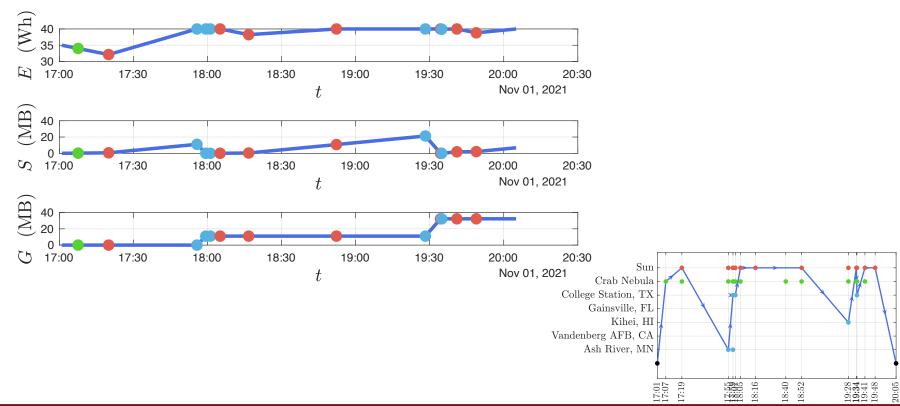
Parameter	Value	Unit
Battery minimum	30	W Hr
Battery maximum	40	W Hr
Groundstation elevation mask	5	deg
Radio pointing requirement	30	deg
Detector pointing requirement	45	deg





Results


- Hardware: 1.3 GHz Intel i3, 8GB RAM
- 13 opportunities for maneuver based on time discretization criteria
 - 4,976,639 possible attitude sequences
- Takes ~2 minutes to solve



Results—EXACT

Results—IMPRESS

Conclusions

- Graph method is successful for short horizons, fast actuators
 - could be extended to slow actuators
 - fundamental scaling problem

Acknowledgements

Coauthor Demoz Gebre-Egziabher

UMN Small Satellite Research Lab

Thank you

- Questions:
 - panta013@umn.edu

