

Halvorson 1 [35th] Annual
 Small Satellite Conference

SSC21-WKV-02

Model-Based Systems Engineering and F’: Proof of Concept Via the Creation of an On-
Orbit Textual Command Parsing Component for the ABEX Mission

Michael Halvorson

University of Alabama in Huntsville, Complex Systems Integration Lab
Wernher von Braun Research Hall, 301 Sparkman Drive, Huntsville, AL 35899; 334-300-8131

MCH0043@uah.edu

CJ Short, Austin Bush, Brandon Scruggs, Joshua Lazenby, Sarah Kilgore, Sam Spearman, William Garrison, Paul
Poe

Auburn University
Shelby Center, 357 W Magnolia Ave, Auburn, AL 36832; 334-401-0650

CLS0095@auburn.edu

ABSTRACT
The Alabama Burst Energetics eXplorer (ABEX) mission is defining spacecraft architecture, behavior, mission
phases, operational states, risks, and requirements in a Model-Based Systems Engineering (MBSE) Integrated Systems
Model (ISM) using SysML in Cameo Enterprise Architecture (CEA). The satellite structural design can be exported
from CEA as Extensible Markup Language (XML) specifications and imported to F’, an open-source Flight Software
(FSW) framework from NASA’s Jet Propulsion Laboratory. F’ contains background components intended to be
connected to user-defined components in the XML after it is exported from the ISM; in this work, ABEX is
representing F’ background components in SysML Internal Block Diagrams from which the XML is generated. As a
proof of concept for this MBSE-centric FSW implementation, the ABEX FSW team has created a Command Reader
component from MBSE-generated XML and tested command enaction on a Raspberry Pi breadboard system for three
test cases representing on-orbit command triggers.

INTRODUCTION
Satellite Flight Software (FSW) systems maintain
spacecraft functionality, enact predefined operations,
and monitor status parameters such as temperatures,
altitudes, radiation tolerance metrics, and subsystem
interaction checks. FSW can be enacted by new
frameworks with no prior development, such as the
Apollo missions1, redesigns of pre-existing software,
such as the Ariane 52, or modular systems specific to a
given satellite architecture, such as F' (pronounced F
Prime). Early space system software engineers
employed the first two approaches until the first
modular frameworks were developed in the late 1990s
and early 2000s3.

Systems theory in FSW explores object-based
relations and ontologies4, which was the basis for the
Apollo program’s FSW development1. Rooting FSW
maturation in Systems Engineering (SE) principles
provides flexibility and consistency throughout
spacecraft mission phases; repurposing FSW
developed with this approach can reduce program
development time compared to building new software.
However, the redesign of pre-existing systems can
result in unanticipated errors or catastrophic failures
with previous methodologies not translating to new

components exactly2. This does not mean that reuse
should be avoided entirely; myriad NASA missions
have included at least some repurposed or legacy code
from previous missions5. Risk analysis and criticality
matrix definition must be performed when reusing
software, as with any subsystem, to avoid potential
mission-ending errors.

The use of FSW frameworks with pre-built or modular
components are convenient when designing flight
software for a new mission, especially for smaller
missions such as CubeSats. Modular approaches such
as KubOS6, core Flight System (cFS)7, and F'8 provide
basic FSW frameworks and tools for developers to
utilize or create subsystem functionality for a mission.
KubOS implements components via user-level
programs which can be run as one-off executions or
continuous processes and employs Graphical User
Interface (GUI)-based interactions for integration and
testing simplicity6. Users can only add predefined
components to their satellite based solely on what
KubOS provides. This approach becomes
cumbersome if users want to implement a technology
demonstration or science instrumentation component
for their project. cFS from NASA Goddard provides a
similar development framework and basic, reusable

Halvorson 2 [35th] Annual
 Small Satellite Conference

components which can be pieced together for new
applications and allow for easier reconfiguration of the
topology at runtime7. Neither KubOS nor cFS
represent solutions intended to operate in conjunction
with SE artifacts.

