Argotec

Our Boost to Your Future

On-the-Fly Hardware-Accelerated Image Processing System for Target Recognition 35th Annual Small Satellite Conference

Presenter: Co-authors: Eugenio **SCARPA** Emilio **FAZZOLETTO**

Logan, Utah, USA 2021, August 7th -12th

Authors

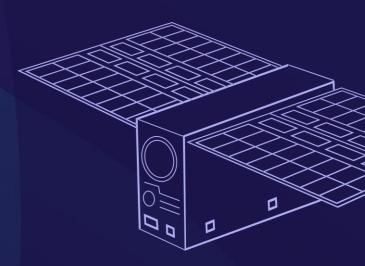
Eugenio Scarpa FPGA Design Engineer

Emilio Fazzoletto Head of Electronics Unit

Main contributors to ArgoMoon and LICIACube satellites FPGA design architectures

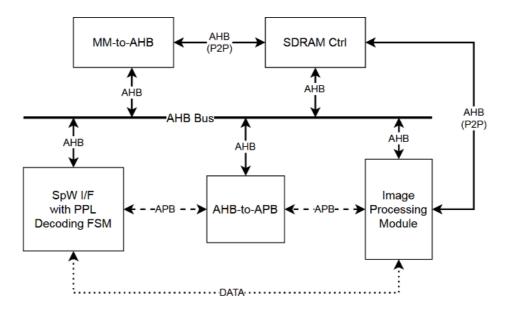
Summary

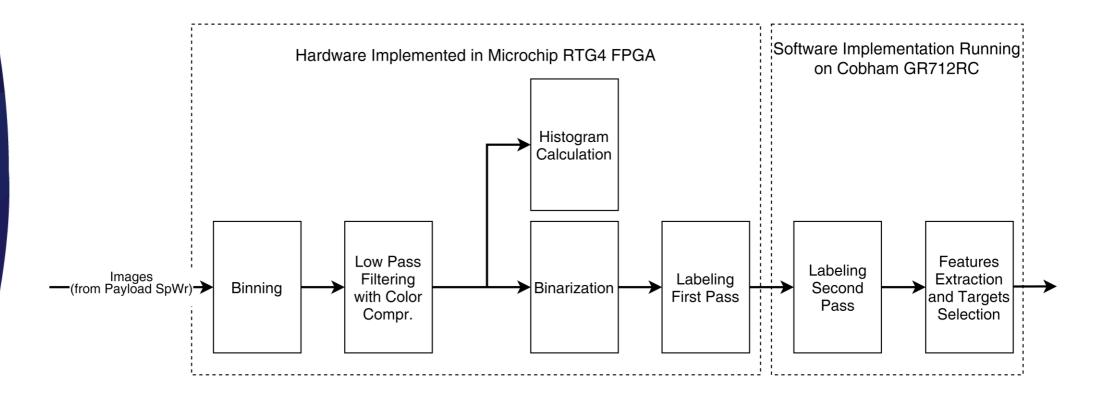
- 1. Introduction to Real-Time Image Processing in Space
- 2. ARG Image Subsystem
- 3. FPGA Implementation
- 4. Theoretical Performances and Limitations
- 5. Testing and Application
- 6. Conclusions


Introduction to Real-Time Image Processing in Space

Introduction to Real-Time Image Processing in Space

- Image processing algorithms widely employed for various applications
 - Rendez-vous
 - Docking
 - Object tracking
- HW acceleration implementations improve performances
 - LICIACube satellite autonomous navigation based on image features
- This paper focused on an Imaging Subsystem creation for the LCC FERMI OBC




Background and Purpose

- Design developed to operate with a 4.2MP CMOS sensor
- Image size is 2048x2048 with 16-bit encoded pixels, 8MB transferred
- SW-implemented algorithms run in 10s on CPU
- FPGA solution increases performances and facilitates datapath

HW/SW Block Diagram

Pixel binning and Color Depth Compression

• Binning performs arithmetical average of four consecutive pixels

$$P'_{\left(\frac{r}{2'2}\right)} = \frac{P_{(r,c)} + P_{(r,c+1)} + P_{(r+1,c)} + P_{(r+1,c+1)}}{4}$$

