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          ABSTRACT 

With rapid advancements in satellite technology, the amount of low earth orbit satellites has grown significantly 

which are primarily deployed for weather monitoring, earth observation or military purposes. Due to this reason, 

there has been an increased interest in enhancing the level of autonomy and cognition, onboard satellites to achieve 

optimal data collection.  Optimal data is said to be collected when the satellites in a small sat constellation work 

together to collect information. This means that even if one of the satellites has missed out on some important 

information, the others can still collect them. A satellite constellation can be considered as a multi-agent 

reinforcement learning system.  Having these agents coordinate with one another, can reduce the amount of time 

required to perform a task. The state-of-the-art satellite constellations follow a centralized coordination mechanism 

in which one primary satellite controls the rest of the satellites. This process is computationally more expensive and 

requires substantial communication between the satellites.  It has a single point of failure and communication might 

be affected if the primary satellite fails.  On the other hand, decentralized coordination allows agents to control their 

behavior themselves without the command of a supervised master. In this case, there is less inter-satellite 

communication which reduces the requirement for specialized onboard computational hardware. The proposal 

constitutes leveraging the Multi-Agent Deep Deterministic Policy Gradient [2] (MADDPG) algorithm to train the 

agents (satellites) to achieve optimal data collection. There are multiple use cases for the proposed solution such as 

illegal maritime activity tracking, natural disaster detection and assessing building damage after a natural disaster. 

The proposed solution focuses on tracking of ships in an extensively simulated environment for which a custom ship 

environment was created by leveraging OpenAI Gym [12]. By providing on-board autonomy, we aim to reduce 

frequent Earth Station (ES) communication significantly and enhance data collection capability. 

INTRODUCTION 

In Multi-Agent Reinforcement Learning (MARL), an 

agent is trained for maximizing its expected return by 

interacting with an environment that contains other 

learning agents. The use of a Centralized Training and a 
Decentralized Execution (CTDE) procedure [1,2,3,4,5] 

is a popular framework for MARL. In CTDE  

procedure, we have centralized critics to approximate 

the value function of the aggregated observations-

actions pairs and train actors restricted to the 

observation of a single agent. Such critics, have the 

potential to steer the agents’ policies toward highly 

rewarding behaviors when they are exposed to joint 

actions in a coordinated manner. This approach might 

fail in scenarios where such behaviors are unlikely to 

occur by chance, as these approaches might depend on 

the agents luckily stumbling on these collective actions 

in order to grasp their benefit. Thus, we hypothesize 

that in such scenarios, coordination-promoting  

inductive biases on the policy search could help 

discover successful behaviors more efficiently and 

supersede task-specific reward shaping and curriculum 

learning [1,2,3,4,5]. To motivate this proposition, we 
leverage the satellite sensor data and create a simple 

multi-agent coordination environment for ship tracking.  

Before we delve into our experiments, we would like to 

present an analogy with robots that will help us 

understand “what is coordination and when do we need 

it?” Typically, a multi-agent systems (MAS) model of 

development is pursued when distributed processing 
and distributed control are required [10]. An issue of 
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MAS research is to determine how to obtain globally 

coherent behavior from the system when the agents 

operate autonomously and asynchronously. In general, 

when the agents share resources or the tasks being 

performed by the agents interact, the agents must 
explicitly work to coordinate their activities. Consider a 

simple physical example. Suppose there are two 

maintenance robots, we will call them as agents A1 and 

A2. These agents are assigned the joint task of moving 

a large box from one room to another. Both robots also 

have a set of other independent activities that must be 

performed, e.g., cleaning the windows. We assume that 

neither robot can lift the box by him/herself. In order 

for the robots to move the box together they must 

coordinate their activities in some manner. This is an 

example of communication-based coordination that 

produces a temporal sequencing of activities. This shall 
enable the robots to interact and carry out the joint task 

over a shared resource – which is the box in this case. 

Without the coordination process, it is unlikely that the 

box would ever be moved as desired unless the robots 

randomly decided to move the box at the same moment 

in time. In general, achieving global coherence in a 

MAS where tasks interact requires coordination [10].  

BACKGROUND 

Most Reinforcement Learning methods [9] fall into one 

of the following two categories: (a) Actor-only methods 

and b) Critic-only methods. Actor-only methods work 

with a parameterized family of policies. The gradient of 

the performance, with respect to the actor parameters, is 

directly estimated by simulation, and the parameters are 

updated in a direction of improvement [4, 5, 8, 13]. 

