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ABSTRACT 

 

Should we abolish the Class System? The Class A/B/C/D mission assurance and risk posture designations familiar to 
most satellite developers were established in 1986. They are used by both the Department of Defense (DoD) and 
National Aeronautics and Space Administration (NASA) to define risk and risk mitigation requirements for flight 
missions. However, many of today’s satellites are different – smaller, digitally engineered, designed for production, 
and increasingly destined for proliferated architectures. The rate of development is increasing while the uniqueness of 
the systems being built is decreasing. 

The need to move faster and the ability to utilize, for the first time in space, real product-line components challenges 
the premise and assumptions behind the Class A through D designations. The traditional “Class System” is not as 
applicable to most small satellite developments, which instead focus on ways to prioritize key, high impact, agile 
processes in an effort to cut costs and timelines. Operating within this environment requires satellite developers to 
apply practices that are agnostic to class definition (e.g., the practices that are most fundamental to ensuring the 
mission meets the needs). 

This paper outlines the Class Agnostic approach and constraints-based mission implementation practices. It will 
describe several real-life examples from Air Force Research Laboratory, Space and Missile System Center, and Space 
Rapid Capabilities Office missions that are applying a “class agnostic” approach to their missions. It will include 
lessons learned from missions which failed critical Do No Harm requirements and lost a flight to missions that have 
fully utilized the class agnostic approach. It will also discuss how the several missions used class-agnostic techniques 
to balance requirements of scope, risk, cost, and schedule to maximize the chances of mission success within hard 
constraints. The approaches used in these missions are applicable not only to small satellites, but also to any mission 
intending to move beyond the “Class System” to a more agile and flexible mindset for risk mitigation and mission 
assurance. 
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INTRODUCTION 

Most satellite developers have encountered the “Class 
System,” the approach to satellite mission assurance that 
divides missions into classes based on criticality or risk 
tolerance. The most commonly-used class system – 
which makes use of four mission assurance categories 
referred to as Class A, B, C, and D – was originally 
developed in 1986 by the Department of Defense for 
one-of-a-kind space equipment, and documented in a 
since-canceled handbook, MIL-HDBK-3431. In 
comparison, the first Small Satellite Conference would 
not be held until one year later, and in the 35 intervening 
years much has changed about space and space missions. 
The old A, B, C, and D mission assurance levels are 
increasingly difficult to apply to today’s smaller 
constraints-driven missions, many of which are not one-
of-a-kind.  

The traditional “Class System” suffers additional 
shortcomings. All too often, these classifications are 
used as shorthand for the fiscal realities of the mission 
rather than a true risk posture. They tend to be 
monolithic, glossing over the fact that a single satellite 
mission can have a mixture of risk levels – one 
subsystem can require Class A attention, while for 
another more robust or less critical subsystem, Class D 
might be acceptable. Furthermore, once a risk class 
designation is established, there is typically little to no 
linkage of that risk posture with the specifics of program 
execution. There is little guidance given on which risks 
to mitigate or to accept given the program’s resource 
constraints. The traditional class designation also ignores 
whether requirements or the constraints drive the 
mission, and lacks flexibility to the changing priorities 
encountered during program execution. Today, many 
missions instead focus on ways to prioritize high impact 
risk-reduction processes in an effort to cut costs and 
timelines and to get the most “bang for the buck” out of 
mission assurance efforts.  

The Class A-D terminology can still be useful up front 
to help determine the applicability of redundancy and 
reliability requirements, testing approaches, contractual 
deliverables, and standards documents. And, for true 
requirements-driven missions the “Class System” may 
still be a good way to articulate risk posture and guide 
execution. In this paper, however, we outline a approach 
to mission assurance that breaks down the barriers of the 
“Class System,” opting instead for a value-driven 
approach that is agile and changes with the program. In 
class-agnostic approach, “Time, Cost, & Quality are [all] 
commodities,” and we “treat them as such. Quality is a 
commodity even if we don’t think it is.”6 

KEY CONCEPTS 

The class-agnostic mission assurance approach14 is 
driven by several key concepts and relies on several 
assumptions about mission types. It may not be suitable 
for all missions. For example, large-team, requirements-
driven launch missions which cannot fail may be more 
suited to traditional Class A mission assurance 
approaches. Other missions, ones that embrace the 
concepts and characteristics listed below, may benefit 
from a more class-agnostic approach.  

