SSC21-P1-18

Operations System vs. Operating System: Towards a Ground System Supporting Satellite

Application Programming

Kai Leidig, Steffen Gaifler, Susann Pétschke, Robin Schweigert, Sebastian Wenzel, Sabine Klinkner
University of Stuttgart, Institute of Space Systems
Pfaffenwaldring 29, 70569 Stuttgart, Germany
leidig @irs.uni-stuttgart.de

ABSTRACT

The term operating system refers to a software component, which traditionally controls the resources and the
processes of a computer, and by providing the appropriate interfaces allows for the implementation of custom user
applications. This is a common definition, working very well for ordinary computer systems. Yet, what if the oper-
ating system and a corresponding application are physically separated, because the computer is within a satellite in
space, while the user program is executed on ground? Then, capabilities must be created to connect both, which is
of course complicated by the natural boundaries in satellite communication, for example the limited satellite contact
times.

Over the past decades, several systems have been developed, which are capable of managing satellite resources
and the mission schedule from ground. Although this covers quite well the purpose of an operating system, other
terms have evolved in this domain: operations system, ground system, mission control system, ground data handling,
etc. The problem though is, those systems primarily focus on the exchange of data and satellite TM/TC, rather than
the actual control process. This creates an artificial barrier between ground and space, which harms the development
capabilities for ground based satellite applications.

This paper introduces a novel approach for an operations system architecture, which can be considered as a
ground extension of the satellite’s operating system. This approach shall not break with the existing conventions
and definitions, especially in terms of operating systems, but shall introduce a new view on satellite operations. In
a layered, functional software architecture, the operating system is the lowest layer between the hardware and the
application. Through the definition of the appropriate interfaces in the ground system, a software architecture can be
created that actively supports outsourcing parts of the satellite control process to ground.

The proposed approach has great potential for various applications in satellite operations. It supports the im-
plementation of automatic system control processes, the implementation of custom payload applications, and the
integration of respective activities into the satellite schedule. As applications and operators interact with a verified
schedule, and operations is thus no longer limited to low-level commanding, the approach further reduces the risk of

the mission being jeopardized by human mistake.

INTRODUCTION

Imagine the following case! A smartphone app shall be
written, enabling the user to select a spot on earth and to
trigger an observation of that spot. Further imagine, that
the respective satellite system for the job is in place, in-
cluding the appropriate ground segment. How can such
an app be connected to the system?

To answer that question, one needs to understand how
satellite operations systems are designed, and what inter-
faces they provide.

Usually, the development of an operations concept is data
driven, and starts bottom-up. Assuming a ground sta-
tion is in place, this means a TM/TC routing needs to
be set-up first. After that, means of decoding Teleme-
try (TM) and encoding Telecommand (TC) packets have
to be implemented, as well as the appropriate user inter-
faces. The latter involve displays for telemetry evalua-
tion and interfaces for commanding. Both, telemetry and
telecommands are persistently stored in archives.

A system as sketched here already provides enough func-
tionality to allow satellite operations. Respective solu-
tions are commonly referred to as Mission Control Sys-
tem (MCS).

As satellite operations evolved, more and more features
were added to these systems. Features like a user man-
agement, interfaces for automatic command schedule ex-
ecution,! or scripting interfaces. The result are massive
and very complex software systems, difficult to engage
and to manage.

What if such a system shall be integrated into an auto-
matic operations concept? Unfortunately, an MCS like
the described one is not designed for such a use case.
Indeed, they provide means for automatic procedure ex-
ecution, but they don’t allow to control the state of the
satellite properly. The latter is a key requirement for an
operating system though.

An appropriate operations concept must therefore reduce
the scope of the MCS, and implement a neat control pro-
cess instead. Purpose of that control process would be

Leidig

351 Annual Small Satellite Conference

the managing of the satellite state, like operating systems
manage the state of the underlying computing hardware.
That would allow somebody to write an application for
that system, with all problems like scheduling and sys-
tem state management being intercepted.

How this can be achieved, and how to cope with the nat-
ural limitations in satellite operations, shall be discussed
in the following.

CONCEPT

Control Process

Following Save and Feuerberg, automation is a four stage
process, as follows: (1) data acquisition, (2) data analy-
sis, (3) decision making, and (4) action implementation.”
Depending on the degree of automation, a human can be
involved into each of these four stages differently, begin-
ning with the stage being executed by the human, and
ending with a fully automatic solution.’

Purpose of this effort is to automate operations to a de-
gree that a human is only involved into the decision
making, and neither into extensive TM analysis, nor the
implementation of an action. So, the user can become
the operator of the system without even knowing what is
happening inside.

