

Braun 1 [35th] Annual
 Small Satellite Conference

SSC21-XIII-09

How Satellites are Moving Beyond the Class System: Class Agnostic Development and

Operations Approaches for Constraints-Driven Missions

Barbara Braun
The Aerospace Corporation

2155 Louisiana Blvd NE, Suite 5100. Albuquerque, NM 87110; (505) 314-6670
barbara.m.braun@aero.org

Lee Jasper

Space Dynamics Laboratory
3550 Aberdeen Ave. SE. Kirtland AFB, NM 87117; (435) 713-3400

lee.jasper@sdl.usu.edu

ABSTRACT

Should we abolish the Class System? The Class A/B/C/D mission assurance and risk posture designations familiar to
most satellite developers were established in 1986. They are used by both the Department of Defense (DoD) and
National Aeronautics and Space Administration (NASA) to define risk and risk mitigation requirements for flight
missions. However, many of today’s satellites are different – smaller, digitally engineered, designed for production,
and increasingly destined for proliferated architectures. The rate of development is increasing while the uniqueness of
the systems being built is decreasing.

The need to move faster and the ability to utilize, for the first time in space, real product-line components challenges
the premise and assumptions behind the Class A through D designations. The traditional “Class System” is not as
applicable to most small satellite developments, which instead focus on ways to prioritize key, high impact, agile
processes in an effort to cut costs and timelines. Operating within this environment requires satellite developers to
apply practices that are agnostic to class definition (e.g., the practices that are most fundamental to ensuring the
mission meets the needs).

This paper outlines the Class Agnostic approach and constraints-based mission implementation practices. It will
describe several real-life examples from Air Force Research Laboratory, Space and Missile System Center, and Space
Rapid Capabilities Office missions that are applying a “class agnostic” approach to their missions. It will include
lessons learned from missions which failed critical Do No Harm requirements and lost a flight to missions that have
fully utilized the class agnostic approach. It will also discuss how the several missions used class-agnostic techniques
to balance requirements of scope, risk, cost, and schedule to maximize the chances of mission success within hard
constraints. The approaches used in these missions are applicable not only to small satellites, but also to any mission
intending to move beyond the “Class System” to a more agile and flexible mindset for risk mitigation and mission
assurance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/478905593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Braun 2 [35th] Annual
 Small Satellite Conference

INTRODUCTION

Most satellite developers have encountered the “Class
System,” the approach to satellite mission assurance that
divides missions into classes based on criticality or risk
tolerance. The most commonly-used class system –
which makes use of four mission assurance categories
referred to as Class A, B, C, and D – was originally
developed in 1986 by the Department of Defense for
one-of-a-kind space equipment, and documented in a
since-canceled handbook, MIL-HDBK-3431. In
comparison, the first Small Satellite Conference would
not be held until one year later, and in the 35 intervening
years much has changed about space and space missions.
The old A, B, C, and D mission assurance levels are
increasingly difficult to apply to today’s smaller
constraints-driven missions, many of which are not one-
of-a-kind.

The traditional “Class System” suffers additional
shortcomings. All too often, these classifications are
used as shorthand for the fiscal realities of the mission
rather than a true risk posture. They tend to be
monolithic, glossing over the fact that a single satellite
mission can have a mixture of risk levels – one
subsystem can require Class A attention, while for
another more robust or less critical subsystem, Class D
might be acceptable. Furthermore, once a risk class
designation is established, there is typically little to no
linkage of that risk posture with the specifics of program
execution. There is little guidance given on which risks
to mitigate or to accept given the program’s resource
constraints. The traditional class designation also ignores
whether requirements or the constraints drive the
mission, and lacks flexibility to the changing priorities
encountered during program execution. Today, many
missions instead focus on ways to prioritize high impact
risk-reduction processes in an effort to cut costs and
timelines and to get the most “bang for the buck” out of
mission assurance efforts.

The Class A-D terminology can still be useful up front
to help determine the applicability of redundancy and
reliability requirements, testing approaches, contractual
deliverables, and standards documents. And, for true
requirements-driven missions the “Class System” may
still be a good way to articulate risk posture and guide
execution. In this paper, however, we outline a approach
to mission assurance that breaks down the barriers of the
“Class System,” opting instead for a value-driven
approach that is agile and changes with the program. In
class-agnostic approach, “Time, Cost, & Quality are [all]
commodities,” and we “treat them as such. Quality is a
commodity even if we don’t think it is.”6

KEY CONCEPTS

The class-agnostic mission assurance approach14 is
driven by several key concepts and relies on several
assumptions about mission types. It may not be suitable
for all missions. For example, large-team, requirements-
driven launch missions which cannot fail may be more
suited to traditional Class A mission assurance
approaches. Other missions, ones that embrace the
concepts and characteristics listed below, may benefit
from a more class-agnostic approach.

Requirements-driven vs. Constraints-driven Missions

The distinction between requirements-driven and
constraints-driven missions was first articulated as part
of a paper at the 2018 Conference on Small Satellites2,
and later refined in an Institute of Electrical and
Electronics Engineers (IEEE) paper3.

A Requirements-Driven Mission is a mission where
mission objectives / requirements drive the schedule and
budget and where achieving those objectives is typically
prioritized over schedule and budget. Requirements-
driven missions are focused on mission system
performance with less emphasis on how that drives
budget and schedule.

This is not to say that requirements-driven missions do
not need to apply due diligence with respect to cost and
schedule, but cost and schedule are typically less
constrained, and achieving mission requirements is the
focus. Requirements-driven missions have at least some
flexibility to delay a launch or add funding to ensure all
mission requirements are met.

In contrast, constraints-driven missions are highly
focused on achieving, within externally constrained
budgets and schedule, “good enough” performance. A
Constraints-Driven Mission is a mission where the
objectives and/or scope are traded with, or bounded by,
schedule and budget and all three may evolve as the
system is defined, designed, tested, and operated3.

Constraints-driven missions typically have little to no
flexibility for delaying a launch or adding funding to
resolve issues that arise. Cost and schedule are the most
common constraints, but others may exist as well. For
example, there are significant volume and design
constraints associated with the CubeSat form factor.
“Common bus” or standardized-architecture
implementations represent another type of constraint; if
stakeholders wish to prioritize adherence to a standard

Braun 3 [35th] Annual
 Small Satellite Conference

interface, they must allow developers the freedom to
trade functionality or performance requirements if
needed to fit that standard.

Figure 1 shows the concept of constraints-driven vs.
requirements-driven mission architectures as another
dimension to the typical Class A/B/C/D mission
assurance levels. Missions that focus on the Class
A/B/C/D categorization sometimes ignore this other
driving factor.

The Agile Mindset and Approach

The class-agnostic framework is rooted in concepts
borrowed from the Agile software development
movement. On its website, the Agile Alliance describes
Agile as “the ability to create and respond to change. It
is a way of dealing with, and ultimately succeeding in,
an uncertain and turbulent environment.”4 Class-
agnostic mission assurance requires much of the same
mindset as Agile. Our version of the Agile Manifesto for
Mission Assurance is shown in Figure 2Error!