Requirements-driven vs. Constraints-driven Missions 

The distinction between requirements-driven and 
constraints-driven missions was first articulated as part 
of a paper at the 2018 Conference on Small Satellites2, 
and later refined in an Institute of Electrical and 
Electronics Engineers (IEEE) paper3. 

A Requirements-Driven Mission is a mission where 
mission objectives / requirements drive the schedule and 
budget and where achieving those objectives is typically 
prioritized over schedule and budget. Requirements-
driven missions are focused on mission system 
performance with less emphasis on how that drives 
budget and schedule. 

This is not to say that requirements-driven missions do 
not need to apply due diligence with respect to cost and 
schedule, but cost and schedule are typically less 
constrained, and achieving mission requirements is the 
focus. Requirements-driven missions have at least some 
flexibility to delay a launch or add funding to ensure all 
mission requirements are met.  

In contrast, constraints-driven missions are highly 
focused on achieving, within externally constrained 
budgets and schedule, “good enough” performance. A 
Constraints-Driven Mission is a mission where the 
objectives and/or scope are traded with, or bounded by, 
schedule and budget and all three may evolve as the 
system is defined, designed, tested, and operated3. 

Constraints-driven missions typically have little to no 
flexibility for delaying a launch or adding funding to 
resolve issues that arise. Cost and schedule are the most 
common constraints, but others may exist as well. For 
example, there are significant volume and design 
constraints associated with the CubeSat form factor. 
“Common bus” or standardized-architecture 
implementations represent another type of constraint; if 
stakeholders wish to prioritize adherence to a standard 
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interface, they must allow developers the freedom to 
trade functionality or performance requirements if 
needed to fit that standard.  

Figure 1 shows the concept of constraints-driven vs. 
requirements-driven mission architectures as another 
dimension to the typical Class A/B/C/D mission 
assurance levels. Missions that focus on the Class 
A/B/C/D categorization sometimes ignore this other 
driving factor.  

The Agile Mindset and Approach 

The class-agnostic framework is rooted in concepts 
borrowed from the Agile software development 
movement. On its website, the Agile Alliance describes 
Agile as “the ability to create and respond to change. It 
is a way of dealing with, and ultimately succeeding in, 
an uncertain and turbulent environment.”4 Class-
agnostic mission assurance requires much of the same 
mindset as Agile. Our version of the Agile Manifesto for 
Mission Assurance is shown in Figure 2Error! 

Reference source not found.. 

Another way of stating the manifesto, similar to that 
described by Scott Ambler of the Agile Alliance, is as 
follows5: 

• Mission assurance tools and processes are 
important, but it is more important to have 
competent people working together effectively. 

• Good documentation is important in helping 
people understand risk and risk mitigation, but 
the main point of mission assurance is to 
improve the chance of mission success, not to 
document risks. 

• Requirements lists and Contract Data 
Requirements Lists (CDRL) are important but 
are no substitute for working closely with all 
partners to discover what the mission needs to 
do, and how best to help it succeed. 

 

Figure 1: Constraints and Requirements-Driven Mission Assurance Spectrum 
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• A mission assurance plan is important, but it 
must not be too rigid to accommodate changes 
in priorities, resources, risk, and people's 
understanding of the mission’s objectives. 

Mission Attributes 

The Agile concepts that underpin the class-agnostic 
approach are applicable to any mission of any size. 
However, the class-agnostic methodology is most 
applicable to missions with some or all the following 
attributes.  

• Missions that are partly or mostly constraints-
driven. The approach is most effective where 
missions are willing to trade requirements and 
risk to remain within cost, schedule, or other 
constraints.  

