
Aggarwal 1 [35th] Annual Small Satellite Conference

[SSC21-P1-50]

SmartSat Constellation – A Deep Reinforcement Learning Approach for Decentralized

Coordination

Rajesh Aggarwal, Junghwan Kim, Deepanshu Agarwal, Ayushi Tiwari

Avyuct LLC

2832 Thistleberry Court, Herndon, VA 20171, USA

 ra@avyuct.com

James Baldo

Volgenau School of Engineering

George Mason University

jbaldo@gmu.edu

 ABSTRACT

With rapid advancements in satellite technology, the amount of low earth orbit satellites has grown significantly

which are primarily deployed for weather monitoring, earth observation or military purposes. Due to this reason,

there has been an increased interest in enhancing the level of autonomy and cognition, onboard satellites to achieve

optimal data collection. Optimal data is said to be collected when the satellites in a small sat constellation work

together to collect information. This means that even if one of the satellites has missed out on some important

information, the others can still collect them. A satellite constellation can be considered as a multi-agent

reinforcement learning system. Having these agents coordinate with one another, can reduce the amount of time

required to perform a task. The state-of-the-art satellite constellations follow a centralized coordination mechanism

in which one primary satellite controls the rest of the satellites. This process is computationally more expensive and

requires substantial communication between the satellites. It has a single point of failure and communication might

be affected if the primary satellite fails. On the other hand, decentralized coordination allows agents to control their

behavior themselves without the command of a supervised master. In this case, there is less inter-satellite

communication which reduces the requirement for specialized onboard computational hardware. The proposal

constitutes leveraging the Multi-Agent Deep Deterministic Policy Gradient [2] (MADDPG) algorithm to train the

agents (satellites) to achieve optimal data collection. There are multiple use cases for the proposed solution such as

illegal maritime activity tracking, natural disaster detection and assessing building damage after a natural disaster.

The proposed solution focuses on tracking of ships in an extensively simulated environment for which a custom ship

environment was created by leveraging OpenAI Gym [12]. By providing on-board autonomy, we aim to reduce

frequent Earth Station (ES) communication significantly and enhance data collection capability.

INTRODUCTION

In Multi-Agent Reinforcement Learning (MARL), an

agent is trained for maximizing its expected return by

interacting with an environment that contains other

learning agents. The use of a Centralized Training and a
Decentralized Execution (CTDE) procedure [1,2,3,4,5]

is a popular framework for MARL. In CTDE

procedure, we have centralized critics to approximate

the value function of the aggregated observations-

actions pairs and train actors restricted to the

observation of a single agent. Such critics, have the

potential to steer the agents’ policies toward highly

rewarding behaviors when they are exposed to joint

actions in a coordinated manner. This approach might

fail in scenarios where such behaviors are unlikely to

occur by chance, as these approaches might depend on

the agents luckily stumbling on these collective actions

in order to grasp their benefit. Thus, we hypothesize

that in such scenarios, coordination-promoting

inductive biases on the policy search could help

discover successful behaviors more efficiently and

supersede task-specific reward shaping and curriculum

learning [1,2,3,4,5]. To motivate this proposition, we
leverage the satellite sensor data and create a simple

multi-agent coordination environment for ship tracking.

Before we delve into our experiments, we would like to

present an analogy with robots that will help us

understand “what is coordination and when do we need

it?” Typically, a multi-agent systems (MAS) model of

development is pursued when distributed processing
and distributed control are required [10]. An issue of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/478905669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aggarwal 2 [35th] Annual Small Satellite Conference

MAS research is to determine how to obtain globally

coherent behavior from the system when the agents

operate autonomously and asynchronously. In general,

when the agents share resources or the tasks being

performed by the agents interact, the agents must
explicitly work to coordinate their activities. Consider a

simple physical example. Suppose there are two

maintenance robots, we will call them as agents A1 and

A2. These agents are assigned the joint task of moving

a large box from one room to another. Both robots also

have a set of other independent activities that must be

performed, e.g., cleaning the windows. We assume that

neither robot can lift the box by him/herself. In order

for the robots to move the box together they must

coordinate their activities in some manner. This is an

example of communication-based coordination that

produces a temporal sequencing of activities. This shall
enable the robots to interact and carry out the joint task

over a shared resource – which is the box in this case.

Without the coordination process, it is unlikely that the

box would ever be moved as desired unless the robots

randomly decided to move the box at the same moment

in time. In general, achieving global coherence in a

MAS where tasks interact requires coordination [10].

BACKGROUND

Most Reinforcement Learning methods [9] fall into one

of the following two categories: (a) Actor-only methods

and b) Critic-only methods. Actor-only methods work

with a parameterized family of policies. The gradient of

the performance, with respect to the actor parameters, is

directly estimated by simulation, and the parameters are

updated in a direction of improvement [4, 5, 8, 13].