Reference source not found..

Another way of stating the manifesto, similar to that
described by Scott Ambler of the Agile Alliance, is as
follows5:

• Mission assurance tools and processes are
important, but it is more important to have
competent people working together effectively.

• Good documentation is important in helping
people understand risk and risk mitigation, but
the main point of mission assurance is to
improve the chance of mission success, not to
document risks.

• Requirements lists and Contract Data
Requirements Lists (CDRL) are important but
are no substitute for working closely with all
partners to discover what the mission needs to
do, and how best to help it succeed.

Figure 1: Constraints and Requirements-Driven Mission Assurance Spectrum

Braun 4 [35th] Annual
 Small Satellite Conference

• A mission assurance plan is important, but it
must not be too rigid to accommodate changes
in priorities, resources, risk, and people's
understanding of the mission’s objectives.

Mission Attributes

The Agile concepts that underpin the class-agnostic
approach are applicable to any mission of any size.
However, the class-agnostic methodology is most
applicable to missions with some or all the following
attributes.

• Missions that are partly or mostly constraints-
driven. The approach is most effective where
missions are willing to trade requirements and
risk to remain within cost, schedule, or other
constraints.

• Missions with small program offices. One of
the major tenets of Agile is that it requires
small, high-performing teams to work closely
together. In large program offices with many
organizational layers, the sheer size and
complexity of the program and its staffing
profile makes close communication and
coordination difficult. Such missions typically
also have the budget to conduct a full
independent mission assurance effort, and
class-agnostic mission assurance may be less
appropriate.

• Missions for which less than 100% mission
success is an option. A critical launch is a
good example of a mission with very few
options for less than 100% mission success – it
either makes it to orbit, or it doesn’t. The
heuristic can be applied to missions for which
full mission success is the only metric that is
“good enough,” but in that case it is very
similar to traditional Class A mission
assurance.

Additionally, class-agnostic mission assurance relies on
the following concepts.

• Mission assurance is anything that improves
the chances of mission success. In constraints-
driven missions, risk is often accepted to
remain within program constraints, and a
guarantee of mission success is rarely possible.
In this context, class-agnostic mission
assurance seeks to maximize, rather than
guarantee, the chances of mission success
within the available cost, schedule, and
resource constraints.

• Mission assurance is not the purview of any
single organization. Everyone involved in the
mission – the government program office
along with its support contractors, as well as
the prime contractor and its subcontractors –
makes up the mission assurance function. In
most applications of the class-agnostic
heuristic, mission assurance is the collective

Figure 2: Agile Mission Assurance “Manifesto”

Braun 5 [35th] Annual
 Small Satellite Conference

effort of the entire team, not one of
independent oversight. Mission assurance need
not be independent to be objective.

• Efficient mission assurance requires
mentorship. When mission assurance efforts
are constrained by limited resources, engineers
need to have good instincts, so they can spot
the issues faster and exercise good judgement
in prioritizing activities. Pairing novice
engineers with more experienced engineers
(like pairing an apprentice with a master) helps
generate new seasoned engineers with the right
instincts.

• Class-agnostic mission assurance tailors “up.”
Traditional mission assurance approaches start
with a “Class A” requirements-driven
approach and tailor back. This is less
appropriate for highly constrained missions,

which start with the most basic “Do No Harm”
level of mission assurance2,6 and then add on
what is needed and desired by the stakeholders
to reach the final balance between capability
and risk. Starting at a “Class A” approach and
tailoring back is not only extremely
cumbersome for resource-constrained
missions. This approach also provides no
fallback position should program realities
change.

CLASS AGNOSTIC MISSION ASSURANCE

Figure 3 illustrates the overall approach to Class-
Agnostic Mission Assurance. A more detailed discussion
of the steps to this approach follows.

Figure 3: Class-Agnostic Mission Assurance Approach

Braun 6 [35th] Annual
 Small Satellite Conference

Step 1: Establish the “Knobs” of the Mission

The program team and stakeholders must understand
mission goals and constraints and the relationship
between them when applying the class-agnostic
heuristic. The program team and stakeholders should not
just develop an idea of what minimum mission success
might look like – which may include ground-based
objectives like maturing a technology or process – but
also determine whether the scope of the mission matches
this vision, and what level of risk the program is willing
to accept, at least initially.

The first step is to explore the mission's objectives. The
class-agnostic concept of objectives is not so much a
requirement list as a story or a set of statements about
what the mission is supposed to do. Many methods for
defining and communicating the mission scope are
viable; options might include one, or multiple, of the
following: metric-based initial success criteria,
minimum viable product (i.e., the minimum capability
the spacecraft could fly with), use-case and user-story
creation, requirements definition and derivation, or
experiment plan and concept of operations. The
objectives can include minimum, baseline, and goal
criteria, but should be concise – ideally not more than
one briefing chart. For constraints-driven missions, it can
be particularly important to define what constitutes
“minimum functionality” (i.e., what is “good enough” to
launch?).

Having identified the mission objectives, the team can
now begin identifying the mission’s constraints, such as
cost, schedule, resources, size, etc. These are usually
straightforward to list, but harder to match appropriately
to the mission scope. The team must make realistic
assessments as to whether objectives and constraints
match each other. One of the major lessons learned from
studies of CubeSats is to ensure that missions are scoped
appropriately for the vision.8 A $1M CubeSat is unlikely
to deliver the performance or reliability of a $100M
larger satellite, and the program should not expect such
miracles unless it is willing to pay for them.

Once the objectives and constraints of the mission are
described, the program and its stakeholders should
jointly decide whether the mission is predominantly
requirements-driven or constraints-driven. This decision
should be revisited often and formally overturned if
necessary. Too many missions claim to be constraints-
driven when the initial budget is set but become more
and more requirements-driven as launch approaches.

Developers and stakeholders should jointly understand
the initial risk posture of the mission. In the past,
customers have used traditional Class A/B/C/D
designations to denote risk tolerance categories and such

designations can still be used.9 However, few missions
truly fit within a single risk category (i.e., all within
Class A, B, C or D). For these missions, other
methodologies allow tailoring of risk level by subsystem
or specialty engineering. This approach allows missions
to focus their mission assurance on areas of higher
criticality, while accepting more risk in lower-criticality
areas. Additionally, the traditional designations for the
Class A/B/C/D risk posture paradigm may have a risk
“floor” that is too high to reap the full benefits of low-
cost, risk-tolerant missions. Recent work has provided a
sub-class-D taxonomy that provides a useful vocabulary
for stakeholders and developers to use when discussing
risk posture for highly risk-tolerant missions. Table 1
summarizes this taxonomy, and more details can be
found in the referenced paper.2

Table 1: Risk Taxonomy for Space Missions

Demonstrated

Level of Capability

Goals and

Implications

(Orbit)

Implication

(Ground) + Risk at

Launch

Do No Harm DOA is ok
(education and/or
fully constrained
and not requirement
driven)

Hypothesis(es)
untested; unclear
capability

Survival Not DOA (power +
low-rate comm).
May have no
higher-level
functionality

Hypothesis(es)
untested; vehicle
should be capable of
supporting some
operations and tests

Minimum
Functionality

Minimum mission
success. Mission
recoverable in event
of fault. No mishap
/ failure review
board if achieved.