 

• Missions with small program offices. One of 
the major tenets of Agile is that it requires 
small, high-performing teams to work closely 
together. In large program offices with many 
organizational layers, the sheer size and 
complexity of the program and its staffing 
profile makes close communication and 
coordination difficult. Such missions typically 
also have the budget to conduct a full 
independent mission assurance effort, and 
class-agnostic mission assurance may be less 
appropriate. 
 

• Missions for which less than 100% mission 
success is an option. A critical launch is a 
good example of a mission with very few 
options for less than 100% mission success – it 
either makes it to orbit, or it doesn’t. The 
heuristic can be applied to missions for which 
full mission success is the only metric that is 
“good enough,” but in that case it is very 
similar to traditional Class A mission 
assurance.  

Additionally, class-agnostic mission assurance relies on 
the following concepts.  

• Mission assurance is anything that improves 
the chances of mission success. In constraints-
driven missions, risk is often accepted to 
remain within program constraints, and a 
guarantee of mission success is rarely possible. 
In this context, class-agnostic mission 
assurance seeks to maximize, rather than 
guarantee, the chances of mission success 
within the available cost, schedule, and 
resource constraints.  
 

• Mission assurance is not the purview of any 
single organization. Everyone involved in the 
mission – the government program office 
along with its support contractors, as well as 
the prime contractor and its subcontractors – 
makes up the mission assurance function. In 
most applications of the class-agnostic 
heuristic, mission assurance is the collective 

 

Figure 2: Agile Mission Assurance “Manifesto” 
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effort of the entire team, not one of 
independent oversight. Mission assurance need 
not be independent to be objective.  
 

• Efficient mission assurance requires 
mentorship. When mission assurance efforts 
are constrained by limited resources, engineers 
need to have good instincts, so they can spot 
the issues faster and exercise good judgement 
in prioritizing activities. Pairing novice 
engineers with more experienced engineers 
(like pairing an apprentice with a master) helps 
generate new seasoned engineers with the right 
instincts.  
 

• Class-agnostic mission assurance tailors “up.” 
Traditional mission assurance approaches start 
with a “Class A” requirements-driven 
approach and tailor back. This is less 
appropriate for highly constrained missions, 

which start with the most basic “Do No Harm” 
level of mission assurance2,6 and then add on 
what is needed and desired by the stakeholders 
to reach the final balance between capability 
and risk. Starting at a “Class A” approach and 
tailoring back is not only extremely 
cumbersome for resource-constrained 
missions. This approach also provides no 
fallback position should program realities 
change.  

 

CLASS AGNOSTIC MISSION ASSURANCE 

Figure 3 illustrates the overall approach to Class-
Agnostic Mission Assurance. A more detailed discussion 
of the steps to this approach follows. 

 

Figure 3: Class-Agnostic Mission Assurance Approach 
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Step 1: Establish the “Knobs” of the Mission 

The program team and stakeholders must understand 
mission goals and constraints and the relationship 
between them when applying the class-agnostic 
heuristic.  The program team and stakeholders should not 
just develop an idea of what minimum mission success 
might look like – which may include ground-based 
objectives like maturing a technology or process – but 
also determine whether the scope of the mission matches 
this vision, and what level of risk the program is willing 
to accept, at least initially. 

The first step is to explore the mission's objectives. The 
class-agnostic concept of objectives is not so much a 
requirement list as a story or a set of statements about 
what the mission is supposed to do. Many methods for 
defining and communicating the mission scope are 
viable; options might include one, or multiple, of the 
following: metric-based initial success criteria, 
minimum viable product (i.e., the minimum capability 
the spacecraft could fly with), use-case and user-story 
creation, requirements definition and derivation, or 
experiment plan and concept of operations. The 
objectives can include minimum, baseline, and goal 
criteria, but should be concise – ideally not more than 
one briefing chart. For constraints-driven missions, it can 
be particularly important to define what constitutes 
“minimum functionality” (i.e., what is “good enough” to 
launch?). 