—> Data Result —
Processing [> L_Application

Activity
> ™ State :
Processing —>(Scheduling
Command
™
> MCS
TC

Satellite |

Figure 1: Hierarchy in Satellite Communication

At first, satellite operations is a data handling process. In
a very simple form it is shown in figure 1. That process
happens on different abstract layers.

On the lowest layer, satellite communication relies on the
exchange of TM and TC. That layer provides very lim-
ited capabilities in terms of data analysis (e.g. parameter
displays), and almost no decision making support. Any
decision must be made by the operator on the basis of
received TM parameters. Implementing an action means
sending an appropriate TC to the satellite and verifying
its execution.

On the next layer, TM is further analyzed and transferred
into a system state vector. Purpose of this layer is to man-
age that state vector. Unlike before, an operator does

not actively send TCs anymore, but schedules processes,
called activities. By means of the generated schedule, the
satellite state can be forecasted. This is also necessary
because activities must be scheduled into the future, and
this can only happen on the basis of a given system state.
Any command to the satellite is automatically extracted
from that schedule.

Purpose of the top layer is the presentation of fully pro-
cessed results (e.g. imagery data) to the user, and to allow
the integration of mission specific applications into the
operations system. Since satellite schedule and state are
completely maintained by the two bottom layers, such
applications can focus on the pure user requirements
and don’t have to take care about operational issues any-
more. Based on the user decisions, an application creates
an activity to be added into the mission schedule. The
subsequent action implementation can be hidden from
the user, but does not necessarily have to.

Unlike decision making, which always happens within
one layer, data analysis, and action implementation hap-
pen across these layers. Which means that for the imple-
mentation of such a high level operations concept, all the
underlying layers must work fully automatic.

Interface Type Definition

In computer science, an interface is a connection be-
tween two components, over which information can be
exchanged. This can be both a hardware or a software
connection. Those interfaces are necessary, since they
define a common communication format between com-
ponents. Most components in a software system are writ-
ten using different programming languages and different
data formats. If they need to exchange information, they
need to agree on a common format and path for the com-
munication. Within the mission operations system de-
scribed here, interfaces define the connection between
different software components. For example, this can be
the connection between a scheduling component and the
MCS, over which commands can be displayed, issued or
removed from the current schedule.

In this context, the interface does not describe the low
level connection over which the actual data is being
transferred. This is done through a Message Oriented
Middleware (MOM) over which components can ex-
change information via so called messages. These mes-
sages can contain any type of data understood by both
sides. This exchange is handled asynchronously through
the MOM, meaning the receiving component does not
have to be available at the exact moment, the sending
components posts its request. The requests are persis-
tently buffered within the MOM and will be delivered
to the receiving side, as soon, as it is ready. Below this,
the raw data is transferred through a default IP-based
network. However, all this is fully hidden from the com-

Leidig

351 Annual Small Satellite Conference

ponents.

On a higher level though, each component defines an in-
terface, through which data and information can be re-
quested from them or send to them. This definition con-
tains a set of functions, that can be executed by the com-
ponent with all necessary parameters and return values,
including their types.

As described earlier, the underlying messaging structure
works asynchronously. Therefore, the defined interfaces
also have to be able to handle the asynchronous commu-
nication. This means, that the requesting side has to be
able to send a request and forget about it until an answer
is received. Therefore, a request ID has to be attached to
every request, that requires an answer, so the requesting
side can correlate the incoming answers to their respec-
tive requests.

In the following sections, a selection of important in-
terfaces are described. This includes for example the
command interface at the MCS, the telemetry interface
and the activity interface. These interfaces are impor-
tant within the system, since they are the points different
components can attach to. They define the possible func-
tions of the overall system and allow for an easy transfer
of information across abstraction layers.

Telemetry / Telecommand

A system capable of operating an arbitrary satellite mis-
sion must cope with different communication protocols
on the space link. The minimum requirement was to be
able to fulfill the ECSS PUS Standard*

Assuming that a typical link uses any sort of frame or
packet based protocol, an abstraction layer must be added
to hide the specific protocols from the rest of the oper-
ations system. Translating between any low-level mis-
sion specific protocol and the abstract implementation
is part of the MCS. This allows for the implementation
of generic, mission independent scheduling methods by
higher-level system components. To elaborate the con-
cept, this paper focuses on the uplink path, although the
problem applies similarly to the downlink.

The exchange of commands inside the system is based
on the abstract command described in the next section.
At first, the MCS requests the command definition from
the respective mission database. After that, the transla-
tion unit parses the command and parameter information
and builds an abstract command. Eventually, the abstract
command is translated into the mission specific protocol
and released as specified.