Hypothesis(es)
partially tested;
elements incomplete.
Expect it to work but
full evidence not
created

Full Functionality
(payload
performance driven
by constraints)

Full mission
success.
Functionality
limited by
constraints.

Hypothesis(es)
tested on ground;
should work. Need
on-orbit data for
further evidence

Class A/B/C/D
(payload
performance driven
by requirements)

Full mission
success, full
functionality
expected at set risk
levels

Hypothesis(es)
tested on ground;
evidence of
capability. Need on-
orbit data for further
evidence

This risk taxonomy provides several level-sets of
capability that is demonstrated through verification
activities and also provides implications for what that
really means for the overall system’s known capability.
Here the idea of “Hypothesis” testing is added to help
convey the premise. For example, if a system were to
demonstrate a specific technology, the hypothesis being
tested is both that that technology performs a certain way
in space, and that the system is properly built to allow
that technology to operate. Given this taxonomy,

Braun 7 [35th] Annual
 Small Satellite Conference

stakeholders can make decisions about how much
knowledge they’ll have on the ground of the overall
mission’s ability to test that hypothesis. In the end, this
is the real “risk acceptance” being made during the
program.

Regardless of the specific label used, the overarching
goal of the initial risk posture is to communicate, not to
rigidly classify. The risk posture of the mission rarely
stays fixed throughout a mission. Even requirements-
driven missions are sometimes forced to accept risk.
Developers commonly encounter missions that are
constraints-driven at kickoff, but requirements-driven at
Launch Readiness Review.

The items described here (loosely categorized as
requirements, risk, cost, schedule, or other constraints)
represent “knobs” for mission execution (See Figure 3,
Step 1). Depending on the mission objectives and
constraints, each of these “knobs” may be fixed or
variable. Stakeholders may be more willing to adjust cost
and schedule to meet requirements or may be more
willing to relax requirements and accept risk to meet cost
and schedule. However, missions cannot expect all four
knobs to remain fixed for the duration of the mission. No
program is without issues or changes, and the knobs
represent the program’s flexibility to absorb changes and
address issues.

When the team or stakeholders make a fixed designation
of mission risk tolerance before they have any real
knowledge of the technical issues, those designations are
usually premature. Issues that arise during development,
and the stakeholders’ willingness to tolerate those risks,
are generally opaque. Mission assurance approaches that
rely on fixed assumptions are not flexible to the
uncertainty in the mission.

Step 2: Align Iterations to Project Tempo

It is important for stakeholders to recognize that this is
an agile and iterative approach. The full cycle is aligned
with the project tempo; ideally takes no more than a few
weeks, and is continually repeated. Peer reviews and
major milestones can be tied to this cycle, or drive the
cycle. Major milestones can become less about progress
checks and more about decision-making with regard to
the mission “knobs.”

These iterations optimize mission assurance activity
based on the risks to mission success objectives. It also
burns down risk to an acceptable that is agreeable and
well understood among stakeholders, and creates a more
realistic expectation of mission success.

The first cycle will likely take longer than those
following since more time is required for establishing a
baseline of risks, divergences, and responses.

Step 3: Identify Risks and Divergences in Context

Once the mission’s initial “knobs” are established, the
program can begin to think about risk. Loosely speaking,
risks are anything that might cause the program to adjust
one of its knobs. When thinking about risk, mission
context is important. For example, a lack of battery
conditioning might not be a risk for a one-year LEO
mission, while it likely poses a significant risk to a ten-
year GEO mission. The orbit, lifetime, and intent of a
mission provides the context within which to evaluate
risk.

Programs will generally want to conduct an initial
assessment of the risks of a mission. There are many
tools and frameworks for identifying risk areas and
common pitfalls.10,Error! Reference source not found.,Error! Reference

source not found. Such processes are often designed for larger
Class A missions, but provide a useful mental
“checklist” for class-agnostic missions to ensure all
aspects of the mission are at least considered. Areas to
consider include:

• Generally-agreed-upon critical areas (e.g., power,
communication, Do No Harm (DNH), safe modes,
interfaces)

• Areas of specific concern for this mission
(contamination, EMI, radiation, non-space parts,
previous failures)

• New items (first flight, changes from last time)

• Lessons learned or “gold rules” (software, polarity,
test like you fly)

• Expert opinion and experience

The risks that emerge from this initial pass typically
represent known and “known unknown” risks. The
“unknown unknowns” will generally emerge during the
execution of the program. The mission assurance
approach needs to be flexible enough to adjust.

Once risks are identified, the team should consider both
specific and overarching risk reduction efforts. These
can be specific actions, like the following:

• Set up specific analysis and test campaign for new
developments or space readiness of terrestrial
hardware

Braun 8 [35th] Annual
 Small Satellite Conference

• Investigate GPS dropouts over the poles and
recommend firmware updates

• Add a modal survey test to the test campaign

• Add a redundant receiver to the design

• Test all COTS parts upon receipt

They can also be more overarching, general activities,
like the following:

• Analyze the thermal performance

• Review all ICDs for discrepancies

• Witness testing

• Validate do no harm artifacts

• Add a review or a standing meeting with high-risk
mission element representatives

Missions should start with broad concepts and refine as
necessary. Early in the program, risks are generally
broader and based on general principles; later, risks
become more specific and are more often related to
observed failures or deficiencies. The team should tie
reduction efforts to specific risks where possible, but this
doesn’t have to be a one-to-one mapping. While the team
should take care to make the risk statements crisp and
actionable, the team should remain flexible and avoid
getting hung up on specific details. The goal is to
understand if constraints will be violated or objectives
may not be met (e.g. mission success), not to achieve
exquisite risk documentation.

Although not required by the class-agnostic heuristic,
many programs find peer reviews helpful in the risk
identification step. Peer review serves two primary
purposes: (1) to provide technical input for the team on
their design, and (2) understand risks as they emerge.
These reviews can be small one-on-one meetings or
subject matter expert / team interactions, but the key is
that they serve to provide the engineers actionable
feedback. Ideally some external reviewers participate to
provide perspective and reduce groupthink. The team
can use these peer reviews to adjust their designs as
necessary and to identify divergences from the current
scope or constraints.

Step 4: Assess Efforts against Objectives and

Constraints

Once the team has the initial or most recent iteration of
the risk list, it can estimate the level of each risk and the
amount of risk handling possible, as well as the effort

required to conduct each handling action beyond simple
acceptance of the risk. The amount of risk reduction
expected for each handling action and the effort
estimated for each action help the team estimate the
“bang for the buck” of each action – an estimation central
to the class-agnostic concept and key for communication
with stakeholders. This estimation allows the mission
team to explain the tradeoffs of risk reduction, and why
some risks might be mitigated while others are simply
accepted (or watched).