Having identified the mission objectives, the team can 
now begin identifying the mission’s constraints, such as 
cost, schedule, resources, size, etc. These are usually 
straightforward to list, but harder to match appropriately 
to the mission scope. The team must make realistic 
assessments as to whether objectives and constraints 
match each other. One of the major lessons learned from 
studies of CubeSats is to ensure that missions are scoped 
appropriately for the vision.8 A $1M CubeSat is unlikely 
to deliver the performance or reliability of a $100M 
larger satellite, and the program should not expect such 
miracles unless it is willing to pay for them.  

Once the objectives and constraints of the mission are 
described, the program and its stakeholders should 
jointly decide whether the mission is predominantly 
requirements-driven or constraints-driven. This decision 
should be revisited often and formally overturned if 
necessary. Too many missions claim to be constraints-
driven when the initial budget is set but become more 
and more requirements-driven as launch approaches. 

Developers and stakeholders should jointly understand 
the initial risk posture of the mission. In the past, 
customers have used traditional Class A/B/C/D 
designations to denote risk tolerance categories and such 

designations can still be used.9 However, few missions 
truly fit within a single risk category (i.e., all within 
Class A, B, C or D). For these missions, other 
methodologies allow tailoring of risk level by subsystem 
or specialty engineering. This approach allows missions 
to focus their mission assurance on areas of higher 
criticality, while accepting more risk in lower-criticality 
areas. Additionally, the traditional designations for the 
Class A/B/C/D risk posture paradigm may have a risk 
“floor” that is too high to reap the full benefits of low-
cost, risk-tolerant missions. Recent work has provided a 
sub-class-D taxonomy that provides a useful vocabulary 
for stakeholders and developers to use when discussing 
risk posture for highly risk-tolerant missions. Table 1 
summarizes this taxonomy, and more details can be 
found in the referenced paper.2 

Table 1: Risk Taxonomy for Space Missions 

Demonstrated 

Level of Capability 

Goals and 

Implications 

(Orbit) 

Implication 

(Ground) + Risk at 

Launch 

Do No Harm DOA is ok 
(education and/or 
fully constrained 
and not requirement 
driven) 

Hypothesis(es) 
untested; unclear 
capability 

Survival Not DOA (power + 
low-rate comm). 
May have no 
higher-level 
functionality 

Hypothesis(es) 
untested; vehicle 
should be capable of 
supporting some 
operations and tests 

Minimum 
Functionality 

Minimum mission 
success. Mission 
recoverable in event 
of fault. No mishap 
/ failure review 
board if achieved. 

Hypothesis(es) 
partially tested; 
elements incomplete. 
Expect it to work but 
full evidence not 
created 

Full Functionality 
(payload 
performance driven 
by constraints) 

Full mission 
success.  
Functionality 
limited by 
constraints. 

Hypothesis(es) 
tested on ground; 
should work. Need 
on-orbit data for 
further evidence 

Class A/B/C/D 
(payload 
performance driven 
by requirements) 

Full mission 
success, full 
functionality 
expected at set risk 
levels 

Hypothesis(es) 
tested on ground; 
evidence of 
capability. Need on-
orbit data for further 
evidence 

This risk taxonomy provides several level-sets of 
capability that is demonstrated through verification 
activities and also provides implications for what that 
really means for the overall system’s known capability. 
Here the idea of “Hypothesis” testing is added to help 
convey the premise. For example, if a system were to 
demonstrate a specific technology, the hypothesis being 
tested is both that that technology performs a certain way 
in space, and that the system is properly built to allow 
that technology to operate. Given this taxonomy, 
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stakeholders can make decisions about how much 
knowledge they’ll have on the ground of the overall 
mission’s ability to test that hypothesis. In the end, this 
is the real “risk acceptance” being made during the 
program. 