There is a possible drawback of such methods which is

that the gradient estimators may have a large variance.
Furthermore, as the policy changes, a new gradient is

estimated independently of past estimates. Since, there

is no accumulation and consolidation of older

information. So, any kind of “learning” is not taking

place in this case.

In case of Critic-only methods [9], the agents try to

learn how to approximate the value function of a certain
state-action pair and aim at learning an approximate

solution to the Bellman equation, which will then

hopefully prescribe a near-optimal policy. Such

methods are indirect as they do not try to optimize

directly over a policy space. A method of this type may

lack reliable guarantees in terms of near-optimality of

the resulting policy. Hence, we need a better approach.

Two main components in policy gradient are the policy
model and the value function. It makes a lot of sense to

learn the value function in addition to the policy, since

knowing the value function can assist the policy update,

and that is exactly what the Actor-Critic method does.

Actor-critic methods [9] consist of two models, which

may optionally share parameters: Critic updates the

value function parameters w and depending on the

algorithm it could be action-value Qw(a|s) or state-

value Vw(s). Actor updates the policy parameters θ for

πθ(a|s), in the direction suggested by the critic.

Asynchronous Advantage Actor-Critic [11] (A3C), is a

classic policy gradient method with a special focus on

parallel training. In A3C, the critics learn the value

function while multiple actors are trained in parallel and

get synced with global parameters from time to time.

Hence, A3C is designed to work well for parallel

training.

Let’s use the state-value function as an example. The
loss function for state value is to minimize the mean

squared error, Jv(w)=(Gt−Vw(s))2Jv(w)=(Gt−Vw(s))2 and

gradient descent can be applied to find the optimal w.

This state-value function is used as the baseline in the

policy gradient update. A3C enables the parallelism in

multiple agent training. The gradient accumulation step

can be considered as a parallelized reformation of

minibatch-based stochastic gradient update: the values

of w or θ get corrected by a little bit in the direction of

each training thread independently.

Advantage Actor-Critic (A2C) [11] is a synchronous,

deterministic version of A3C; that’s why it is named as

“A2C”. In A3C each agent talks to the global

parameters independently, so it is possible sometimes

the thread-specific agents would be playing with

policies of different versions and therefore the

aggregated update would not be optimal. To resolve the

inconsistency, a coordinator in A2C waits for all the

parallel actors to finish their work before updating the

global parameters and then in the next iteration parallel

actors starts from the same policy. The synchronized
gradient update keeps the training more cohesive and

potentially to make convergence faster [11].

MULTI-AGENT DEEP DETERMINISTIC

POLICY GRADIENT

MADDPG [2] is an adaptation of the Deep

Deterministic Policy Gradient algorithm [7] to the

multi-agent setting. Here, multiple agents are

coordinate to complete a task using only local
information. It allows the training of cooperating and

competing decentralized policies through the use of a

centralized training procedure. In this framework, each

agent i possesses its own deterministic policy µi for

action selection and critic Qi for state-action value

estimation, which are respectively parametrized by θi

and φi. All parametric models are trained off-policy

from previous transitions ζt: = (ot, at, rt, ot+1) uniformly

sampled from a replay buffer D. Note that ot: = [ot1, ...,

Aggarwal 3 [35th] Annual Small Satellite Conference

otN] is the joint observation vector and at: = [at1, atN] is

the joint action vector, obtained by concatenating the

individual observation vectors oti and action vectors ati

of all N agents. Each centralized critic is trained to

estimate the expected return for a particular agent i
from the Q-learning loss [8]:

For a given set of weights w, we define its target

counterpart w¯, updated from w¯ ← we + (1 − τ) ¯w

where τ is a hyper-parameter. The algorithm discounts

the rewards based on its step and updates the policies to
maximize the expected discounted rewards.

The non-stationary multi-agent environment can be

stationary by sharing each agents' actions and policies

and that shared information was used in a centralized

training. This centralized training provides cooperation

between agents even though they do decentralized
execution. In the centralized training, the MADDPG

doesn't specify any particular conversation format

between agents, the cooperation can be learned based

on the rewards, and this allows diverse applications.

COORDINATION OF SATELLITES IN A

CONSTELLATION

A satellite constellation is a group of satellites working

together as a system. Unlike a single satellite, a

constellation can provide global or near global coverage

of Earth. Satellites are typically placed in sets of

complementary orbital planes and connect to globally

distributed ground stations. They may also use inter-

satellite communication.

Low Earth orbiting satellites (LEOs) often use satellite

constellation because the coverage area provided by a

single LEO satellite only covers a small area that moves

as the satellite travels at the high angular velocity

needed to maintain its orbit. Many LEO satellites are

needed to maintain continuous coverage over an area.