There are several frameworks for estimating risk. The
standard 5x5 risk matrix is familiar to most system
developers. It provides a useful tool for identifying risk
levels by likelihood and consequence, but it has pitfalls.
Chief among these pitfalls is the tendency to view the
numerical numbers on the axes as statistically
significant, data-driven values. Some risks can be
quantified in this manner, but on non-production or
limited batch systems, the team is unlikely to have
enough real data to be able to give a statistically solid
number for the true likelihood of an event. Another
pitfall is the tendency for risks to span categories across
the 5x5 risk matrix. Real risks don’t adhere to simple
categories and trying to force-fit them into their exact
box usually wastes a lot of time and effort that could
instead be focused on resolving issues. Except for very
clear-cut, quantitative risks, teams should consider the
numerical values in the risk matrix as guidelines.

Some programs, especially smaller, constrained
programs, might consider a simplified 2x2 risk matrix
instead, as shown in Figure 4. While this might seem
oversimplified, it helps programs quickly categorize
major risks and focus their efforts on handling them.
Teams may also consider using other Agile methods like
“planning poker” to estimate risk. Planning poker offers
an informal less structured method that uses a game-like
format to avoid bogging down while leveraging the full
knowledge of the team4.

Whatever method is chosen, teams must not only
estimate the current risk level, but also the risk reduction
made possible by each proposed mitigation action.
Teams will also need to estimate how much effort is
required to conduct each proposed risk handling action.
One of the drawbacks of the 5x5 risk matrix is that it
focuses only on the risk, not on the effort required to
mitigate that risk. Risk reduction must take place in the
context of the effort required, especially for resource-
constrained missions. Small teams cannot do everything
and must decide where to focus their effort to have the
best chance for success in both mitigations actions and
in overall mission performance.

Braun 9 [35th] Annual
 Small Satellite Conference

Estimating the effort involved can include a simple guess
at the number of staff-days or staff-weeks and cost
involved, or it can involve another round of Agile
“planning poker,” where the focus is on the amount of
effort it will take to implement the proposed mitigation
action.

Overall, teams should keep the Agile mindset in mind.
The goal of assessing risks and efforts is to apply
resources where they will do the most good – not to
produce perfect estimates, or perfect risk analysis charts.
In many missions, the whole effort is rather informal.
The estimates are made to inform decision-making, not
to make statistical predictions. Documentation should be
focused on providing the rationale behind the decisions
made, rather than on achieving a certain “magic number”
of risks or an exact estimation of “bang for the buck.”

Step 5: Rank and Execute High Value Efforts First

Once risks and actions have been defined, and the effort
to accomplish each has been estimated, the team
evaluates the “bang for the buck” for each risk / action
set and ranks them in a method that allows the team to
decide how to apply its mission assurance efforts.

It can do this by evaluating the ratio between technical
risk reduction and programmatic risk increase for doing
any given action. Technical risk is defined as risk against
the already-established scope, as estimated in Step 3;
programmatic risk is defined as risk against the cost,
schedule, and resource restrictions already defined. In
some heavily resource-constrained missions, the ratio
might be inverted, and the team might instead consider
the programmatic (cost or schedule) risk reduced for the
technical risk incurred. For example, a typical trade in a
constraints-driven program is to remove a secondary
mission objective in order to maintain cost and schedule.

With the ratios defined, the team now ranks risk
reduction, mission assurance, or even design efforts in
order from most “bang for the buck” to least “bang for
the buck”. Note that the elements are not ranked in order
from “highest risk” to “lowest risk,” or even from
“highest risk reduction” to “lowest risk reduction.” The
effort required to implement an objective or reduce risk
is part of the assessment. “Low hanging fruit” may fall
higher on the list than more serious risks that are harder
to mitigate or more interesting objectives that consume
more resources. The sum of the effort required to
implement these actions (the sum of the programmatic
risk) tells the program stakeholders how many resources
are required. Constrained programs will need to draw the
line at the limit of their resources; items that fall below
the line are not addressed unless more resources become
available. Then the team executes the efforts roughly in
order.

One way to visualize this would be in a table of risk
reduction efforts. The table lists the estimated amount of
risk reduction, the confidence in that estimate, the
estimated cost or effort required, and the confidence in
that estimate. Figure 5 is a notional example. Missions
could use similar charts to show how their reduction
efforts reduce their risk to match their overall risk
posture. The charts can also show where the cost of such
efforts run up against the “hard line” of the resources
available.

This is just one way to rank and execute risk reduction
efforts. Missions may choose instead to do something
simpler, like plotting risks along a programmatic or
technical risk matrix as shown in Figure 6. Missions can

Figure 4: Simplified Risk Matrix

Figure 5: Table of Risk Reduction Efforts

Risk Action Risk Reduction

(story points)

Confidence in

Risk Reduction

Cost

(story points)

Confidence in

Cost

Ratio Implement?

Add software review 5 High 3 Medium 1.7 Yes

Add extra time for testing 8 High 13 High 0.6 No

Add modal survey test 20 Medium 20 High 1.0 No

Add extra accelerometers to sine vibe

test

3 Medium 2 High 1.5 Yes

Software issues delay test schedule

Finite element model not

correlated, leads to structural

failure

Braun 10 [35th] Annual
 Small Satellite Conference

then determine which actions to prioritize based on
where they fall along green / yellow / red boundaries the
team has drawn itself.

With risk and risk-reduction efforts identified, ranked in
order from most “bang for the buck” to least “bang for
the buck,” and discussed within the program, the team
can now execute the efforts they have agreed upon and
provide the best mission assurance value(s).

Mission assurance and risk management are rarely
simple and elegant. The ranked risk list is a nice theory,
but messier in practice – it is unlikely the mission will
have a clean list of tasks in a neat order. Agile mission
assurance is an art as much as it is a science. Teams
should remember the Agile mindset, and that the main
point of mission assurance is to improve the chances of
mission success, not to document risks. Agile values
individuals and interactions over processes and tools,
and customer collaboration over checklists. If the tool or
process doesn’t work for your mission, use a different
one!

Step 6: Reevaluate, Refine & Reiterate

The most critical part of the class-agnostic mission
assurance process, and the most related to Agile
principles, is Step 6: Re-evaluate and Refine. As
described in previous sections, early estimates of risk are
usually the least accurate, and correspondingly, mission
assurance plans developed early in mission execution are
rarely applicable throughout the mission lifecycle. As a
mission progresses, priorities will change, and new risks
and issues will emerge. Some efforts will take more
resources than expected, and some efforts will take fewer
resources than expected. On a regular basis – whether

that be after a two-week “sprint,” monthly, or quarterly
– the team meets to determine what has been done, what
remains to be done, whether priorities have changed, or
whether new information has emerged that might cause
the team to re-direct mission assurance activities. If the
mission is still operating within the agreed-upon cost,
schedule, requirements, and risk posture “knob values,”
this can be done internally to the team. Having agreed
upon the next set of priorities (or that the current efforts
should continue), the team embarks on the next iteration
through the cycle. It is worth noting that the team may
have margin built into their plan and this can be used to
absorb smaller changes before larger “knob”
adjustments are required; the level of margin and control
over that margin helps dictate how much capability the
team has to execute on its own.