Regardless of the specific label used, the overarching 
goal of the initial risk posture is to communicate, not to 
rigidly classify. The risk posture of the mission rarely 
stays fixed throughout a mission. Even requirements-
driven missions are sometimes forced to accept risk. 
Developers commonly encounter missions that are 
constraints-driven at kickoff, but requirements-driven at 
Launch Readiness Review.  

The items described here (loosely categorized as 
requirements, risk, cost, schedule, or other constraints) 
represent “knobs” for mission execution (See Figure 3, 
Step 1). Depending on the mission objectives and 
constraints, each of these “knobs” may be fixed or 
variable. Stakeholders may be more willing to adjust cost 
and schedule to meet requirements or may be more 
willing to relax requirements and accept risk to meet cost 
and schedule. However, missions cannot expect all four 
knobs to remain fixed for the duration of the mission. No 
program is without issues or changes, and the knobs 
represent the program’s flexibility to absorb changes and 
address issues.  

When the team or stakeholders make a fixed designation 
of mission risk tolerance before they have any real 
knowledge of the technical issues, those designations are 
usually premature. Issues that arise during development, 
and the stakeholders’ willingness to tolerate those risks, 
are generally opaque. Mission assurance approaches that 
rely on fixed assumptions are not flexible to the 
uncertainty in the mission. 

Step 2: Align Iterations to Project Tempo 

It is important for stakeholders to recognize that this is 
an agile and iterative approach. The full cycle is aligned 
with the project tempo; ideally takes no more than a few 
weeks, and is continually repeated. Peer reviews and 
major milestones can be tied to this cycle, or drive the 
cycle. Major milestones can become less about progress 
checks and more about decision-making with regard to 
the mission “knobs.”  

These iterations optimize mission assurance activity 
based on the risks to mission success objectives. It also 
burns down risk to an acceptable that is agreeable and 
well understood among stakeholders, and creates a more 
realistic expectation of mission success.  

The first cycle will likely take longer than those 
following since more time is required for establishing a 
baseline of risks, divergences, and responses. 

Step 3: Identify Risks and Divergences in Context 

Once the mission’s initial “knobs” are established, the 
program can begin to think about risk. Loosely speaking, 
risks are anything that might cause the program to adjust 
one of its knobs. When thinking about risk, mission 
context is important. For example, a lack of battery 
conditioning might not be a risk for a one-year LEO 
mission, while it likely poses a significant risk to a ten-
year GEO mission. The orbit, lifetime, and intent of a 
mission provides the context within which to evaluate 
risk. 

Programs will generally want to conduct an initial 
assessment of the risks of a mission. There are many 
tools and frameworks for identifying risk areas and 
common pitfalls.10,Error! Reference source not found.,Error! Reference 

source not found. Such  processes are often designed for larger 
Class A missions, but provide a useful mental 
“checklist” for class-agnostic missions to ensure all 
aspects of the mission are at least considered. Areas to 
consider include: 

• Generally-agreed-upon critical areas (e.g., power, 
communication, Do No Harm (DNH), safe modes, 
interfaces) 

• Areas of specific concern for this mission 
(contamination, EMI, radiation, non-space parts, 
previous failures) 

• New items (first flight, changes from last time) 

• Lessons learned or “gold rules” (software, polarity, 
test like you fly) 

• Expert opinion and experience 

The risks that emerge from this initial pass typically 
represent known and “known unknown” risks. The 
“unknown unknowns” will generally emerge during the 
execution of the program. The mission assurance 
approach needs to be flexible enough to adjust. 