F' is an open-source FSW solution created by the
NASA Jet Propulsion Lab (JPL) that can build
spacecraft architectures directly from Model-Based
Systems Engineering (MBSE) products, making it
ideal for small missions such as CubeSats and
SmallSats. It has also been used to operate the Mars
Drone Helicopter Mission: Ingenuity9. F' provides an
autocoder framework for commands, telemetry, and
events, standard operation modules such as uplink,
downlink, and command sequencing, and peripheral
support including abstractions, modeling, testing, and
basic ground station compatibility. The main
advantages in using F' are standard components,
abstractions, modularity, reusability, efficiency,
scalable features, and the unit testing framework. The
architecture of F' consists of components, which are
the framework building blocks and represent system
structures or behaviors, ports for communication
between components, and topologies for a top-level
system layout10. A motivation for using F' on the
Alabama Burst Energetics eXplorer (ABEX) mission
is its inherent compatibility with Systems Modeling
Language (SysML)-defined structures that can be
modeled in Cameo Enterprise Architecture (CEA).
CEA, an MBSE suite, can be used to model all aspects
of the spacecraft using SysML diagrams. A
MagicDraw plugin exports XML files from SysML
Internal Block Diagrams (IBD) representing the
spacecraft’s components, ports, and topologies, and F'
imports the XML files and their respective topologies
to create operative C++ and header files for the
system. The MBSE-defined architecture can also be
used to define functional flows as SysML Activity
Diagrams and command operations as Sequence
Diagrams with increasing levels of complexity,
meaning hardware organizations, Concepts of
Operations, and satellite FSW can be generated from
the same MBSE platform.

The present work is twofold:

1. Prove that reusable components internal to F’
can be modeled as IBD components in CEA,
successfully connected to spacecraft
components in the IBD, and exported to
XML resulting in a method to represent
internal F’ functionality in MBSE.

2. Use this F’ MBSE proof of concept to create
a new command structure that parses textual

commands on-orbit instead of uploading bit
level commands; this could be considered a
reworked approach to implementing similar
functionality as tinyseqgen.

While F’ reusable components were modeled directly
in CEA and connected to user-defined components in
SysML IBDs, the Command Reader was created by
augmenting XML files after the MagicDraw export.

The following sections demonstrate how F’ was
augmented for the ABEX mission to provide
autonomous spacecraft functionality by running task
networks9 sequentially from an uploaded text file. This
augmentation begins with the creation of a Command
Reader component that was originally implemented as
an “LEDControl” component. The LEDControl
component was integrated with pre-existing F’
components in CEA as a SysML IBD. XML files for
the LEDControl component were exported to F’ where
C++ functionality was written to parse a given text file
and execute the task network commands specified in
the text file. Three test cases were performed using the
Command Reader to demonstrate common
functionality for spacecraft operations. Tests were
chosen to represent the system’s response to external
stimuli, environmental triggers, safety cues, and
command verification. All tests were successfully
executed. The Command Reader component is an
advancement towards MBSE-centric spacecraft
design and autonomous operations capability but does
not represent an improvement over existing F’
command implementation. The purpose of this work
is to step through established F’ capabilities in a new
way and prove representation of existing F’
background components in SysML is possible, not
define new or improved functionality in the FSW
framework itself.

MBSE IN FLIGHT SOFTWARE
The MBSE approach to creating modular FSW in F’
utilizes component structures defined as IBDs in
SysML, an extension of the Unified Modeling
Language; pertinent diagrams for non-F’ MBSE
include Requirements Diagrams, Block Definition
Diagrams, Activity Diagrams, Sequence Diagrams,
Use Case Diagrams, and State Machine Diagrams.
CEA generates XML files using the MagicDraw
plugin based on user-defined components and
assigned stereotypes. Stereotypes are a method of
extending a Metaclass onto a given object;
Metaclasses are how CEA understands when to
generate an associated XML component and its
corresponding relationships. Whenever a user assigns
the Metaclass “class”, the corresponding object can
then be exported successfully. The Metaclass “class”

Halvorson 3 [35th] Annual
 Small Satellite Conference

is associated with the “active,” “passive,” and
“queued” component types in F’. Stereotypes can be
applied to anything the user can edit. The built-in CEA
diagram for these component implementations is
depicted in Figure 1.

Figure 1: Exportable Component Types

Port types are defined within the “class” Metaclass.
Ports have a set of Metaclasses so CEA can recognize
the need to be exported but are implemented
differently from components. Depicted in Figure 2 are
the three F’ input port types, shown in respective
component type coloring, and a Cmd port. Figure 3
provides examples of pre-defined F’ output ports.