If enough issues have arisen that one of the “knobs”
needs to be adjusted, the team should engage leadership
and, if necessary, key stakeholders. Leadership may, in
discussion with stakeholders, adjust the constraints of
the mission, adding funds and schedule or reducing
scope and accepting more risk, in order to absorb the
changes that arise. This is where communication with
stakeholders can be key. Programs may delegate
decision authorities differently depending on the size and
criticality of the mission, but in general, only leadership
and / or mission stakeholders can change one of the
“knobs” of a mission. At a minimum, programs will need
to inform leadership and key stakeholders if adjustments
to the knobs are necessary.

Teams may use the Agile class-agnostic cycle in the
context of mission milestones. For example, a team
might make use of peer reviews after every few sprints
to identify areas of concern and point out where design
and mission assurance efforts might be overlooking key
risks. A larger examination of the overall “knobs” of the
mission might occur at major programmatic reviews,
when developers, leadership, and stakeholders can all
meet to review program status and decide if any of the
“knobs” need to be adjusted.

Step 7: Capture Decisions and Lessons Learned

During the execution of the class-agnostic mission
assurance cycle, teams should look both inward and
outward. Within the mission, teams should document all
decisions made. As decisions, trades, and adjustments to
the “knobs” of the mission are made, it is critical that
teams capture the rationale behind these changes. Not
only does this help maintain continuity across personnel
and leadership changes, it helps prevent “risk aversion
creep” by keeping the entire team aware of what trades
have already been made between cost, schedule, risk,
and requirements – and why. This history is particularly
important as the mission approaches launch, when cost Figure 6: Technical vs. Programmatic Risk

Braun 11 [35th] Annual
 Small Satellite Conference

and schedule risks are generally in the rear-view mirror,
and leadership is most concerned with technical risk.

Additionally, missions should be outward-looking, and
should document lessons learned frequently during
mission execution. Capturing lessons learned after a
certain number of “sprints,” or at a minimum at each
major milestone, ensures that lessons are documented
while they are still fresh. Reviewing key lessons learned
from past missions at each milestone can also help the
team anticipate problems that might occur during the
next phase. Lessons-learned become sources for
evaluating risks for future missions.

REAL MISSION EXAMPLES OF CLASS

AGNOSTIC, CONSTRAINT-BASED SYSTEMS

While the class-agnostic concept has been used
informally over the last number of years, there hasn't
been a formalized assessment for how these practices
actually apply. This section illustrates elements of the
class-agnostic mission assurance approach across
multiple real flight missions. The discussion abstracts
many details of the missions themselves but focuses on
one or several exemplar scenarios in the missions'
developments that were enhanced by the class agnostic
approach and references instances where one of the Steps
was utilized. Table 2Error! Reference source not

found. provides an overview of the missions discussed,
their attributes, how they fit within the class-agnostic
approach by reference, and the takeaways concerning
implementation of the approach..

Mission A

Mission A13 took, effectively, two nearly separate
attempts to progress to flight. The mission was a
concurrent measurement science mission that fizzled
partly due to instrument and (early) CubeSat technology
challenges but also due to a poor establishment of
stakeholder interaction. With the delay of the partner
mission, an assessment of the efficacy of the overall
mission occurred; the mission was found to still add
scientific value.

The revamped mission quickly set up the environment
for the design team to re-work, design, build, and test the
entire flight system. The rework was bounded by known,
achievable, mission objectives that the team could easily
understand how changes they made did, or did not, affect
mission capability (step 1, 3, 4). While this required
notable engineering resources (staff and funding, step 1),
the team’s overall authority to make decisions to
progress quickly (schedule constraint), while

maintaining a reasonably tight communication loop with
stakeholders (few formal reviews, mostly peer and
stakeholder discussions throughout; step 2, 6, 7) enabled
build-to-launch to be about 18 months. The risk
taxonomy flexed and was reduced downwards in the
program due to both overall scoping reduction and
timeline requirements to meet launch (see Table 2).

Mission B

Mission B was a technology/capability demonstration
that purposely had large flexibility in its scope to help
push for “art of the possible”. Unfortunately, this
flexibility came with poorly established stakeholder
interactions and poorly defined mission objectives to
properly allow the team to balance risk impacts on
capability (step 1, 2, 4). This had the effect of the mission
being defined by delivered capability.

As time began to run out, cost, schedule (launch), and
technical capability (staff) all became limited, therefore,
driving three constraints at the same time (step 3).
Multiple de-scopes were allowed in performance and
functionality; focus on “what matters” was hard to define
(step 4, 5). Over time, the taxonomy in Table 1 was
heavily used to re-evaluate the program and defined both
final design attributes as well as verification/risk level
(note that the taxonomy should not be used to define
design attributes, only risk/verification levels). By the
end, a Do No Harm violation was discovered and the
lack of remaining budget or schedule to find root cause
led to de-manifestation of the mission (steps 6, 7). Key
challenges on this program resulted from the lack of
experienced management, consistent loss of personnel,
and poorly defined objectives and constraints making it
unclear which “knobs” existed for the team (step 7, 1).

Mission C

Mission C was a technology/capability demonstration.
Technology developments were prioritized early on over
mission development. This led to some "cart before the
horse" issues for vendor specifications and definition of
the needs of the overall mission (step 1, 3). Further,
iteration loops and assessments as well as stakeholder
interactions were not well established at the beginning
(step 2). Multiple technology risk reduction decisions
were made (acceptable for the program).
Programmatically, the team identified a lack of correct
staffing or skillset availability (step 3) which was only
addressed late in the program with a notable staffing
increase (step 6, 1). Towards the end of development,
delivery delays of both vehicle and payload, along with
launch schedule deadlines, required the team to utilize
the risk taxonomy as a framework to define a test
campaign that was sufficient for stakeholders (minimum

Braun 12 [35th] Annual
 Small Satellite Conference

success) while meeting the hard schedule constraint of
launch (step 4, 5).

Descoping was the most common outcome when issues
occurred on this program; however, a launch slip
allowed the team to expand their test campaign to
include more edge case testing, buy down more risk with
the ground segment and flight hardware, and mitigate
several late-breaking risks. This yielded greater
functionality and even helped reduce known capability
gaps that had been "accepted" prior to the slip (step 6, 7,
taxonomy).taxonomy) It shows the agile adjustment of
the class agnostic approach.