This contrasts with geostationary satellites, where a

single satellite, moving at the same angular velocity as

the rotation of the Earth's surface, provides permanent

coverage over a large area. A constellation of satellites

can be regarded as a multi-agent system. Coordination
of these agents can result in performing a set of tasks

that would require greater time for each of the agent

working individually. The agents can also share

resources that is sometimes required to perform a task.

However, coordination of these agents is a challenging

task. The coordination is generally distributed and can

be centralized or decentralized.

Centralized Coordination:

This is a master/worker approach where a single

centralized planner (master) is used to coordinate other

agents (workers). The selection of master can be

manual or dynamic. This is conceptually a simple

planning approach where all commands are sequenced,

and master can perform checks and direct the worker

agents. However, this approach tends to be

computationally expensive and might require

substantial communication. This approach is also a

single point of failure if the master becomes inoperable

for any reason.

Decentralized Coordination:

Decentralized coordination strategy allows agents to

control their behavior based only on individual

decisions without a supervised specific master for

operation. This is generally used for a constellation

with large number of autonomous agents. Recall the

robot/box example stated previously, where the

coordination episode was peer-to-peer. Imagine now a

room full of robots, each having multiple joint tasks

with other agents and all sharing physical resources

such as tools and floorspace or X/Y coordinates [10].
Without coordination, the said room full of robots

would have much in common with a preschool “free

play session” with robots moving about, unable to

perform tasks due to obstacle avoidance systems always

diverting them from their desired directions or due to

the lack of a required tool.

There are two primary ways to coordinate this room full

of robots – either in a distributed peer-to-peer (or group

to group) fashion or in a centralized fashion. When

coordination is distributed each agent is responsible for

determining when to interact with another agent and

then having a dialog to determine how they should
sequence their activities to achieve coherence. When

coordination is centralized generally one agent plans for

the others or manages a shared resource. Note that in

the example above coordination focuses on when to

perform a given task. Coordination can also be about

which tasks to perform, what resources to use, how to

perform a task, and so forth. While the robot domain is

good for illustrating conceptually the coordination

problem, the need for coordination is not limited to

robots. Software agents, humans, and systems

composed of mixes of agents, humans, and robots [10]
all have a need for some kind of coordination. When

the tasks or activities of different parties interact, in a

Aggarwal 4 [35th] Annual Small Satellite Conference

setting where control is distributed (parties are

autonomous), coordination is needed. We attempt to

emulate the coordination of satellites in a constellation

to achieve optimal target coverage.

The biggest obstacle for Reinforcement learning with
multi-agents is due to their nonstationary environment.

No matter how good policies are for each agent, it’s

unable to cooperate if an agent does not know other

agents’ actions and behavior. This might happen

because it’s infeasible for satellites to communicate

with each other in real-time. However, by leveraging

the capabilities of the MADDPG algorithm, we can

resolve this issue. At first, after training, the MADDPG

algorithm uses a decentralized execution framework.

So, we don’t need to worry about the disconnection

between satellites while they are in LEO, MEO or

higher orbits. Secondly, even though the algorithm uses
a decentralized execution framework, it still uses a

centralized training approach. So, by providing actions

taken by other agents and the policy alterations, the

environment can be stationery and cooperative during

the tracking target (ship) task in the training process.

TRAINING ENVIRONMENT

Our continuous control tasks are built on OpenAI’s

multi-agent particle environment [6]. We aimed to

enhance performance of a multi-agent simulation by

developing and integrating Reinforcement Learning

based on coordination. Pattern-of-life discovery would

be obtained by observing typical and anomalous

activity of targets. All satellites in a constellation try to

track the object (ship) as much as possible. But they are

still moving in their orbit and the only action they are

allowed is altering their on-board camera angle. As

long as satellites can't see the object, they don't have

another option except tilting their cameras. But we

believe that if one of them finds the object, the other

satellites can bring optimization of their camera control.

Our physical world for this task would be initially

guided by sensors, environmental conditions,

availability of a resource, trafficability, potential final
destinations, and target patterns of life. We have

presented two experiments with their results in this

paper. The simulation environment is a 18x18 grid

where the blue portion denotes the sea area and the

green portion denotes the land area or ports. There are

four satellites forming a constellation and a single target

which is a ship that they are trying to track. The

satellites with camera sensors are the reinforcement

learning agents and the ship is the target. The objective

is to keep track of the ship as much as possible. One

important point to note here is that our training

environment is less complex and it can be extended to

larger and more complex environments. We basically

want to compare the difference between the percentage

of target coverage by using Deep Reinforcement

Learning techniques and without using them.

Figure 1: Simulation environment using OpenAI Gym

EXPERIMENT 1

In Experiment 1, we assume that the four satellites are

in the low earth orbit (LEO). So, it seems like the

satellites are moving because they are faster than the
earth's rotation.