Figure 2: Types of Input Ports

Figure 3: Examples of Pre-Defined Output Ports

Exportable stereotypes are color-coded, and these
colors appear in the input ports. It is possible to give
ports to components that do not fit this color coding,
but users will typically run into errors that require
adjustments such as giving a component a command
to run despite it being a passive component. An
overview of port types and uses is provided in
Bocchino et al9 but using F’ ports in non-standard
ways may result in non-standard error solutions.

If a component exists but does not have an IBD it can
still be exported; all that is generated is an empty file
containing no useful information. This is a result of not
identifying relationships between other associated
components. This also implies that CEA can export
any kind of component diagram, but that does not
make it useful. Sequence, Activity, and State Machine
Diagrams are able to generate XML files but nothing
of use to F’ is in the XML. Because of the strict

Halvorson 4 [35th] Annual
 Small Satellite Conference

Metaclass designation control over XML generation,
the primary tools for effective creation and application
of autogenerated XML files for use in F' are the
components, attachable ports, and connections in
IBDs.

XML-based satellite architecture exports and F'
together represent a Technology Readiness Level 8 or
higher FSW solution; the strategy was successfully
used on the ASTERIA mission by JPL to detect
exoplanets from Earth’s orbit11. Information about
specific ASTERIA subsystems or command designs in
F' and CEA is not publicly available, a circumstance
that partially motivates the present work. Motivation
also stems from the convenience of creating new
components and functionality using MBSE exports to
F’. This process, illustrated in Figures 4 and 5, begins
with an IBD design of the new component in CEA. F'
autogenerates a C++ file from the IBD XML with
implementation stubs and a corresponding header file.
Implementation of desired component functionality is
added in the new C++ and header files, and unit tests
are generated and implemented. This process allows
for integration of newly defined components. For the
ABEX mission, text-based command capabilities were
created using this process as a proof of concept for
autonomous command structures.

Figure 4: F' Implementation Process10

F’ supports execution of individual commands which
provides three options for commanding the satellite:
commands manually uplinked by a user monitoring
the satellite from a Ground Control Station, software
state changes automated with commands implemented
in C++ set to read from chronological or
environmental stimuli, or sequential lists of commands
pre-defined for execution as task networks. The
optimal approach for FSW command autonomy via
task networks is likely a hybrid of all three options.

Figure 5: Detailed F' Implementation Process10

F' COMMAND READER AUGMENTATION
Spacecraft functional autonomy is achieved by
augmenting the F’ command structure to sequentially
read command task networks. F’ uses a Command
Sequencer to order commands given to F’ in a file with
a defined sequence for the commands. F’ then sends
the commands to Command Dispatcher to be executed
in the specified order12. Information available about
the file type and syntax provided to the Command
Sequencer and where it is located in F’ is limited; a
link was provided in Bocchino et al.9 but is no longer
functional. The ABEX FSW team made the decision
to create a new component that worked similarly to the
Command Sequencer.

The Command Reader was not built directly in CEA;
it was created by augmenting XML from an
LEDControl topology created for test purposes, shown
in Figure 6. This Command Reader component
implementation strategy was somewhat backwards but
ultimately successful.

Figure 6: LEDControl Subsystem IBD in CEA

Halvorson 5 [35th] Annual
 Small Satellite Conference

In practice, the data passed by the LEDControl
component should be connected to PolyDb, not
PrmDb12. The only differences between the
LEDControl component and the Command Reader are
that the Command Reader does not have either the
LEDSwitch or the SchedIn ports pictured on
LEDControl.