In the end, many of the issues experienced by Mission C
could have been reduced by having a more experienced
team, or better mentoring and coaching (say through peer
review). Multiple unnecessary rework and scope
reductions occurred due to these issues and the mission
would not have been recoverable without a late staffing
increase.

Mission D

Mission D is the first mission to start with the class-
agnostic/constraint-based mission approach and was
another technology/capability demonstration. As a cost-
constrained mission, it became apparent that a high
functioning team was required to stay within limitations
without too many design iterations. Multiple early
reviews and discussions were held with stakeholders to
establish “knobs,” acquisition strategy, etc. Eventually
key risk ranking and mitigation options were discussed
and prioritized. This emphasizes the need for a well
scoped and well-established program/execution plan
early on (steps 1 – 3). The largest design review was only
a preliminary design review (PDR) and stakeholder
meetings are generally only held two times a year for
updates and decisions (step 2, 6, 7). Risk assessment has
been one of the key tools used by the team to convey
areas for investment (time or funds) and to focus
conversations of “this will or will not affect success, so
does it matter?” (step 3, 4, 5).

Over time, and thanks to the team’s efficiency, the
program has expanded its risk taxonomy level beyond
minimum functionality, allowing for better system
characterization. Cost and scope are now the primary
drivers, instead of just cost, since the stakeholders have
gained high confidence in the team and the established
communication structure. The class-agnostic approach
built trust and yielded a highly effective communication
approach that has enabled the team to own much of the
decision-making and expand capability when the
opportunity arose while ensuring stakeholders had the
correct buy-in and buy-off to major risks and trades.

Mission E

Mission E is a capability demonstration and had
numerous, known, technical hurdles to overcome before
a space test could be performed. This program started
with risk mitigation activities to ensure a space
demonstration was possible. With this effort, the overall
scope and objectives became very clear and have been
very static throughout the development process (steps 3,
4, 5, 7, 1). Again, well-defined scope (e.g.,. defining
“what matters”) has greatly aided execution of this
mission and enabled a small team at the program / system
engineering level. Generally, stakeholder interactions
were minimal and/or low effort but frequent, reducing
overall communication burden (step 2). Further,
significant portions of the mission have been completed
by subject matter experts (in-house or contractor) who
were brought into the project early creating much more
effective risk identification, evaluation, and iteration
within the well understood scope of the mission (steps 3-
6).

Multiple technical risks emerged including poor intra-
team communication and shifts to under-developed
products, causing related programmatic risks. The class-
agnostic approach was not well utilized in addressing
these risks and multiple trades/discussions were fairly
drawn out or somewhat ambiguously concluded.
Further, the class-agnostic approach still does not have a
particularly effective counter to realized risks
(issues/problems) which have been an issue for the
Mission E. However, the approach does encourage
earlier identification of risks and prioritization, as well
as a framework for handling how to address realized
risks (changes to knobs, shifting in the taxonomy). For
Mission E, this has resulted in schedule elongation (a
constraint) to trade for higher quality deliverables.

Mission F

Mission F was a half-ESPA class satellite with five
experimental payloads and a relatively low budget
(<$50M). It was part of a commercial rideshare with a
fixed launched date. The mission had an initial risk
posture of Class D and a mission assurance approach that
involved a small team of four generalists embedded in
the program.

The program encountered issues during integration,
primarily related to software, that held up environmental
testing. Cost overruns led to severely limited funds. The
team employed class-agnostic concepts, allocating
resources to software efforts necessary for survival and
minimal functionality (steps 4 and 5). The cost and
schedule “knobs” were fixed; the risk and requirements
knobs were adjusted (step 6). On orbit, the mission

Braun 13 [35th] Annual
 Small Satellite Conference

scaled back objectives to prioritize the collection of
science data. The team worked around data issues.

Critical to the implementation of the class-agnostic
approach was the recognition that the cost and schedule
slips were also the greatest technical risk (step 1); if the
satellite missed its launch, it would be unlikely that the
five payloads would ever be re-manifested. The satellite
had to meet Do No Harm and safety requirements, but
despite the Class D designation the real driver of mission
assurance efforts (beyond Do No Harm) was the highest
bang for the buck.

Mission G

Mission G is a large Class C/D mission with Class A
elements. It includes two operational demonstrations and
several smaller experimental payloads. While the overall
risk acceptance level of the mission was listed at Class
C/D, the mission – a long-lifetime satellite designed for
geosynchronous orbit – required much greater mission
assurance than typically implied by a Class C/D
designation. The approach followed on this mission was
more a traditional / tailored approach, but as issues arose,
class-agnostic concepts were used to determine how best
to adjust the mission’s “knobs.” Since requirements and
risk posture were more fixed than usual in a Class C/D
mission, the schedule was lengthened to accommodate
the resolution of issues (steps 1 and 6). Initially funding
was also increased, but toward the end of integration a
greater risk posture was accepted in order to cap
overruns at an acceptable level. Cost pressures required
smart decision-making in order to prioritize the greatest
“bang for the buck,” and class-agnostic concepts were
used to drive decision-making on risk.

This mission demonstrates several limitations of the
traditional “class system” approach – missions rarely fit
neatly into a single category, and Class C or D category
designations are sometimes chosen more to reflect the
optimistic hope of cost savings than the real risk
tolerance of stakeholders. The class-agnostic system is
more transparent regarding the decision-making required
to achieve the mission: in this case, cost and schedule
were flexible enough to maintain requirements up to a
point, and after that point, the cost “knob” was fixed, and
risk posture increased.

Mission H

Mission H is a more traditional operational mission, a
larger high-value asset with a low risk tolerance.
However, the mission is being executed by a small team
on a compressed schedule, and very few resources are
available for independent mission assurance (step 1).
The mission is in its early stages, but the class-agnostic
approach is being used to drive mission assurance
efforts.

One class-agnostic concept used in this mission is the up-
front mission assurance “blitz,” (step1) where a
(comparatively) large set of subject-matter experts are
reviewing the mission’s preliminary requirements
flowdown and design in order to determine where best to
apply risk-reduction efforts. Peer review and focused
analysis on the areas of greatest risk have helped drive
early decision-making. Major milestone reviews are
being conducted in a more Agile, iterative process,
where traditional system requirements review (SRR),
preliminary design review (PDR), and critical design
review (CDR)SRR, PDR, and CDR meetings are as short
capstone events to a longer informal subject-matter
expert review period (step 2). The mission is constrained
by schedule and staffing, but seeks to maintain a low risk
posture; the scope, requirements, and budget “knobs”
may end up being the primary method by which
stakeholders handle issues. Already, however, the
schedule is slipping, mainly due to funding availability;
in the end, the schedule may also need to be flexible.

The application of class-agnostic mission assurance to
this mission is unusual due to its large size, budget, and
mission-critical nature. It remains to be seen if the
approach will enable the mission to make hard choices
between cost, schedule, performance, and risk, or if the
class-agnostic approach will become harder to execute
as the mission moves on and the natural tendency for risk
tolerance to decrease kicks in.