There is a possible drawback of such methods which is 

that the gradient estimators may have a large variance. 
Furthermore, as the policy changes, a new gradient is 

estimated independently of past estimates. Since, there 

is no accumulation and consolidation of older 

information. So, any kind of “learning” is not taking 

place in this case. 

In case of Critic-only methods [9], the agents try to 

learn how to approximate the value function of a certain 
state-action pair and aim at learning an approximate 

solution to the Bellman equation, which will then 

hopefully prescribe a near-optimal policy. Such 

methods are indirect as they do not try to optimize 

directly over a policy space. A method of this type may 

lack reliable guarantees in terms of near-optimality of 

the resulting policy. Hence, we need a better approach. 

Two main components in policy gradient are the policy 
model and the value function. It makes a lot of sense to 

learn the value function in addition to the policy, since 

knowing the value function can assist the policy update, 

and that is exactly what the Actor-Critic method does. 

Actor-critic methods [9] consist of two models, which 

may optionally share parameters: Critic updates the 

value function parameters w and depending on the 

algorithm it could be action-value Qw(a|s) or state-

value Vw(s). Actor updates the policy parameters θ for 

πθ(a|s), in the direction suggested by the critic. 

Asynchronous Advantage Actor-Critic [11] (A3C), is a 

classic policy gradient method with a special focus on 

parallel training. In A3C, the critics learn the value 

function while multiple actors are trained in parallel and 

get synced with global parameters from time to time. 

Hence, A3C is designed to work well for parallel 

training. 

Let’s use the state-value function as an example. The 
loss function for state value is to minimize the mean 

squared error, Jv(w)=(Gt−Vw(s))2Jv(w)=(Gt−Vw(s))2 and 

gradient descent can be applied to find the optimal w. 

This state-value function is used as the baseline in the 

policy gradient update. A3C enables the parallelism in 

multiple agent training. The gradient accumulation step 

can be considered as a parallelized reformation of 

minibatch-based stochastic gradient update: the values 

of w or θ get corrected by a little bit in the direction of 

each training thread independently. 

Advantage Actor-Critic (A2C) [11] is a synchronous, 

deterministic version of A3C; that’s why it is named as 

“A2C”. In A3C each agent talks to the global 

parameters independently, so it is possible sometimes 

the thread-specific agents would be playing with 

policies of different versions and therefore the 

aggregated update would not be optimal. To resolve the 

inconsistency, a coordinator in A2C waits for all the 

parallel actors to finish their work before updating the 

global parameters and then in the next iteration parallel 

actors starts from the same policy. The synchronized 
gradient update keeps the training more cohesive and 

potentially to make convergence faster [11]. 

MULTI-AGENT DEEP DETERMINISTIC 

POLICY GRADIENT   

MADDPG [2] is an adaptation of the Deep 

Deterministic Policy Gradient algorithm [7] to the 

multi-agent setting. Here, multiple agents are 

coordinate to complete a task using only local 
information. It allows the training of cooperating and 

competing decentralized policies through the use of a 

centralized training procedure. In this framework, each 

agent i possesses its own deterministic policy µi for 

action selection and critic Qi for state-action value 

estimation, which are respectively parametrized by θi 

and φi. All parametric models are trained off-policy 

from previous transitions ζt: = (ot, at, rt, ot+1) uniformly 

sampled from a replay buffer D. Note that ot: = [ot1, ..., 
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otN] is the joint observation vector and at: = [at1, atN] is 

the joint action vector, obtained by concatenating the 

individual observation vectors oti and action vectors ati 

of all N agents. Each centralized critic is trained to 

estimate the expected return for a particular agent i 
from the Q-learning loss [8]:  

 

For a given set of weights w, we define its target 

counterpart w¯, updated from w¯ ← we + (1 − τ) ¯w 

where τ is a hyper-parameter. The algorithm discounts 

the rewards based on its step and updates the policies to 
maximize the expected discounted rewards. 

 

 

The non-stationary multi-agent environment can be 

stationary by sharing each agents' actions and policies 

and that shared information was used in a centralized 

training. This centralized training provides cooperation 

between agents even though they do decentralized 
execution. In the centralized training, the MADDPG 

doesn't specify any particular conversation format 

between agents, the cooperation can be learned based 

on the rewards, and this allows diverse applications. 