The Command Reader component reads and executes
predefined commands from a file that can be uplinked
from the ground station or compiled onto the
spacecraft memory. Commands are input as a text file
which includes the list of commands in the order they
will be executed. In terms of task networks, only the
command sequences are defined for this proof of
concept, not the conditions or impacts9. There are three
categories of commands that can be included in the
command text file: F’ Commands, C++ Commands,
and Linux Commands. F’ commands have three parts:
the name of the component which executes the
command, the name of the command, and the
arguments passed into the command. The Command
Reader must prefix text to every F’ command listed in
the text file to be able to run the command through the
terminal using the built-in F’ functionality for
executing commands as text commands in the
terminal. The Command Reader simulates this
implementation by using the C++ system function
from unistd.h to call the commands in a virtual
terminal. Prefix text for every command:

“fprime-cli command-send -d
Top/RefTopologyAppDictionary.xml “

The C++ command category includes a ‘wait’
command. Wait uses the C++ usleep function from
unistd.h. The format for wait is the word wait followed
by the number of seconds the user wants to wait; if no
time is specified, the wait time defaults to five
seconds. The Linux command category includes a
‘shutdown’ command. The syntax for this command
is the text “shutdown.” This command uses the C++
system function to call the “shutdown now” Linux
command in a virtual terminal.

Commands for actual ABEX subsystems will be
created by the FSW team based on SysML Activity
Diagrams and Sequence Diagrams. ABEX subsystem
teams from around the state will build the functional
flow of subsystems in Activity Diagrams which also
serve to identify interface requirements. The FSW
team will use the provided Activity Diagrams to create
Sequence Diagrams which can subsequently be used
to define commands and task networks for the
functional flow.

An important aspect of the Command Reader is to be
able to log which commands are being executed and if
they are successful. Using a simple print statement in
C++ fails to log these messages at the correct time
because the print statements in C++ operate solely
within the boundaries of the terminal and do not have
inherent compatibility with F'. The messages will
either be delayed in their output or will not appear at
all depending on where the print statement is located
within the C++ command. The logMsg method in the
Logger class of Fw/Logger is used to write to the F'
logs. The developer will need to import the
Logger.cpp file within the C++ file that needs logging
functionality:

#include <Fw/Logger/Logger.hpp>

The developer can now write to the logs in real time:

Fw::Logger::logMsg(“Log Message”);

This method works similarly to a typical C++ print
statement except it prints directly to the logs in the F'
GUI and prevents any delay from occurring when
writing to the logs.

TEST METHODOLOGY
Three tests were conducted to ensure the
implementation of MBSE-defined subsystems and the
use of F’ is suitable for creating FSW. Each test
represents a required functionality for spacecraft
operations. Tests were chosen to represent the
system’s response to external stimuli, environmental
triggers, safety cues, and commands. Three I/O
devices were used to represent these functionalities: an
LED representing an indicator for confirmed
recognition of external stimuli, a button representing
environmental triggers or uplinked commands, and a
temperature sensor representing an input device to be
polled like an altitude sensor, star tracker, or inertial
measurement unit. Additional components such as
LEDControl, ThermalControl, and Thermometer
representing subsystems and hardware were also
created as IBDs in CEA to conduct these tests. These
components included functionality that controls and
interacts with hardware components and commands
that control parameter values.

All tests were conducted on a Raspberry Pi 4 Model B
running Ubuntu 20.10 desktop and the latest version
of F’. Additional hardware was controlled through
general purpose I/O pins on the Raspberry Pi. A
TMP36 temperature sensor was used to read
temperature, and an MCP3008 analog to digital
converter was used to convert the analog signal from
the TMP36 to a digital signal for processing on the

Halvorson 6 [35th] Annual
 Small Satellite Conference

Raspberry Pi. An overview of the three tests were
defined:

1. Initialize the system, blink for 10 seconds at
any rate, and turn off the board. Turn back on,
blink faster for 10 more seconds, and turn off
the board. Basic command response is
represented.

2. Initialize the system, turn on the board, and
blink until the button is pressed. Wait 5
seconds and turn off the board. Response to
external stimuli and wait functionality are
represented.

3. Initialize the system and turn on the
temperature sensor in ThermalControl. When
the button is pressed, stop taking data from

the temperature sensor. When the
temperature exceeds a thermal set point, enter
Safety. Loop functionality and system state
transitions due to environmental triggers are
represented.

For the tests to successfully pass, the On-Board
Computer (OBC) had to initialize itself, start F’, and
run a sequence of commands autonomously. The only
input needed was a button press for the second and
third tests. The goal was to simulate space operation
scenarios since the satellite ideally operates
autonomously except for minimal input from the
Mission Operations Center. Sequence Diagrams for
each test and can be seen in Figures 7, 8, and 9. Future
Sequence Diagram iterations will feature criteria for
what aspect of F’ is being connected rather than
abstracting a process to F’ in general.