Once risks are identified, the team should consider both 
specific and overarching risk reduction efforts. These 
can be specific actions, like the following: 

• Set up specific analysis and test campaign for new 
developments or space readiness of terrestrial 
hardware 
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• Investigate GPS dropouts over the poles and 
recommend firmware updates 

• Add a modal survey test to the test campaign 

• Add a redundant receiver to the design 

• Test all COTS parts upon receipt 

They can also be more overarching, general activities, 
like the following: 

• Analyze the thermal performance 

• Review all ICDs for discrepancies 

• Witness testing 

• Validate do no harm artifacts 

• Add a review or a standing meeting with high-risk 
mission element representatives 

Missions should start with broad concepts and refine as 
necessary. Early in the program, risks are generally 
broader and based on general principles; later, risks 
become more specific and are more often related to 
observed failures or deficiencies. The team should tie 
reduction efforts to specific risks where possible, but this 
doesn’t have to be a one-to-one mapping. While the team 
should take care to make the risk statements crisp and 
actionable, the team should remain flexible and avoid 
getting hung up on specific details. The goal is to 
understand if constraints will be violated or objectives 
may not be met (e.g. mission success), not to achieve 
exquisite risk documentation. 

Although not required by the class-agnostic heuristic, 
many programs find peer reviews helpful in the risk 
identification step. Peer review serves two primary 
purposes: (1) to provide technical input for the team on 
their design, and (2) understand risks as they emerge. 
These reviews can be small one-on-one meetings or 
subject matter expert / team interactions, but the key is 
that they serve to provide the engineers actionable 
feedback. Ideally some external reviewers participate to 
provide perspective and reduce groupthink. The team 
can use these peer reviews to adjust their designs as 
necessary and to identify divergences from the current 
scope or constraints.  

Step 4: Assess Efforts against Objectives and 

Constraints 

Once the team has the initial or most recent iteration of 
the risk list, it can estimate the level of each risk and the 
amount of risk handling possible, as well as the effort 

required to conduct each handling action beyond simple 
acceptance of the risk. The amount of risk reduction 
expected for each handling action and the effort 
estimated for each action help the team estimate the 
“bang for the buck” of each action – an estimation central 
to the class-agnostic concept and key for communication 
with stakeholders. This estimation allows the mission 
team to explain the tradeoffs of risk reduction, and why 
some risks might be mitigated while others are simply 
accepted (or watched).  

There are several frameworks for estimating risk. The 
standard 5x5 risk matrix is familiar to most system 
developers. It provides a useful tool for identifying risk 
levels by likelihood and consequence, but it has pitfalls. 
Chief among these pitfalls is the tendency to view the 
numerical numbers on the axes as statistically 
significant, data-driven values. Some risks can be 
quantified in this manner, but on non-production or 
limited batch systems, the team is unlikely to have 
enough real data to be able to give a statistically solid 
number for the true likelihood of an event. Another 
pitfall is the tendency for risks to span categories across 
the 5x5 risk matrix. Real risks don’t adhere to simple 
categories and trying to force-fit them into their exact 
box usually wastes a lot of time and effort that could 
instead be focused on resolving issues. Except for very 
clear-cut, quantitative risks, teams should consider the 
numerical values in the risk matrix as guidelines. 

Some programs, especially smaller, constrained 
programs, might consider a simplified 2x2 risk matrix 
instead, as shown in Figure 4. While this might seem 
oversimplified, it helps programs quickly categorize 
major risks and focus their efforts on handling them. 
Teams may also consider using other Agile methods like 
“planning poker” to estimate risk. Planning poker offers 
an informal less structured method that uses a game-like 
format to avoid bogging down while leveraging the full 
knowledge of the team4.  

Whatever method is chosen, teams must not only 
estimate the current risk level, but also the risk reduction 
made possible by each proposed mitigation action. 
Teams will also need to estimate how much effort is 
required to conduct each proposed risk handling action. 
One of the drawbacks of the 5x5 risk matrix is that it 
focuses only on the risk, not on the effort required to 
mitigate that risk. Risk reduction must take place in the 
context of the effort required, especially for resource-
constrained missions. Small teams cannot do everything 
and must decide where to focus their effort to have the 
best chance for success in both mitigations actions and 
in overall mission performance.  
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Estimating the effort involved can include a simple guess 
at the number of staff-days or staff-weeks and cost 
involved, or it can involve another round of Agile 
“planning poker,” where the focus is on the amount of 
effort it will take to implement the proposed mitigation 
action.  