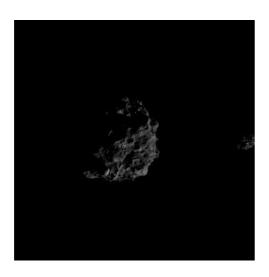
- Resulting image size on $R \times C$ input is $R/2 \times C/2$
- Core latency is 2 clock cycles for each pixel (1 ADD, 1 ADD+RSH)
- Design include 4 FIFOs to guarantee data coherency based the (R, C) indexes
- CDC consists of each pixel Least Significant Bits (LSBs) truncation
- Scale color dynamic from 12 bits to 8 bits
- Operation is performed combinatorially, no additional latency

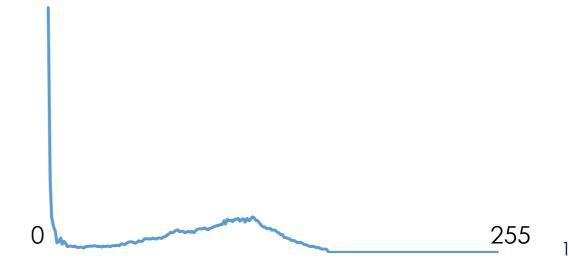
Low-Pass Filtering

- 2-D convolutional filter between image and user kernel
- LPF smooths objects edges, leveling pixels values in the area
- Background noise is filtered (Deep Space one-pixel-stars removed)
- Core receives 1 pixel per cycle
- Pipelined datapath, latency of 6 cycles

$$P'_{(r,c)} = \frac{A_{r-1} + A_r + A_{r+1}}{9}$$

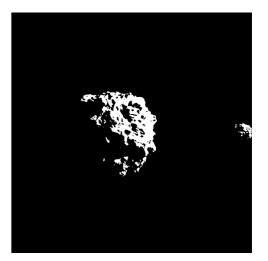
 $\begin{cases} A_{r-1} = P_{(r-1,c-1)} \cdot K_{(0,0)} + P_{(r-1,c)} \cdot K_{(0,1)} + P_{(r-1,c+1)} \cdot K_{(0,2)} \\ A_r = P_{(r,c-1)} \cdot K_{(1,0)} + P_{(r,c)} \cdot K_{(1,1)} + P_{(r,c+1)} \cdot K_{(1,2)} \\ A_{r+1} = P_{(r+1,c-1)} \cdot K_{(2,0)} + P_{(r+1,c)} \cdot K_{(2,1)} + P_{(r+1,c+1)} \cdot K_{(2,2)} \end{cases}$


Cycle 0	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
M0	A0	- A4	A6	А7	dout
M1					
M2	A1				
M3					
M4	A2	A5			
M5					
M 6	A3				
M7	AS				
M8	A4	A4	A4		
0					
				DIV, 9	



Luminance Histogram and Threshold Computation

- Histogram generates from pixel values occurrences in the picture
- Each input data increases the related pixel accumulator
- Result is provided at end of image
- Accumlation compared with user threshold, returning Background Area

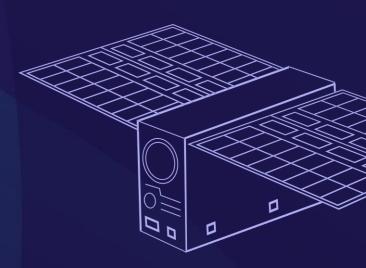

Binarization

- Performed combinatorially in parallel to the luminance histogram
- Operates a comparison of input data wrt to BA
 threshold