 

COORDINATION OF SATELLITES IN A 

CONSTELLATION 

A satellite constellation is a group of satellites working 

together as a system. Unlike a single satellite, a 

constellation can provide global or near global coverage 

of Earth. Satellites are typically placed in sets of 

complementary orbital planes and connect to globally 

distributed ground stations. They may also use inter-

satellite communication. 

Low Earth orbiting satellites (LEOs) often use satellite 

constellation  because the coverage area provided by a 

single LEO satellite only covers a small area that moves 

as the satellite travels at the high angular velocity 

needed to maintain its orbit. Many LEO satellites are 

needed to maintain continuous coverage over an area.  

This contrasts with geostationary satellites, where a 

single satellite, moving at the same angular velocity as 

the rotation of the Earth's surface, provides permanent 

coverage over a large area. A constellation of satellites 

can be regarded as a multi-agent system. Coordination 
of these agents can result in performing a set of tasks 

that would require greater time for each of the agent 

working individually. The agents can also share 

resources that is sometimes required to perform a task.  

However, coordination of these agents is a challenging 

task. The coordination is generally distributed and can 

be centralized or decentralized.  

Centralized Coordination:  

This is a master/worker approach where a single 

centralized planner (master) is used to coordinate other 

agents (workers). The selection of master can be 

manual or dynamic. This is conceptually a simple 

planning approach where all commands are sequenced, 

and master can perform checks and direct the worker 

agents. However, this approach tends to be 

computationally expensive and might require 

substantial communication. This approach is also a 

single point of failure if the master becomes inoperable 

for any reason.  

Decentralized Coordination:  

Decentralized coordination strategy allows agents to 

control their behavior based only on individual 

decisions without a supervised specific master for 

operation. This is generally used for a constellation 

with large number of autonomous agents.  Recall the 

robot/box example stated previously, where the 

coordination episode was peer-to-peer. Imagine now a 

room full of robots, each having multiple joint tasks 

with other agents and all sharing physical resources 

such as tools and floorspace or X/Y coordinates [10]. 
Without coordination, the said room full of robots 

would have much in common with a preschool “free 

play session” with robots moving about, unable to 

perform tasks due to obstacle avoidance systems always 

diverting them from their desired directions or due to 

the lack of a required tool.  

There are two primary ways to coordinate this room full 

of robots – either in a distributed peer-to-peer (or group 

to group) fashion or in a centralized fashion. When 

coordination is distributed each agent is responsible for 

determining when to interact with another agent and 

then having a dialog to determine how they should 
sequence their activities to achieve coherence. When 

coordination is centralized generally one agent plans for 

the others or manages a shared resource. Note that in 

the example above coordination focuses on when to 

perform a given task. Coordination can also be about 

which tasks to perform, what resources to use, how to 

perform a task, and so forth. While the robot domain is 

good for illustrating conceptually the coordination 

problem, the need for coordination is not limited to 

robots. Software agents, humans, and systems 

composed of mixes of agents, humans, and robots [10] 
all have a need for some kind of coordination. When 

the tasks or activities of different parties interact, in a 
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setting where control is distributed (parties are 

autonomous), coordination is needed. We attempt to 

emulate the coordination of satellites in a constellation 

to achieve optimal target coverage. 

The biggest obstacle for Reinforcement learning with 
multi-agents is due to their nonstationary environment. 

No matter how good policies are for each agent, it’s 

unable to cooperate if an agent does not know other 

agents’ actions and behavior. This might happen 

because it’s infeasible for satellites to communicate 

with each other in real-time. However, by leveraging 

the capabilities of the MADDPG algorithm, we can 

resolve this issue. At first, after training, the MADDPG 

algorithm uses a decentralized execution framework. 

So, we don’t need to worry about the disconnection 

between satellites while they are in LEO, MEO or 

higher orbits. Secondly, even though the algorithm uses 
a decentralized execution framework, it still uses a 

centralized training approach. So, by providing actions 

taken by other agents and the policy alterations, the 

environment can be stationery and cooperative during 

the tracking target (ship) task in the training process. 