Overall, teams should keep the Agile mindset in mind. 
The goal of assessing risks and efforts is to apply 
resources where they will do the most good – not to 
produce perfect estimates, or perfect risk analysis charts. 
In many missions, the whole effort is rather informal. 
The estimates are made to inform decision-making, not 
to make statistical predictions. Documentation should be 
focused on providing the rationale behind the decisions 
made, rather than on achieving a certain “magic number” 
of risks or an exact estimation of “bang for the buck.” 

Step 5: Rank and Execute High Value Efforts First 

Once risks and actions have been defined, and the effort 
to accomplish each has been estimated, the team 
evaluates the “bang for the buck” for each risk / action 
set and ranks them in a method that allows the team to 
decide how to apply its mission assurance efforts. 

It can do this by evaluating the ratio between technical 
risk reduction and programmatic risk increase for doing 
any given action. Technical risk is defined as risk against 
the already-established scope, as estimated in Step 3; 
programmatic risk is defined as risk against the cost, 
schedule, and resource restrictions already defined. In 
some heavily resource-constrained missions, the ratio 
might be inverted, and the team might instead consider 
the programmatic (cost or schedule) risk reduced for the 
technical risk incurred. For example, a typical trade in a 
constraints-driven program is to remove a secondary 
mission objective in order to maintain cost and schedule.  

With the ratios defined, the team now ranks risk 
reduction, mission assurance, or even design efforts in 
order from most “bang for the buck” to least “bang for 
the buck”. Note that the elements are not ranked in order 
from “highest risk” to “lowest risk,” or even from 
“highest risk reduction” to “lowest risk reduction.” The 
effort required to implement an objective or reduce risk 
is part of the assessment. “Low hanging fruit” may fall 
higher on the list than more serious risks that are harder 
to mitigate or more interesting objectives that consume 
more resources. The sum of the effort required to 
implement these actions (the sum of the programmatic 
risk) tells the program stakeholders how many resources 
are required. Constrained programs will need to draw the 
line at the limit of their resources; items that fall below 
the line are not addressed unless more resources become 
available. Then the team executes the efforts roughly in 
order. 

One way to visualize this would be in a table of risk 
reduction efforts. The table lists the estimated amount of 
risk reduction, the confidence in that estimate, the 
estimated cost or effort required, and the confidence in 
that estimate. Figure 5 is a notional example. Missions 
could use similar charts to show how their reduction 
efforts reduce their risk to match their overall risk 
posture. The charts can also show where the cost of such 
efforts run up against the “hard line” of the resources 
available. 

This is just one way to rank and execute risk reduction 
efforts. Missions may choose instead to do something 
simpler, like plotting risks along a programmatic or 
technical risk matrix as shown in Figure 6. Missions can 

 

Figure 4: Simplified Risk Matrix 

 

 

Figure 5: Table of Risk Reduction Efforts 

 

Risk Action Risk Reduction 

(story points)

Confidence in 

Risk Reduction

Cost 

(story points)

Confidence in 

Cost

Ratio Implement?

Add software review 5 High 3 Medium 1.7 Yes

Add extra time for testing 8 High 13 High 0.6 No

Add modal survey test 20 Medium 20 High 1.0 No

Add extra accelerometers to sine vibe 

test

3 Medium 2 High 1.5 Yes

Software issues delay test schedule

Finite element model not 

correlated, leads to structural 

failure
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then determine which actions to prioritize based on 
where they fall along green / yellow / red boundaries the 
team has drawn itself. 

With risk and risk-reduction efforts identified, ranked in 
order from most “bang for the buck” to least “bang for 
the buck,” and discussed within the program, the team 
can now execute the efforts they have agreed upon and 
provide the best mission assurance value(s). 

Mission assurance and risk management are rarely 
simple and elegant. The ranked risk list is a nice theory, 
but messier in practice – it is unlikely the mission will 
have a clean list of tasks in a neat order. Agile mission 
assurance is an art as much as it is a science. Teams 
should remember the Agile mindset, and that the main 
point of mission assurance is to improve the chances of 
mission success, not to document risks. Agile values 
individuals and interactions over processes and tools, 
and customer collaboration over checklists. If the tool or 
process doesn’t work for your mission, use a different 
one! 

