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ABSTRACT 

Marine debris in the ocean is becoming an increasing problem for the management of coastal oceans and seaside resort 

areas. This paper presents a method for coastal marine debris mapping using satellite images from multiple satellite 

platforms. We carry out a pilot project in association with a local government to collect in-situ measurements of 

debris deposited on beaches and download the coincident satellite images to identify the marine debris. We propose 

to study the detection of marine debris on land and in the coastal ocean with various sources of satellite imagery as a 

way to increase the revisit frequency. High temporal resolution data can provide an agile estimation of the resources 

required to mitigate the pollution accumulation on the shoreline. To prevent the obscuration by cloud cover and 

establish high-fidelity models, we acquired the greatest number of satellite images from a variety of platforms 

including high temporal-resolution imagery provided by small satellite constellation programs. We first established 

our method using entropy of the segmentation model output on marine debris mapping in coastal areas using 

WorldView images provided by MAXAR corp. Then we extended the pipeline to other small satellite images using 

unsupervised domain adaptation techniques. We showed that the spatial representation of the segmentation map is 

greatly improved by the domain adaptation techniques. In addition, we confirmed the Skysat imagery provided by 

Planet labs can be also used in our pipeline to estimate the accumulation density of the debris, which does not require 

the annotated labels. This analysis shows the robust capability of this entropy pipeline to be able to map the 

accumulation density of debris using different types of satellite images. This extension to other images provided by 

various satellite platforms is also expected to increase the temporal frequency of monitoring the region of interest, 

which can be also applied in other remote sensing applications.

INTRODUCTION 

Marine debris  

Marine debris poses a serious threat to the marine 

environment and industry for over half a century [1]. 

Debris accumulation on seashores and in coastal waters 

results in pollution, which damages aquaculture and 

fisheries along with coastal recreation.  This pollution 

requires human-resources to cleanup these coastal zones 

to maintain the fisheries and the tourism industry. Thus, 

marine pollution is estimated to result in a huge 

economic loss for aquaculture and tourism [2]. The 

comprehensive analysis of debris distribution and 

evolution has not been fully explored and the techniques 

need to be developed to evaluate the amount of debris 

efficiently. To this end, direct and indirect monitoring is 

required to collect sufficient information on the location 

along with its evolution in time and space. One ideal 

source of this monitoring information is imagery from 

satellite remote sensing, which can cover large areas of 

interest and also depict the evolution of the debris field 

over time. Most of the research in remote sensing 

application, however, only exploit satellite image data 

from just one satellite for their analysis [3,4]. It is known 

that different data have their inherent sensor bias and 

optical aberrations and produced by different 

preprocessing algorithms, which leads the analysis 

difficult to simply use several images together from 

different satellite platforms [5]. On the other hand, the 

combination of different satellite images drastically 

increases the temporal resolution of data acquisition and 

compensates the obscuration by cloud cover. Since we 

selected our target areas of interest as the southern 

islands of Japan, which has tropical weather conditions 

where typhoons or localized downpours are often 

observed, the optical clearness of the satellite images in 

that regions is often prevented by the presence of the 

clouds. Therefore, compensation for cloud cover is of 

great importance in this use case. In addition, the 

establishment of the multi-modal pipeline is a powerful 
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technique to increase the temporal accuracy in other 

applications such as land use land classification (LULC) 

or satellite image time series monitoring (SITS) and the 

agile responses to the interested events such as natural 

disasters or urban changes.  

Small satellite constellation programs 

In recent years, small satellite usage is drastically 

diversified with advantages of shorter time and lower 

development cost. These missions in particular are 

occupied with Earth observation or remote sensing 

missions for more than 70% [6]. More and more 

commercial satellite constellation programs have been 

carried out recently and some of them have more than 

100 small satellites in service for earth observation 

missions. Even some images provided by small satellite 

programs achieve sub-meter spatial resolution with 

much higher revisit frequency by large numbers of the 

constellation. This greatly increases the opportunity of 

the earth observation making it possible to acquire 

satellite images in daily basis.  

DATA ACQUISITION 

We carry out a pilot project in association with a local 

government to collect in-situ measurements of debris 

deposited on beaches and download the coincident 

satellite images to identify the marine debris. This 

cleanup data includes the recorded weight, volume and 

composition of the marine debris on the seashore. 

We acquired a great number of satellite images to 

maximize the temporal resolution of the region of 

interests and conducted an analysis with obtained ground 

truth data using different types of satellite images. The 

analyzed images are listed in Table 1. We first 

confirmed the validity of our analysis method using the 

highest resolution satellite imagery: Worldview-2/3. 

Then, we extended the developed analysis pipeline to 

other image domains using unsupervised domain 

adaptation techniques. 

Table 1: Analyzed satellite images 

Satellite Provider Satellite 

size [kg] 

# of sat. 

on orbit 

Res. 