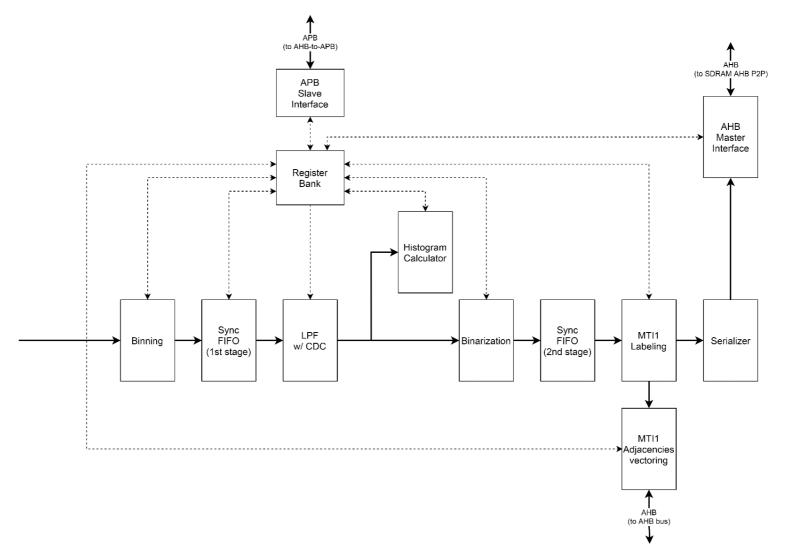
$$P'_{(r,c)} = \begin{cases} 1, \ P_{(r,c)} > T \\ 0, \ P_{(r,c)} \le T \end{cases}$$

- Processed pixels are either black (0) or white (1)
- If black, pixel becomes part of Deep Space background
- Target identification executed only on white pixels, care on threshold

Image processing functionalities


Multi-Target Identification

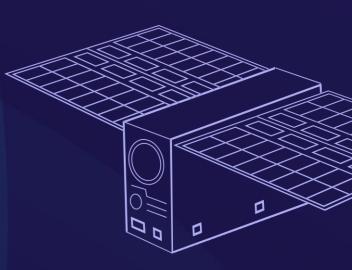
- Executed on binarized white pixels
- Recognizes single object by analyzing each pixel surrounding area
- Assigns a color (16-bit label) to the identified object
- Increments the assigned colors to allow unique object identification
- Receives 1 pixel for cycle, evolving on a FSM
- Evolves through Retrieve-Analyze-Update states
- Core integrates FIFOs for synchronization and data coherency


FPGA Implementation

FPGA Implementation

Datapath Architecture

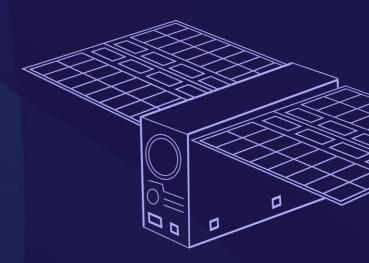
FPGA design results


Device resources occupation

- Microsemi RT4G150-CG1657B FPGA
- 4LUT occupation: 5.2%
- DFF occupation: 2.7%
- 1Kbit SRAM occupation: 17.1%
- 18Kbit SRAM occupation: 14.4%

Module	Fabric 4LUTs	Fabric DFFs	uSRAM 1Kbit	LSRAM 18Kbit
Overall	7928	4085	36	30
Binning	1200	564	8	0
LPF	1467	445	36	0
HL	627	362	0	3
Binarization	306	211	0	0
MTI	1673	718	0	12

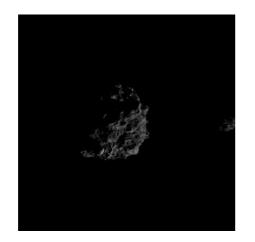
Theoretical Performances and Limitations



Theoretical Performances and Limitations

- All modules but MTI guarantee a throughput of 50Mpixel/s
- Chain bottleneck is the receiving SpW interface
- Maximum transfer throughput is 8Mpixel/s on the test application
- Streaming data coherency is guaranteed if $T_{SpW} < T_{min,IS}$
- MTI is the slowest core (5 clock cycles/processed pixel)
- Synchronization FIFOs inserted for guaranteeing data safety