The four satellites are moving in a specific orbit, and

they try to track the ship as much as possible by tilting

the angle of their camera. In this scenario, the ship

moves only between port green and blue to prevent too

complicated environments because the orbit of satellites

already brings complexity to the environment. 1 epoch

has 50 steps which mean each satellite can tilt their

angle 50 times in the location of their orbit while the

ship moves 50 steps.

Results - To calculate the accuracy of testing, we test
the environment's 100 epochs and calculated the

average coverage proportion within 50 steps. Target

coverage was found to be 63.5%. The coverage with

random camera sensor motion was found to be 50.1%.

EXPERIMENT 2

In Experiment 2, we have four satellites and one target

ship. We assumed that the four satellites are in the low

Aggarwal 5 [35th] Annual Small Satellite Conference

earth orbit (LEO). They are moving in a specific orbit,

and they try to track the ship as much as possible by

tilting the angle of their camera. In this scenario, the

ship starts from red port and it can move randomly

between all the ports. A single epoch has 50 steps
which means that each satellite can tilt their angle 50

times in the location of their orbit while the ship moves

50 steps.

Results - To calculate the accuracy of testing, we tested

the environment's 100 epochs and calculated the

average coverage proportion within 50 steps. Target

coverage was found to be ~73%. The coverage with

random camera motion was found to be 60.4%.

CONCLUSION

We were able to successfully emulate the maritime

environment where a ship is moving in order to reach

its destination (port). We tested the two scenarios, one

using the MADDPG algorithm and the other without it.

We found that there was a higher target coverage with
Deep Reinforcement Learning approach as compared to

coverage achieved from random camera motion. There

was 13.4% more target coverage in case of Experiment

1 and 2 where we are using Deep RL approach as

compared to the case 1 when the camera sensors are

randomly trying to track the ship. The two scenarios

can be helpful in different uses cases and through our

future work which is proposed next, we plan to explore

those spaces.

FUTURE WORK

Markov process modeling can be used to estimate state

of the ship at the sea. This state estimation can

complement the satellite coordination technique in the

following way. We understand that we may not know

the state X(t) perfectly. We would explore stochastic
noise models as Hidden Markov model (HMM). We

also understand that we may not know all the

parameters required to define state and we would

explore Parameter Estimation techniques. We shall also

compare results from MADDPG using other multi-

agent environment algorithms. Lastly, we would like to

explore how we can integrate our simulation with

Computer Vision techniques which can enhance the

decision-making capabilities of the agents.

We would like to map the simulation to real world

situation and geography, particularly we would like to

emulate the maritime environment in South China sea.

We would also like to apply these techniques to other

experiments such as optimal collections for natural

disasters, we plan to test our experiments onboard for

actual small satellite constellation.

 REFERENCES

1. Leal, P.H., Kartal, B. and Taylor, M.E. Is

multiagent deep reinforcement learning the
answer or the question? a brief survey. arXiv

preprint arXiv:1810.05587, 2018.

2. Lowe, R., Wu, Y., Tamar, A., Harb, J. et all.

Multi-agent actor-critic for mixed cooperative-

competitive environments. In Advances in Neural

Information Processing Systems, pages 6379–

6390, 2017.

3. Foerster, J.N., Farquhar, G., Afouras, T.,
Nardelli, N. et all. Counterfactual multi-agent

policy gradients. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

4. Iqbal, S., and Sha, F. Actor-attention-critic for

multi-agent reinforcement learning. In

International Conference on Machine Learning,

pages 2961–2970, 2019

5. Foerster, J., Song, F., Hughes, E., Burch, N., et
all. Bayesian action decoder for deep multi-agent

reinforcement learning. International Conference

on Machine Learning, 2019.

6. Abbeel. Emergence of grounded

compositional language in multi-agent

populations. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

7. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess,

N., Erez, T., et all. Continuous control with deep

reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

8. Watkins, C.J.C.H., and Dayan, P. Q-learning.

Machine learning, 8(3-4):279–292, 1992

9. Konda, V.R., Tsitsiklis, J.N. Actor-Critic

Algorithms. Laboratory for Information and
Decision Systems, MIT

10. Wagner, T.P., Guralnik, V. (2004) Centralized

VS. Decentralized Coordination: Two

Application Case Studies. In: Wagner T.A. (eds)

An Application Science for Multi-Agent

Systems. Multiagent Systems, Artificial

Societies, and Simulated Organizations, vol 10.

Springer, Boston, MA. https://doi.org/10.1007/1-

4020-7868-4_4

11. Mnih, V. et all. (2016). Asynchronous

methods for Deep Reinforcement Learning.

arXiv preprint arXiv:1602.01783

12. Brockman. G, et all. (2016). OpenAI Gym.

arXiv preprint arXiv:1606.01540v1 [cs. LG] 5

Jun 2016