[m/pix] 

WorldView 

- 2, 3 

MAXAR 2800 2 0.31, 0.5 

Pleiades Airbus 970 2 0.5 

Skysat Planet labs 83-110 21 0.5 

Dove Planet labs 4 (3U) +130 3 

Nusat Satellogic 41 18 1 

 

METHODS AND RESULTS 

Marine debris mapping  

We used a semantic segmentation model designed to 

detect debris as an anomaly in the satellite image. The 

segmentation model generates the segmentation map 

based on the semantic segments distributed in the 

satellite images and the segmentation output comprises 

the probability distribution of defined classes. We 

assumed that more amounts of debris accumulate when 

the uncertainty of the segmentation output is higher at a 

specific location. Our architecture is based on a U-net 

model and we defined nine classes (Background, 

Vegetation, Trees, Buildings, Roads, Man-made 

structures, Water, Sand/dirt, and Rocks) to represent the 

semantic features in the satellite images.   

We should note that most marine debris is smaller than 

the resolution of the satellite imagery even when we use 

the highest spatial resolution images making it hard to 

distinguish them based on its semantic patterns alone. 

Thus, we aim to better discriminate the features of 

debris based on spectral differences. The results of the 

segmentation model comprise the probabilities of the 

defined classes and the final inference result is the 

argument of the maxima of these nine probabilities. 

Even if the segmentation maps show that the coastal 

region comprises sand, some pixels may contain marine 

debris, and therefore, the uncertainty of output indicates 

the presence of other elements. We found that the 

Shannon entropy defined in eq. (1) can be used with this 

probabilistic output to quantify inhomogeneities in 

beaches. 

 
𝐻(𝐶) =  − ∑ 𝑝𝑐 log 𝑝𝑐 

 

(1) 

Here, 𝑪 denotes the proposed semantic classes, and 𝒑𝒄 is 

the probability of each class in the output of the 

segmentation model. We trained the model with 

WorldView-2/3 images and Table 2 shows the 

segmentation accuracy, along with the training 

conditions. We visualized the segmentation map with 

original WorldView images in Figure 2 and the colors 

in the segmentation map are defined as (Green: Trees, 

Light green: Vegetation, Purple: Buildings, Dark gray: 

Road, Light blue: Water, Yellow: Sand, Gray: Rocks). 

Entropy intensity map of the beaches are shown in 

Figure 1, where we know from the cleanup records that 

the beach in the top left is cleaned up 1 day before the 

satellite image was captured while the other beach in the 

bottom right remains dirty. We see the clear difference 

of entropy intensity between those two beaches. High 

entropy represents the high uncertainty of being ‘sand’, 

which indicates the beach is contaminated by other 
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components. This inference result matches with the local 

cleanup records and this contamination is highly likely 

to be caused by the presence of marine debris. 

Table 2:  Segmentation model accuracy 

# of locations tile size [pix] IoU Val IoU 

13 224*224 0.823 0.800 

 

 

Unsupervised domain adaptation 

Once we established the debris estimation pipeline, we 

now focus on applying this pipeline to other datasets. 

First, we checked the compatibility of the segmentation 

model to other datasets and visualized the inference 

result in Figure 3 directly generated from the model 

trained in MAXAR dataset using images from other 

satellite platforms listed in Table 1. This result shows 

the segmentation map using Airbus data even preserve 

the spatial representation of the semantic objects very 

well. On the other hand, Skysat images which have a 

similar spatial resolution with Airbus data does not hold 

the semantic features and most of the area on land is 

classified as ‘Road’. This indicates that the image with a 

similar spatial resolution from original training dataset 

does not always show a good compatibility with them. 

 The results using other datasets such as Satellogic or 

Dove images completely collapse the spatial features in 

the images. This result indicates that large difference of 

spatial resolution leads the inference result collapsed 

with poor spatial representations.  

Therefore, we applied the unsupervised domain 

adaptation techniques to improve the segmentation 

accuracy in other datasets. We used an adversarial 

training to acquire the semantic features of the images in 

a target domain from the model trained by the images in 

a source domain [7]. In this framework, we train the 

model as a first step using the data in source domain: 

WorldView images as before. And then, we train the 

model again using the data in target domain to generalize 

and adapt the trained model to the target domain. In this 

second training process, we prepare a discriminator 

network to discriminate segmentation maps generated 

from images in source and target domain. The 

discriminator uses the entropy matrix computed from the 

output of the segmentation model as an input and predict 

the domain classification output, i.e., class label 1 for 

source and 0 for target domain, whereas the 

segmentation model is trained to simulate the 

segmentation maps of target dataset to the ones in source 

domain to fool the discriminator.  

Eq. (3) shows the objective function of the discriminator 

and Eq. (3) shows the adversarial training objective of 

the segmentation model where ℒ𝓈ℯℊ  represents the 

segmentation loss for source domain and  ℒ𝒟  is the 

cross-entropy domain classification loss with a weight 

parameter λ𝑎𝑑𝑣 and entropy matrix 𝐼𝑥𝑡
.  θ𝐹  represents a 

set of parameters for the semantic segmentation model. 

