A Novel Approach to an Autonomous and Dynamic Satellite Control System Using On-Orbit Machine Learning

Maximum Wilder-Smith, Michael Pham, Matteo Gironda, Kevin Kwik, Michael Gee, Ryan Toomer, Nicholas Shewchuk, Ashley McBean, Tarek Elsharhawy

ssc21-V-09 SmallSat 2021 California State Polytechnic University Pomona – Bronco Space

Purpose is to create a machine learning friendly environment for virtual missions

Requires kinematics simulation, sensor simulation, and TensorFlow integration

- Simulator is built off the Blender 3D animation system
- Uses a series of custom Python scripts

- Open source and built with Python
- Open to modification
- Pre-existing documentation and community
- Easy to create additions
- Designed to ease development

Simulation Environment: Blender UI

Simulation Environment: Custom UI

- Mainly within existing UI panel
- Provides:
 - Debugging controls
 - Help with active development of system
 - CubeSat properties
 - Location, altitude, center of mass
 - Calculated environmental properties
 - Gravitational force/acceleration, magnetic forces

Timestep (s/frame)

185

ltem

Tool

View

00 The Effe Noder Worker Witz Witz Witz Warden Konnell Annace Render Company Brando, 4 Company Brando, 4 <td< th=""></td<>
Image: Product descent of the first of
Image: Section in the last of the l
Viewport Display

Pan View

0 × C × V °

K © © (© © © © ©

Spacecraft Simulation: Gravity Properties

- Gravitational Force and acceleration
 experienced by satellite
- Both vector quantities
- Calculations based on Newton's Law of Universal Gravitation

Spacecraft Simulation: Sun Sensors

- Rough approximation made through trigonometric approach
- Does not consider light reflected off any planetary bodies
- Minimum and maximum lux approximations based on data from an ALS-PT19-315C photoresistor

Spacecraft Simulation: Angular Velocity

- Defined as the change in the satellite's orientation per frame step
- Two Functions
 - Reads angular velocity every frame step
 - Calculates new positions based off desired angular velocity input
- All calculations use Quaternions

Angular Velocity Demonstration

- Orientation set function
- Angular velocity set to 10 degrees about each axis
- Time step of 1 frame per second

SSC21-V-09 SmallSat 2021

Control System: Use Case

- Currently designed for a 3 magnetorqurer system
- Inputs consist of 6 sun sensors and IMU data
- Easy to adjust actuation/input
- Model will be verified in laboratory testing
- Designed to be deployed as a small network file compatible with Python and C++ software