Abstract Command

Based on the assumption of a packet based protocol, an
abstract command layer can be used to hide the real com-
manding protocol from the rest of the system. In the cur-

rent implementation the abstract command has two rep-
resentations: CommandDefinition and Command.

The CommandDefinition contains the complete com-
mand information including limits, calibrations and com-
plex parameter dependencies such as the grouped param-
eters from ECSS PUS. All parameters provide a descrip-
tion and the type as well as all possible limits and cali-
brations. In addition it contains the execution time and
the release information like release time or interlocks.
The Command contains only the command identification
and the parameters with their value and type as well as
the release and execution information.

Activity

The activity is a means of interfacing with the satellite on
system level. Unlike the abstract command or a TC, the
activity does not address a particular element in the satel-
lite on-board software though. Instead, it indirectly alters
and verifies the system state in a predefined manner.

-child * 1 -parent
> Activity €
1 — Initiator |4
—<> - Executor (&K
— State
1 1
ES ES
Sequence Il *| Ressource
au Demand
1
1.n
Command

Figure 2: Structure of the Activity Class

The basic structure of an activity object is shown in figure
2. Each activity has an initiator and executor. The initia-
tor is the entity on ground, e.g., an operator or a software
application, which has requested the activity. Identifying
the initiator from the activity allows providing activity
information such as status updates to that entity. The ex-
ecutor is a representation of the system, which processes
the activity. Normally, activities are processed by satel-
lites, but it can also be any other type of system, e.g. a
ground station. Within this operations concept, each ex-
ecutor is represented by an individual component, called
the Mission Planning Tool (MPT).

The state object is a tuple indicating on the one hand the
stage of the execution progress, and on the other hand
whether the activity is currently processed or not.
Commands, which are executed during the activity are
organized within a sequence. Processing that sequence
means that the satellite must provide an appropriate

Leidig

351 Annual Small Satellite Conference

amount of resources. The required resources, for a suc-
cessful execution are specified in a resource demand ob-
ject.

Another important quality of an activity is its nesting ca-
pability. This is realized by the fact that each activity can
reference a variable number of other activities as child
objects. Vice versa, an activity can reference one other
activity as a parent object.

Building an Activity in this way has the following advan-
tages:

e Decomposing a (parent) activity into a number of
child objects allows splitting of tasks into subtasks.

e The fact that each child activity can have an in-
dependent executer allows dividing tasks amongst
different collaborating systems.

e The resource demand object allows to estimate the
future resource consumption and thus the predic-
tion of the future system state.

e The implemented resource modeling approach is
further a means of resolving conflicts between ac-
tivities.>

IMPLEMENTATION

Main purpose of the proposed operating systems is to
simplify the life of the satellite operator as much as pos-
sible. It therefore provides abstract interfaces that can be
used to perform operational tasks such as mission plan-
ning and TM monitoring. To enable the user to do so,
the previously proposed interfaces can be used to com-
municate with the four core parts of the operating sys-
tem. The part closest to the satellite is the virtual ground
station, followed by the Mission control system (MCS),
the Flight Dynamics (FD) and the Mission Planning Tool
(MPT). The interaction between these parts is illustrated
in figure 3.

‘ GUI ‘Agent GUI

— — —»0Optional data flow ——>Data flow

Figure 3: Overview of the operating system compo-
nents

The virtual ground station (VGS) is responsible for the
network connection to the respective antenna system, e.g.
via a virtual private network (VPN).

Mission control is translating abstract commands into
specific TCs that can be sent to the satellite. It there-
fore represents a border between generic instructions and
mission specific commands. The MCS is also receiving
the acknowledgment for the sent commands, ensuring a
successful reception and execution on board the operated
system.

Through the evaluation of housekeeping TM Flight Dy-
namics is keeping track of the satellite orbit. The Flight
Dynamics tool can provide information about contact
times with observation targets or ground stations.
Mission planning can be considered as the central
scheduling element of the operating system and is there-
fore responsible for activity and resource management.
It contains the mission schedule and therefore holds all
activities from the past and the future.

Custom, external applications can interact with these
four components using the interfaces described above.

The operating system can be seen as abstraction layer for
the applications in a similar way as an operating system
for a computer behaving.

A special type of external application is a software com-
ponent called agent. Agents use the activity interface to
insert activities into the mission planning. They collect
information from the TM/Payload archives, or flight dy-
namics. Agents have a specific task and use the operating
system to fulfill it. These arbitrary tasks will vary from
mission to mission. Nevertheless, many missions might
need similar ones like:

Ground station pass scheduling for the satellite and
the antenna

TM data dump planning

Payload mission planning

Payload data dump planning

Satellite monitoring and user notification

The proposed design enables access to the operated sys-
tem without deeper knowledge of the underlying system
and the satellite.