Testing and application in Space

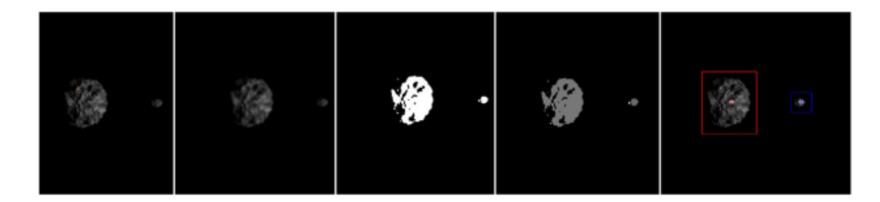


Testing and Application

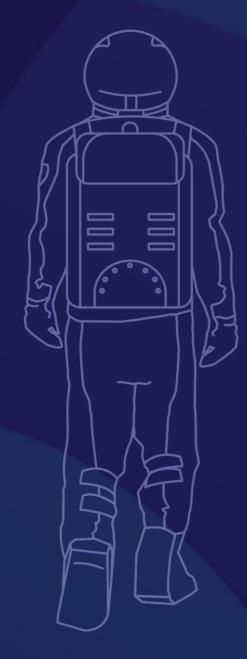
Testing Results

- Comparison include SW vs. HW execution
- SW run performed on a single SPARC V8 CPU at 50MHz with RTEMS
- HW run performed on target FPGA with system clock at 50MHz
- Test image from LCC mission simulator, improvement of 17.2x
- Maximum bandwidth limited on transmission interface

Module	SW [ms]	HW [ms]	
Binning	3446	653.93	
LPF	4473	653.33	
HL	505	653.36	
Binarization	663	653.31	
MTI	2186	653.56	
Total	11273	653.93	

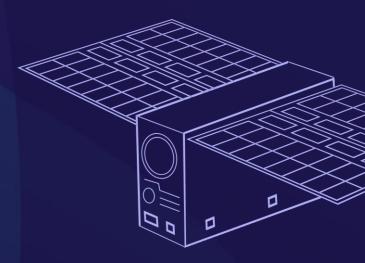


Testing and Application

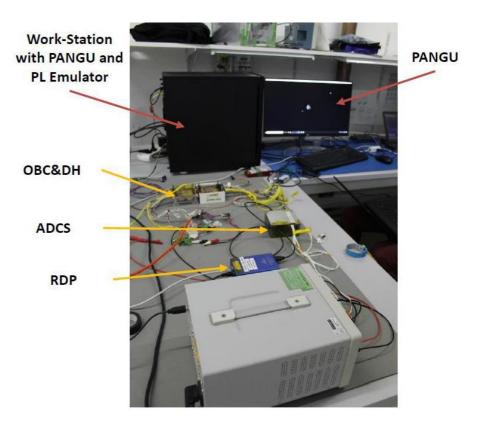


Application in Space

- LICIACube will perform high-speed Didymoon fly-by
- Autonomous navigation is too fast to operate control after SW
- HW solution process data on-the-fly, returning partial results to SW
- LICIACube autonomous navigation runs with FPGA-accelerated IS



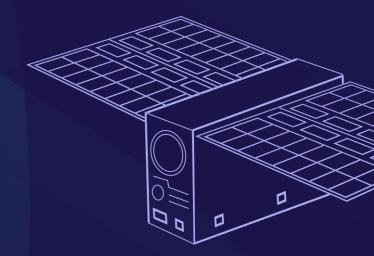
Copyright @ Argotec S.r.I. 2021. All right reserved.


Conclusions

Conclusions

- Datapath integrates binning, filter, histogram, binarization, MTI
- Flexible, configurable and integrable with standard data interfaces
- High-performance (50Mpixels/s) and lowlatency
- Reduced resource occupation (5% LUT, 3% FF, 15% BRAM) on RTG4 FPGA
- About 20x faster than SW solution on 2048x2048 image
- Enhances autonomous tracking operations in Space applications

Copyright © Argotec S.r.I. 2021. Allright reserved.


Thank you!

www.argotecgroup.com

eugenio.scarpa@argotecgroup.com