Mission J

Mission J was a demonstration mission carrying five
experimental payloads and designed to be deployed
through the International Space Station (ISS) airlock. As
such, it was a lower-budget, small-team mission limited
primarily by form factor and staffing, but also by cost.
Schedule was slightly more flexible given the ability to
re-manifest to a later commercial resupply mission if
needed. The initial, and final, mission designation was
minimal functionality; however, the actual success
criteria for the mission were not formally documented
(step 1 and the risk taxonomy).

The mission prioritized functional testing and
successfully uncovered and fixed several issues before
launch. The mission was successful in collecting data on
orbit; however, a failure in a key component led to
mission loss after about four months of data collection.
“Do No Harm” was preserved – the mission will re-enter
approximately two years after deployment, and will not
pose a safety hazard to the ISS. While the foreshortened
mission was sufficient to meet minimum functionality, it
led to issues with the mishap prevention community,
who conducted a full failure investigation – perhaps
overkill for a low-budget, experimental, single-string
mission. This mission illustrates the benefit of defining

Braun 14 [35th] Annual
 Small Satellite Conference

clear success criteria up front and interacting with
stakeholders (including non-obvious stakeholders such
as those responsible for identifying and reporting
mishaps) to ensure that the risk posture is fully
understood (step 1, and the definition of minimum
success criteria). The taxonomy in Table 1, and the class-
agnostic approach, may provide a way for missions to
better document the true objectives of a mission, and the
true risk posture being accepted, to ensure that
expectations are clear across all stakeholders.

Mission K

Mission K was executed several years before the first
formal documentation of class-agnostic mission
assurance. Nevertheless, it helped define the approach
and provides several instructive examples. The mission
was larger than ESPA-class, with a relatively large
budget, but a highly-constrained schedule. Early in the
mission, the mission priorities were established:
schedule (launching on time with minimum
functionality) was considered the highest priority, with
cost as the second-highest priority, and performance as
the third priority (step 1).

The mission used an airborne payload minimally
modified for space applications, and the bus was based
on a previously-flown satellite. During execution, the
stated priorities (schedule first, then cost, then
performance) were not always followed; repeated
inquiries about adding performance or incorporating
additional capabilities led to cost growth. The team
learned to keep the primary goal in mind, and strictly
limit investigations into possible enhancements until that
mission had been achieved. The team also learned to
formally document all decisions – as leadership changed
throughout the program, previous decisions (especially
hard ones) were continuously revisited, leading to
wasted time (step 7).

Despite this, the mission ultimately accepted many risks
instead of mitigating them, keeping the schedule “knob”
relatively fixed and accepting risk against performance
when issues were uncovered during testing. Having a
small, high-performing team helped; once roles were
established and bureaucracy was minimized, the team
wasted little time with unnecessary documentation. The
mission was successful on orbit, but required significant
courage (for lack of a better term) to launch: the risk
acceptance level at Flight Readiness Review was high.
Fortunately, issues encountered on-orbit were not
mission-threatening, likely due to the focus on critical
activities and a strong “test like you fly” mentality.

Braun 15 [35th] Annual
 Small Satellite Conference

Table 2: Summary of Missions

Mission Attributes Vehicle /

System

Config

Driving

Constraint

Spectrum of MA

(Figure 1)

Taxonomy

Baselined

(Table 1)

Taxonomy

Implemented

(Table 1)

Key Takeaways
M

is
si

o
n

 A

Late application of the approach; one of
key missions to help formalize this
approach. Schedule constrained system.
High risk approach for new technology

CubeSat 6U Schedule Constraints
Driven / High Risk
Tolerance

Full
Functionality

Minimum
Functionality

- Development team had to make quick
course corrections (sometimes sweeping)
- Team prioritized functionality and
testing over large trade studies / analysis
- Enabled a revamped mission to build and
launch in ~18 months (after several years
of stagnation)

M
is

si
o

n
 B

 Late application of the approach;
schedule and staff constrained system.
High risk approach for new technology

Half ESPA Schedule and
Staff

Constraints
Driven / High Risk
Tolerance

Full
Functionality

Do No Harm - Taxonomy and agile approach enabled
mission team and stakeholders to discuss
issues, impacts to scope, and agree on
immutable requirements

M
is

si
o

n
 C

 Late application of the approach; overall
mission developed on CubeSat-like
approach with limited staff and high risk
approach for new technology

CubeSat 12U Staff-
>Schedule

Constraints
Driven / High Risk
Tolerance

Full
Functionality

Minimum
Functionality /
Full Functionality

- Agile implementation can suffer from
continually reducing scope, creating
unnecessary rework
- Experience and/or good mentorship are
required

M
is

si
o

n
 D

First mission to go through the full
approach purposefully; CubeSat-like
approach with limited funding but
evolutionary hardware/software from
previous missions. Medium risk
tolerance for new technology and
mission application

CubeSat 6U -
12U

Cost Constraints
Driven / Low(er)
Risk Tolerance

Minimum
Functionality

Minimum
Functionality /
Full Functionality

- Class-agnostic approach provided a
communication tool with stakeholders,
and within the development team, to
define risks and trades
- Active "knob adjustments" allowed team
to start by "promising less and delivering
more"

M
is

si
o

n
 E

Late application of the approach; overall
mission developed on CubeSat-like
approach. Medium risk tolerance for
new technology and mission application

CubeSat 12U Staff Constraints
Driven / Low(er)
Risk Tolerance

Full
Functionality

TBD - Expect Full
Functionality

- Demonstrated key practices of properly
scoping the mission and addressing high
value efforts first
- Focused time and funds on early risk
mitigation activities leading to successful
implementation.
- Constraints can be variable and is one of
the adjustable "knobs"

Braun 16 [35th] Annual
 Small Satellite Conference

M
is

si
o

n
 F

Helped refine the approach; initial
mission developed under Class D
mission assurance practices, but used
class-agnostic approach as funding and
schedule became tight. High risk
tolerance for new technology and
mission application

Half-ESPA Schedule and
Cost

Constraints
Driven / High Risk
Tolerance

Full
Functionality

Minimum
Functionality /
Full Functionality

- Helped refine the approach
- Focused efforts on critical-for-launch
issues and accepted scope changes and
risk
- Experienced on-orbit anomalies in high-
risk areas but completed mission

M
is

si
o

n
 G

Class C/D mission with Class A
elements; two operational
demonstrations and multiple
experimental payloads. Class-agnostic
concepts used to focus effort in critical
areas toward end of development

Large Requirements Requirements
Driven / High(er)
Risk Tolerance

Full
Functionality

Full Functionality - Missions are rarely monolithic and
single-class
- Important to "pick your battles" when
budget is fixed

M
is

si
o

n
 H

Mission still in early development but
using the approach purposefully.
Operational mission with critical
implications, but heavily constrained by
resources. Low risk tolerance, desire for
full functionality