To manage, maintain and monitor the operating system
a browser based Graphical User Interface (GUI) is used.
This GUI is also controlling the user access and authen-
tication to the operating system. Depending on the used
scenario and the role of the user, the previously men-
tioned agents are also controlled from the same GUI,
creating a seamless experience for the user. Neverthe-
less, by using external agent GUISs, applications can be
completely separated from the underlying operating sys-
tem. This is a valuable feature for high level users, not
interested in satellite operation itself, but the access of
data.

Leidig

351 Annual Small Satellite Conference

OUTLOOK

After introducing the novel approach for an operations
system architecture which supports satellite application
programming, different possible outlooks can be contem-
plated. Since the user is only involved into the decision
making, the degree of automation in the satellite opera-
tion process is maximized while the probability of human
error occurring is minimized.

Currently, the entry barrier for potential satellite operator
personnel is high due to the complexity of the satellite
operations, lacking automation. This also leads to not
fully using the satellite resources due to the complexity
of mission planning but also on the lack of adapting to the
current operations states. However, the number of satel-
lites in space is continuously growing which potentially
increases the number of unused resources on the satellite
platforms as well as the complexity on ground.

The higher degree of automation of the here-presented
ground system architecture, allows an easier adaption
and scaling of the ground system to new satellite mis-
sions or new ground stations. This easier adaption and
scaling also improves the operation of a single satel-
lite mission since the ground system can better react to
anomalies, human errors and emergency mission plan-
ning.

The easier adaption and scaling could also open the ac-
cess for satellite missions to a bigger community which
could be directly involved in the planning of the satellite
mission. The better adaption of the satellite operations
could allow potential customers to actively take part in
the satellite mission and increase its mission return. This
strongly differs from the state-of-the-art satellite opera-
tions concept where the satellite operation is performed
by highly-qualified personnel and the scientific data is
just forwarded to the customers. Thus, the customers
cannot directly plan a detailed observation for a defined
spot.

Here, we can come back to the use case described in
the introduction: The described ground system in this
paper could provide an intuitive and user-friendly fron-
tend through web access, or even through a smartphone
app, to plan custom Earth observations. The customer
selects a spot on Earth and triggers the observation with
a satellite missions, that matches the set requirements.
The customer does not have to interact directly with the
ground system or to have deep understanding of the satel-
lite system. After the satellite has performed the obser-
vation and downlinked the corresponding data, the cus-
tomer can access and download the custom observation
data.

CONCLUSION

This paper presented a novel satellite operations concept,
aiming for the interception of all data handling processes

for the user.

At first, an automation concept was introduced, which
implements a satellite control process on different ab-
stract data handling layers. After that, the required inter-
faces for the realization of that process were introduced
in a bottom-up approach. By means of the activity as the
top-level interface, users and application are able to in-
teract with a satellite schedule, which is autonomously
managed by the system.

Subsequently, the system design and a the most criti-
cal elements in terms of data handling were introduced.
With all the process scheduling and the system state be-
ing managed internally, the proposed approach therefore
fulfills two major qualities of an operating system.

The design further provides the necessary means, which
allow the integration of customized applications into the
system. Some use cases, and the worth for the scientific
community were discussed in the outlook.

References

[1] Pearson, S., Reid, S., and zur Borg, W., “A Full End-
to-end Automation Chain with MOIS, PLUTO, MA-
TIS, SMF and SCOS-2000,” SpaceOps 2014 Confer-

ence.

[2] Save, L. and Feuerberg, B., “Designing Human-
Automation Interaction,” Human Factors: a
view from an integrative perspective, edited by
D. de Waard.

[3] Sheridan, T. B. and Verplank, W. L., “Human and
Computer Control of Undersea Teleoperators,” Tech.
rep., Man-Machine Systems Laboratoatory, MIT.

[4] ECSS, “ECSS-E-ST-70-41C Telemetry and telecom-
mand packet utilization,” Tech. rep., ECSS.

[5] Leidig, K., Gaifler, S., Mohr, U., Schweigert,
R., Wenzel, S., Klinkner, S., and Eickhoff, J.,
“Multi-Mission Operations System supporting Satel-
lite Constellations,” 16th International Conference
on Space Operation, No. SpaceOps-2020,4,14,x281,
International Astronautical Federation (IAF).

Leidig

351 Annual Small Satellite Conference