𝑥𝑠, 𝑦𝑠 represents the images and corresponding labels in 

source domain whereas 𝑥𝑡  is the images in a target 

domain. We implemented this adversarial training with 

λ𝑎𝑑𝑣 = 0.1 .  We also summarize the outline of this 

adversarial training in Figure 4. 

min
θ𝐷

1

|𝒳𝓈|
∑ ℒ𝒟(𝐼𝑥𝑠

, 1)

𝑥𝑠

+
1

|𝒳𝓉|
∑ ℒ𝒟(𝐼𝑥𝑡

, 0)

𝑥𝑡

 

 

(2) 

min
θ𝐹

1

|𝒳𝓈|
∑ ℒ𝓈ℯℊ(𝑥𝑠, 𝑦𝑠)

𝑥𝑠

+
λ𝑎𝑑𝑣

|𝒳𝓉|
∑ ℒ𝒟(𝐼𝑥𝑡

, 1)

𝑥𝑡

 

 

(3) 

We show the inference result when this adversarial 

training is applied to each dataset in Figure 5. 

Figure 1: Original image of high-resolution satellite 

imagery of WorldView-3 ©2020 MAXAR 

TECHNOLOGIES (above) and corresponding 

entropy intensity map in extracted beaches 

(bottom) 
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Qualitatively, we see that all segmentation maps are 

greatly improved after the domain adaptation. we 

observe that the segmentation maps using Dove or 

Satellogic images have many false alarms, especially in 

urban regions. The segmentaion accuracy is, therefore, 

not sufficient to utilize this model in other remote 

sensing applications. Still, the inference output preserves 

the object boundaries and overall semantic features well 

even with the spatial resolution differences. On the other 

hand, inference result using Skysat is especially 

improved and reached almost a same level of spatial 

representation as the ones using MAXAR and Airbus 

data. Thus, we expect the segmentation result using 

Skysat data can be also utilized for our entropy pipeline.   

We also adapted our entropy pipeline to Skysat images 

to confirm whether this approach is also applicable to the 

target domain. We selected three locations where we 

know from the cleanup records that the two of them have 

high density of marine debris accumulation and the rest 

of them does not. We show the entropy intensity map 

with corresponding satellite images and segmentation 

maps in Figure 6. We observe the clear difference 

between these ‘dirty’ beaches and ‘clean’ beach although 

the difference is not distinct as it was observed in the 

WorldView dataset shown in Figure 1. Thus, we 

confirmed the segmentation maps generated by the 

model adjusted by the domain adaptation techniques are 

applicable to the entropy pipeline using Skysat images.  

The misclassifications observed in some images may be 

improved when we increase the number of dataset and 

set the different parameters for adversarial training since 

the previous research utilized very large datasets for their 

studies [7]. Thus, we still need to collect more satellite 

images to further improve the segmentation and debris 

estimation accuracy. Since we do not have annotated 

labels for these datasets, we evaluated the improvement 

of segmentation accuracy qualitatively. We need to 

conduct more quantitative analysis as a future work in 

order to determine the most accurate training parameters. 

 

CONCLUSION 

We showed the entropy metrics computed by the 

probabilistic outputs of the segmentation model are 

effective approach to estimate the accumulation density 

of the marine debris in coastal regions. We first 

confirmed the validity of the approach using WorldView 

images provided by MAXAR corp. and applied this 

model to other datasets such as Skysat by unsupervised 

domain adaptation. The model using Satellogic and 

Dove still requires more data samples and parameter 

tuning of the model to accurately generate the semantic 

segmentation maps. 

We showed that the adversarial training is effective 

method to extend this pipeline to other satellite images. 

With this demonstrated technique, we can increase the 

temporal resolution of satellite imagery analysis by 

creating datasets that combine imagery obtained from 

several satellite platforms. 
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Figure 2: A semantic segmentation map (right) using WorldView images (left) ©2020 MAXAR 

TECHNOLOGIES 
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Figure 3: Inference results using satellite imagery dataset (top: Airbus ©Airbus, second top: Skysat ©Planet 

Labs, second bottom: Satellogic ©Satellogic, bottom: Dove ©Planet Labs) by a segmentation model trained 

by Worldview images 
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Figure 4: Overview of adversarial training steps 
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Figure 5: Inference results using other satellite imagery dataset (top: Skysat ©Planet Labs, Middle: Satellogic 

©Satellogic, bottom: Dove ©Planet Labs) by an adversarial trained model 

 

 

 

Figure 6: Beach segmentation results (middle) and the intensity maps of entropy (right) with showing the mean 

value of the entropy in respective beach regions (RGB images on the left ©Planet Labs). According to the 

cleanup records, high accumulation of marine debris is observed in the spots of the top 2 images whereas the 

beach in the bottom remains clean. 
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