Lessons Learned from the Development & Flight of the First Miniature Tethered Electrodynamics Experiment (MiTEE-1)

George Li, Liam Spence, Mitchell Miller, Maya Pandya, Nick Stankey, Allison Hancock, Raymond Lu, Wayne Zhu, Christopher Park, Anish Rajesh, Alex Beloiu, Brian Gilchrist

Agenda

- Project Overview & Background
 - Project Goal
 - Introduction to EDTs
- MiTEE-1 Payload Summary & Mission Overview
 - System Overview
 - Timeline & Current Status
- Lessons Learned
 - Technical
 - Logistical
 - Operational
- Planned development for MiTEE-2
 - Proposed Changes from MiTEE-1 Lessons Learned
 - General System/Mission Overview

MiTEE Project Overview & Background

Project Overview

MiTEE-1

MiTEE-2

Electrodynamic Tethers (EDTs)

- Current flows along long, thin, conductive tethers connecting two endbodies
 - Induced magnetic field interactions add or remove energy from orbit
 - System interacts via the Lorentz Force equation: F = IL x B
- Enable propellantless propulsion on small satellite systems
 - Indefinite mission lifetime of LEO satellites
 - Controllable quick deorbit solution to eliminate "space junk"
- Deployable Earth-Satellite communications antenna
 - Greater communications capabilities with smaller volume & mass requirements

MiTEE-1 Plasma Circuit

- Electrons are collected from a positively biased picosat
- Current runs through tether to HVPS and CCPS
- Thermionic cathode (electron emitter) completes circuit
- Langmuir probe (LP) provides information about electron temperature, plasma density, and plasma potential in Low Earth Orbit (LEO)

MiTEE-1 Payload Summary & Mission Overview

System Terminology

MiTEE-1 System Overview

Mitter Mitter Mitter Mitter Mitter Mitter

- 3U CubeSat with a deployable 1-meter LoadPath rigid boom
 - Connects mainbody to picosat endbody
 - Picosat used as current-collection device
- Electron-emitting Cathode
 - Used in current-measuring circuit
- Langmuir Probe (LP)
 - Used to characterize ambient plasma
- Omnidirectional antenna array
 - Increases chance of reliable communication regardless of current attitude
- Magnetorquer Attitude Control
 - Provides gyroscopic rate control in all 3 axes
- Onboard battery & solar panels
 - Used for power generation & storage

MiTEE-1 Mission Overview

10

- Goal: Measure the current-collection capabilities of a small deployable picosat in LEO & characterize the ambient plasma environment
 - Data collection mission to advise the development of an EDT system on MiTEE-2 Ο
- MiTEE-1 launched to space aboard Virgin Orbit's LauncherOne rocket January 17th, 2021
 - Received mostly nominal health data through periodic data beacons Ο
 - Persisting issues in communications implementation Ο
 - Recent license extension to December 1st of 2021 Ο

Lessons Learned

Categorization of Lessons Learned

- Technical
 - Specific component selection
 - System/Subsystem testing, validation, and verification
- Logistical
 - Transfer of knowledge & onboarding processes
 - Requirement definition and communication
 - Documentation and formal presentations/design reviews
 - Team organization and hierarchical structure
- Operational*
 - Full pre-flight mission simulation
 - Failure modes & effects analyses

Technical Lessons Learned

- Full system testing must be achieved early in the development process
 - Component/subsystem testing performed regularly
 - Groundstation-satellite communications established early in system testing
- Drastically simplified flight computer hardware/software architecture needed
 - Accessible to anyone with basic programming knowledge (ex: EECS 280)
- Need more precise & responsive ADCS hardware & software
 - Current attitude determination method loses accuracy in Earth's shadow
 - Quick & precise control required to prevent tangling of a tethered spacecraft

Logistical Lessons Learned

- Need standardized, regularly-updated team documentation
 - Formal testing templates & team-wide testing schedule keeps progress moving
 - Process so team knowledge doesn't leave with graduating students
 - Consistent onboarding materials across subteams to get new students contributing ASAP
- Formal design reviews greatly aid the development and iteration of system designs
 - Clearly communicate all system and mission requirements across the team
 - Participation in formal presentations increases student participation & experience
 - Feedback from reviewers helps direct the continued development of MiTEE-2

Logistical Lessons - MiTEE-1 Team Breakdown

Logistical Lessons - MiTEE-2 Team Breakdown

Operational

- Full early-mission simulations are crucial for a successful launch & spacecraft checkout events
 - Team should be ready for mission operations months before launch
- Pre-flight analyses and characterization of possible failure modes are crucial
 - Allow the team to quickly diagnose and address any off-nominal events once on-orbit
- Using the SmallSat enthusiast community greatly increases the amount of health data received
 - Earlier integration with SatNOGS groundstation network benefits the entire community
 - Open-source data collection networks provide crucial health & status data

Planned Development of MiTEE-2

General Mission Concept

- MiTEE-2 is a 3U CubeSat that will deploy an EDT to study the physical and electrical dynamics of operating an electrodynamic-tether-based spacecraft in LEO
 - Propellantless propulsion system
 - Deployable communications antenna
- Main changes from MiTEE-1
 - Rigid boom to electrodynamic tether
 - Additional Langmuir Probe (LP) for mainbody bias measurement
 - Additional tether-based Earth communications radio
 - More capable ADCS design (addition of reaction wheels)
 - Sat-to-sat communications between mainbody & picosat

Updated Plasma Subsystem

- Utilization of rigid 1-meter boom for MiTEE-1
 - MiTEE-2 transitioning to 10-30 meter thin conductive tether
- Single LP used for plasma characterization on MiTEE-1 alongside high impedance measurements
 - Twin-LP's more preferable for MiTEE-2 to account for variability of spacecraft potentials but requires storage and deployment changes

Subsystem Design Changes

- More advanced Communication subsystem design
 - Additional radio attached to tether to use as to-Earth antenna
 - Disruptive coiling inductance from partially undeployed tether circumvented with capacitive radio connector to the deployed length
 - Satellite-to-satellite local communication between mainbody/picosat
- More capable ADCS needed for MiTEE-2 Nadir-direction pointing requirement
 - MiTEE-1's had rotation rate control, not absolute attitude control
 - MiTEE-2 will add a z-axis reaction wheel to mitigate torsional loads on the tether

Preliminary EDT Physical Requirements

Rigid Boom (1 m) \rightarrow Electrodynamic Tether (10 - 30 m)

EDT Physical Requirements

- Conductive core
 - Induces current throughout the EDT with safety factor of 2 (400 V)
- Insulation Material(s)
 - Resistant to Low Earth Orbit (LEO) corrosive environmental conditions

EDT Deployment Requirements

- Must be deployed to the greatest extent possible
 - Final velocity of the picosat must be mitigated to prevent kickback of the picosat
- Must prevent spinning of the satellite due to coil winding of the EDT during deployment

MiTEE-2 Future Prospects

- MiTEE-2 is the next step in achieving our project goal of operating a coordinated constellation of EDT-enabled MiTEE picosats
 - Explore the feasibility of novel uses for EDTs on future SmallSat platforms
 - Provide students with valuable experiential learning opportunities

Thank You!

Contact info:

George Li University of Michigan +1 (718) 644-7561 georgeli@umich.edu

Research reported in this publication was supported in part by funding provided by the National Aeronautics and Space Administration (NASA), under award number **80NSSC20M0124**, Michigan Space Grant Consortium (MSGC). Additionally, the NASA Undergraduate Instrument Program (USIP), **NNX116AI92A**.