Larger than
ESPA

Staff Requirements
Driven / Low Risk
Tolerance

Full
Functionality

TBD - An up-front full mission assurance
"survey" can help identify critical areas
early
- Mindful trades can reduce risk
- Harder decisions are coming

M
is

si
o

n
 J

Demonstration mission carrying
multiple payloads. CubeSat-based
approach in larger form factor designed
for deployment from ISS. Completed
on-orbit mission but failed before end of
design life

ISS Airlock
Deployable

Form Factor Constraints
Driven / High Risk
Tolerance

Minimum
Functionality

Minimum
Functionality

- Focus on high-value testing uncovered
issues early
- Would have benefited from better
definition of minimum success criteria

M
is

si
o

n
 K

Operational but heavily constraints-
driven (schedule). Larger budget than
most, higher risk tolerance. Successful
on orbit

Larger than
ESPA

Schedule Constraints
Driven / Low(er)
Risk Tolerance

Full
Functionality

Full Functionality - Good prioritization of requirements
(schedule, then cost, then requirements)
but prioritization not always followed
- Good example of deliberative risk
decision-making
- On-orbit issues were in lower-criticality
areas
- Communication with stakeholders and
documentation of decision-making is
critical

Braun 17 [35th] Annual
 Small Satellite Conference

CONCLUSIONS AND FUTURE WORK

The class-agnostic mission assurance approach, like any
Agile process, is aa dynamic, living process. It is
intentionally not prescriptive and should adjust to the
needs of the program, the needs of the organization, and
the needs of stakeholders. So much of the class-agnostic
approach really is about finding and assessing what

matters for mission success, creating and maintaining a
communication structure to convey this to stakeholders,
and making timely decisions.

The class-agnostic approach also relies heavily on
experience. While process documentation, lessons
learned, and reference material are important, truly
efficient mission assurance requires apprenticeship.
Documents and “how to” manuals have their place, but
are no substitute. Young engineers should be paired with
experienced engineers to help them develop good
instincts.

The program team (program managers, mission
assurance, engineering team) should continuously
evaluate what works for them and what improvement is
needed. Similarly, this discussion and assessment should
occur with stakeholders to get buy-in and cognizance of
the flow of the approach. In the end, this is a messy
approach and will be naturally tailored throughout a
program (instead of purely up front). The Agile mindset
encourages re-evaluating and discarding things that do
not work. This takes experience, mentoring, and practice

to get right.

In an effort to figure out what matters, the class-agnostic
approach is also continuously being evaluated as it is
applied to programs. This has yielded changes and
understanding of the useful elements (presented here)
but also elicits further questions. Future work may
include further study and comparison to how Agile, a
more software-based process, merges with the
software/hardware development of space and ground
systems (perhaps considering examples like the Toyota
Production System). Also the merging of traditional
Class A-D approaches with the class-agnostic system is
mostly unexplored but could be correct for higher
reliability non-unique systems; in the end when missions
are constraints-driven, and mission risk posture is just
one more requirement that can be traded, the Class
Agnostic heuristic can apply.

ACKNOWLEDGEMENTS

The Air Force Research Laboratory’s Small Satellite
Portfolio (SSP) continues to lead the exploration into
constraint-based mission practices in an effort to better
balance speed of development, cost, and scope. Much of
the experience gained to create this paper has come from

its missions and through the University Nanosatellite
Program. AFRL’s SSP team has been integral in
conceiving and creating these concepts.

The authors would also like to thank the Aerospace
Corporation’s Space Innovation Directorate and all the
individuals who have supported the DoD Space Test
Program and the Space Rapid Capabilities Office over
the years, who helped create the class-agnostic approach.
Special thanks go to Peter Chang and Andrew Read for
developing the early concepts, to Doug Harris for co-
authoring the Aerospace Technical Report, and to Mark
Jelonek, Gayla Walden, and Kara O’Donnell for their
review and feedback.

REFERENCES

1. “Design, Construction, and Testing Requirements
for one of a kind space equipment,” SPVT-2016-
005, ORIGINAL ED., DOD-HDBK-343.
February 1986.

2. Jasper, L. E. Z. and Hunt, L. and Voss, D. and
Jacka, C., “Defining a New Mission Assurance
Philosophy for Small Satellites,” SmallSat
Conference, Logan, UT, Aug 4-9, 2018. Paper No.
SSC18-WKII-05

3. Jasper, L. E. Z. and Braun, B. and L. Hunt, “New
Constraint-Driven Mission Construct for Small
Satellites and Constrained Missions,” IEEE
Aerospace Conference, Big Sky, MT, Mar 7 – 14,
2020. Paper No. 2.0409.

4. Agile Alliance. (n.d.), “Agile 101 - What is Agile
Software Development?” Retrieved October 13,
2020, from
https://www.agilealliance.org/agile101/Ambler,
n.d.

5. Ambler, Scott. (n.d.), “Examining the Agile
Manifesto,” Retrieved October 13, 2020, from
http://www.ambysoft.com/essays/agileManifesto.
html.

6. Read, A. and Chang, P. and Braun, B. and
Voelkel, D, “Rideshare Mission Assurance and
the Do No Harm Process,” Report No. TOR-2016-
02946, The Aerospace Corporation, 2016.

7. Cavender, D. “Emerging Low Toxicity “Green”
Chemical Propulsion Technologies for
SmallSats,” Monthly Webinar Series, Small
Spacecraft Virtual Institute, Marshall Space Flight
Center, 16 September 2020.

8. Venturini, C. “Improving Mission Success of
CubeSats,” Report No. TOR-2017-01689, The
Aerospace Corporation, 2017.

Braun 18 [35th] Annual
 Small Satellite Conference

9. Johnson-Roth, G. and Tosney, W, “Mission Risk
Planning and Acquisition Tailoring Guidelines for
National Security Space Vehicles,” Report No.
TOR-2011(8591)-5, The Aerospace Corporation,
2010.

10. ISO/TC 20/SC 14 Space systems and operations,
Space Systems Risk Management, ISO
17666:2016, International Organization for
Standardization, 2016.

11. Office of the Deputy Assistant Secretary of
Defense for Systems Engineering, Risk, Issue, and
Opportunity Management Guide for Defense
Acquisition Programs, Defense Acquisition
Programs, Department of Defense, Washington,
D.C., 2017.

12. Office of Safety and Mission Assurance, Agency
Risk Management Procedural Requirements, NPR
8000.4B, NASA, 2017.

13. Willett Gies, T. and Shirley, B. and Jasper, L. and
Enger, C., “Very Low Frequency Propagation
Mapper (VPM) On Orbit Operations: Results and
Experiments with Modernizing Operations,”
SmallSat Conference, Paper No. SSC20-II-04,
Logan, UT, Aug 1-6, 2020.

14. Braun, Barbara M. and Berenberg, Lisa A. and
Herrin, Sabrina L. and Musani, Riaz S. and Harris,
Douglas A., “A Class Agnostic Mission
Assurance Approach,” Report No. TOR-2021-
00133, The Aerospace Corporation, 2021.