Figure 7: Test One Sequence Diagram

Halvorson 7 [35th] Annual
 Small Satellite Conference

Figure 8: Test Two Sequence Diagram

Figure 9: Test Three Sequence Diagram

Halvorson 8 [35th] Annual
 Small Satellite Conference

The wiring diagram for all three tests can be seen in
Figure 10.

Figure 10: Wiring Diagram

RESULTS
All three tests were successfully run. The LED blinked
for 10 seconds and then blinked faster for 10 more
seconds in test one. The system was unable to turn
itself off and back on as desired because Raspberry Pi
does not support rtcwake, so this part of test one was
marked as a failure. The LED blinked until the button
was pressed, and then the board turned off for test two.
The button turned the thermometer on and off for test
three, and when the temperature of the thermometer
passed a threshold, the system entered a safety state.
Below is the list of commands executed for test one.

LEDControl.START_LED -args 2
wait 10
LEDControl.LED_ON_PRM_SET -args 0
wait 2
LEDControl.START_LED -args 10
wait 10
LEDControl.LED_ON_PRM_SET -args 0

The log output for test one is shown in Figure 11.

Figure 11: Test One Log

Each command was executed sequentially. The
command to turn the LED off is the built-in command
to set the parameter LED_ON in the parameter
database. This parameter was set to one when the LED
was turned on and set to zero to turn the LED off. The
output for this test shows which commands are
executed and when. The lines which state more clearly
the name of the command and what it was doing were
added for this project. The log showed when each
command began and ended, the wait command with
the given number of seconds, and when the entire
command file finished execution.

The first command file input for the second test was
much simpler since most of the functionality came
from the button as seen below.

LEDControl.START_LED -args 10

The only command being run initially for this test was
to turn the LED on. All functionality outside of the
LED beginning to blink was done when the button was
pressed, and another file was read.

LEDControl.LED_ON_PRM_SET -args 0
wait 5
shutdown

The log output of both command files is shown in
Figure 12.

Halvorson 9 [35th] Annual
 Small Satellite Conference

Figure 12: Test Two Log

The third and final test had more distinct parts than the
first two tests, but the command file only initialized
the thermometer peripheral to read a temperature in
ThermalControl.

thermometer.IS_READING_PRM_SET -args
1

Three other command files were also used for this test:
two to turn the thermometer on and off and one to
represent a safety state.

thermometer.IS_READING_PRM_SET -args
0
button.IS_PRESSED_PRM_SET -args 1

The button command is used to prevent registering
multiple button presses from holding the button down
for too long. The commands to turn the thermometer
on are similar.

thermometer.IS_READING_PRM_SET -args
1
button.IS_PRESSED_PRM_SET -args 1

The command file for the safety state does not
represent any actual safety functionality but is used as
a proof of concept that external stimuli can trigger the
execution of a command file. The safety state in this
instance only turns on the LED.

LEDControl.START_LED -args 2

This test proved that F' can operate with an external
device over time. The system can also stop and start
data flow and move into other subsystems based on
input data from the temperature sensor in this case.

Figure 13: Test Three Log

FUTURE WORK
With the ability to generate new components in CEA
as SysML IBDs and connect them to similarly
represented, pre-existing F’ components proven
viable, ABEX will now begin to model the entire
spacecraft architecture, behavior, mission phases,
operational states, risks, and requirements in an
MBSE-centric ISM. From a central authority, ABEX
will be able to generate FSW, requirements
verification artifacts, risk criticality matrices per
subsystem, science traceability matrices, education
traceability matrices, Concepts of Operation, and Day
In The Life (DITL) test procedures. In the near future,
the software-from-MBSE approach may be considered
standard practice among professional space systems
developers.

CONCLUSIONS
FSW is difficult to create and maintain, and various
frameworks such as F’, KubOS, and cFS have been
created to simplify the process. These frameworks
typically allow developers to spend more time
implementing specific operations by including general
functionality that most satellites will require.
Implementing new components that do not exist as
options in pre-existing FSW frameworks are most
easily created using an MBSE approach that naturally
exports to FSW.