 

TRAINING ENVIRONMENT 

Our continuous control tasks are built on OpenAI’s 

multi-agent particle environment [6]. We aimed to 

enhance performance of a multi-agent simulation by 

developing and integrating Reinforcement Learning 

based on coordination. Pattern-of-life discovery would 

be obtained by observing typical and anomalous 

activity of targets. All satellites in a constellation try to 

track the object (ship) as much as possible. But they are 

still moving in their orbit and the only action they are 

allowed is altering their on-board camera angle. As 

long as satellites can't see the object, they don't have 

another option except tilting their cameras. But we 

believe that if one of them finds the object, the other 

satellites can bring optimization of their camera control. 

Our physical world for this task would be initially 

guided by sensors, environmental conditions, 

availability of a resource, trafficability, potential final 
destinations, and target patterns of life. We have 

presented two experiments with their results in this 

paper. The simulation environment is a 18x18 grid 

where the blue portion denotes the sea area and the 

green portion denotes the land area or ports. There are 

four satellites forming a constellation and a single target 

which is a ship that they are trying to track. The 

satellites with camera sensors are the reinforcement 

learning agents and the ship is the target. The objective 

is to keep track of the ship as much as possible. One 

important point to note here is that our training 

environment is less complex and it can be extended to 

larger and more complex environments. We basically 

want to compare the difference between the percentage 

of target coverage by using Deep Reinforcement 

Learning techniques and without using them. 

 

Figure 1: Simulation environment using OpenAI Gym 

 

EXPERIMENT 1 

 

In Experiment 1, we assume that the four satellites are 

in the low earth orbit (LEO). So, it seems like the 

satellites are moving because they are faster than the 
earth's rotation. 

The four satellites are moving in a specific orbit, and 

they try to track the ship as much as possible by tilting 

the angle of their camera. In this scenario, the ship 

moves only between port green and blue to prevent too 

complicated environments because the orbit of satellites 

already brings complexity to the environment. 1 epoch 

has 50 steps which mean each satellite can tilt their 

angle 50 times in the location of their orbit while the 

ship moves 50 steps. 

 

Results - To calculate the accuracy of testing, we test 
the environment's 100 epochs and calculated the 

average coverage proportion within 50 steps. Target 

coverage was found to be 63.5%. The coverage with 

random camera sensor motion was found to be 50.1%. 

 

EXPERIMENT 2 

 

In Experiment 2, we have four satellites and one target 

ship. We assumed that the four satellites are in the low 
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earth orbit (LEO). They are moving in a specific orbit, 

and they try to track the ship as much as possible by 

tilting the angle of their camera. In this scenario, the 

ship starts from red port and it can move randomly 

between all the ports. A single epoch has 50 steps 
which means that each satellite can tilt their angle 50 

times in the location of their orbit while the ship moves 

50 steps. 

Results - To calculate the accuracy of testing, we tested 

the environment's 100 epochs and calculated the 

average coverage proportion within 50 steps. Target 

coverage was found to be ~73%. The coverage with 

random camera motion was found to be 60.4%. 

CONCLUSION 

We were able to successfully emulate the maritime 

environment where a ship is moving in order to reach 

its destination (port). We tested the two scenarios, one 

using the MADDPG algorithm and the other without it. 

We found that there was a higher target coverage with 
Deep Reinforcement Learning approach as compared to 

coverage achieved from random camera motion. There 

was 13.4% more target coverage in case of Experiment 

1 and 2 where we are using Deep RL approach as 

compared to the case 1 when the camera sensors are 

randomly trying to track the ship. The two scenarios 

can be helpful in different uses cases and through our 

future work which is proposed next, we plan to explore 

those spaces. 

FUTURE WORK 

Markov process modeling can be used to estimate state 

of the ship at the sea. This state estimation can 

complement the satellite coordination technique in the 

following way. We understand that we may not know 

the state X(t) perfectly. We would explore stochastic 
noise models as Hidden Markov model (HMM). We 

also understand that we may not know all the 

parameters required to define state and we would 

explore Parameter Estimation techniques. We shall also 

compare results from MADDPG using other multi-

agent environment algorithms. Lastly, we would like to 

explore how we can integrate our simulation with 

Computer Vision techniques which can enhance the 

decision-making capabilities of the agents.  

We would like to map the simulation to real world 

situation and geography, particularly we would like to 

emulate the maritime environment in South China sea. 

We would also like to apply these techniques to other 

experiments such as optimal collections for natural 

disasters, we plan to test our experiments onboard for 

actual small satellite constellation. 
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