The ABEX mission uses F', an open-source
framework created by NASA’s JPL for use with small-

Halvorson 10 [35th] Annual
 Small Satellite Conference

scale satellites. SysML IBDs are created in CEA, and
the MagicDraw plugin allows for auto-generated
XML files to be exported into F’. F' generates C++
files from the XML files received from CEA to allow
implementation of user-defined satellite functionality.

The common approach to using F’ was to export user-
defined IBDs as XML and connect them to
background F’ components after the export. In this
work, the ABEX FSW team included background F’
components in the IBDs, created a user-defined
component to read in textual commands in a new
format, connected the Command Reader to the
background F’ components in the IBD, exported
functional XML in a single package, and tested
Command Reader functionality on a Raspberry Pi.
Three tests representing on-orbit command-initiating
events were successfully completed. The ABEX team
here created the Command Reader from exported
XML defining an LEDControl component, but the
structure of LEDControl and Command Reader were
almost identical. This leads ABEX to believe new
components can be directly created as IBDs that not
only define spacecraft functionality but also alter the
functionality of F’ in general. MBSE-implemented F’
does can do more than simply include F’ background
components, it can change how F’ operates
fundamentally. This should be viewed as yet another
type of versatility that this powerful FSW framework
provides.

Acknowledgments

The ABEX program would like to thank Dr. Xiao Qin
of Auburn university for his continued leadership,
guidance, and expertise in satellite FSW development.
The ABEX program would also like to thank the
Alabama Space Grant Consortium for its dedication to
bringing space system design and fabrication
opportunities to hundreds of engineering students
across the state of Alabama, specifically Dr. L. Dale
Thomas, Debora Nielson, and Brooke Graham. ABEX
thanks the engineers at JPL who have helped
undergraduate students learn their incredible software,
especially Jeff Levinson, Michael Starch, Tim
Canham, Rob Bocchino, and Leonard Reder. ABEX
thanks Trent Rich, who created a manual for the
MagicDraw to F’ plugin interface and assisted the
students in utilizing it. Finally, ABEX thanks the
undergraduate software students who came before the
present team and built the foundations for consistently
improved work.

References

1. Hamilton, Margaret H., and William R. Hackler.
"Universal systems language: lessons learned
from Apollo." Computer 41.12 (2008): 34-43.

2. Orrego, Andres S., and Gregory E. Mundy. "A
study of software reuse in NASA legacy
systems." Innovations in Systems and Software
Engineering 3.3 (2007): 167-180.

3. Bätz, Bastian, “Design and Implementation of a
Framework for Spacecraft Flight Software,”
Institute of Space Systems, University of
Stuttgart, 2020.

4. Whitchurch, Gail G., and Larry L. Constantine.
"Systems theory." Sourcebook of family theories
and methods. Springer, Boston, MA, 2009. 325-
355.

5. Malcom, H. and Harry K. Utterback. “Flight
Software in the Space Department: A Look at the
Past and a View Toward the Future.” Johns
Hopkins Apl Technical Digest 20 (1999): 522-
532.

6. Kubos (2018) KubOS
https://docs.kubos.com/1.5.0/index.html.

7. NASA July 10, 2020 Lisa Kane
https://cfs.gsfc.nasa.gov/Features.html

8. F Prime: A Flight Proven, Multi-Platform, Open-
Source Flight Software Framework (2017)
https://github.com/nasa/fprime.

9. Bocchino, Robert, et al. "F Prime: an open-source
framework for small-scale flight software
systems." (2018).

10. Starch, Michael. "F Prime: NASA Open Source
Meets Small-Scale Flight Software." (2019).

11. Bocchino, Robert, Brian Campuzano, and Len
Day. "Applying the F Prime flight software
framework to the ASTERIA CubeSat." (2018).

12. The Discerning User’s Guide to F’
https://nasa.github.io/fprime/UsersGuide/guide.h
tml

	Introduction
	MBSE in Flight Software
	F' Command Reader Augmentation
	Test Methodology
	Results
	Future Work
	Conclusions
	Acknowledgments
	The ABEX program would like to thank Dr. Xiao Qin of Auburn university for his continued leadership, guidance, and expertise in satellite FSW development. The ABEX program would also like to thank the Alabama Space Grant Consortium for its dedication ...
	References