Step 6: Reevaluate, Refine & Reiterate 

The most critical part of the class-agnostic mission 
assurance process, and the most related to Agile 
principles, is Step 6: Re-evaluate and Refine. As 
described in previous sections, early estimates of risk are 
usually the least accurate, and correspondingly, mission 
assurance plans developed early in mission execution are 
rarely applicable throughout the mission lifecycle. As a 
mission progresses, priorities will change, and new risks 
and issues will emerge. Some efforts will take more 
resources than expected, and some efforts will take fewer 
resources than expected. On a regular basis – whether 

that be after a two-week “sprint,” monthly, or quarterly 
– the team meets to determine what has been done, what 
remains to be done, whether priorities have changed, or 
whether new information has emerged that might cause 
the team to re-direct mission assurance activities. If the 
mission is still operating within the agreed-upon cost, 
schedule, requirements, and risk posture “knob values,” 
this can be done internally to the team. Having agreed 
upon the next set of priorities (or that the current efforts 
should continue), the team embarks on the next iteration 
through the cycle. It is worth noting that the team may 
have margin built into their plan and this can be used to 
absorb smaller changes before larger “knob” 
adjustments are required; the level of margin and control 
over that margin helps dictate how much capability the 
team has to execute on its own. 

If enough issues have arisen that one of the “knobs” 
needs to be adjusted, the team should engage leadership 
and, if necessary, key stakeholders. Leadership may, in 
discussion with stakeholders, adjust the constraints of 
the mission, adding funds and schedule or reducing 
scope and accepting more risk, in order to absorb the 
changes that arise. This is where communication with 
stakeholders can be key. Programs may delegate 
decision authorities differently depending on the size and 
criticality of the mission, but in general, only leadership 
and / or mission stakeholders can change one of the 
“knobs” of a mission. At a minimum, programs will need 
to inform leadership and key stakeholders if adjustments 
to the knobs are necessary.  

Teams may use the Agile class-agnostic cycle in the 
context of mission milestones. For example, a team 
might make use of peer reviews after every few sprints 
to identify areas of concern and point out where design 
and mission assurance efforts might be overlooking key 
risks. A larger examination of the overall “knobs” of the 
mission might occur at major programmatic reviews, 
when developers, leadership, and stakeholders can all 
meet to review program status and decide if any of the 
“knobs” need to be adjusted. 

Step 7: Capture Decisions and Lessons Learned 

During the execution of the class-agnostic mission 
assurance cycle, teams should look both inward and 
outward. Within the mission, teams should document all 
decisions made. As decisions, trades, and adjustments to 
the “knobs” of the mission are made, it is critical that 
teams capture the rationale behind these changes. Not 
only does this help maintain continuity across personnel 
and leadership changes, it helps prevent “risk aversion 
creep” by keeping the entire team aware of what trades 
have already been made between cost, schedule, risk, 
and requirements – and why. This history is particularly 
important as the mission approaches launch, when cost Figure 6: Technical vs. Programmatic Risk 
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and schedule risks are generally in the rear-view mirror, 
and leadership is most concerned with technical risk.  

Additionally, missions should be outward-looking, and 
should document lessons learned frequently during 
mission execution. Capturing lessons learned after a 
certain number of “sprints,” or at a minimum at each 
major milestone, ensures that lessons are documented 
while they are still fresh. Reviewing key lessons learned 
from past missions at each milestone can also help the 
team anticipate problems that might occur during the 
next phase. Lessons-learned become sources for 
evaluating risks for future missions. 

 

 

REAL MISSION EXAMPLES OF CLASS 

AGNOSTIC, CONSTRAINT-BASED SYSTEMS 

While the class-agnostic concept has been used 
informally over the last number of years, there hasn't 
been a formalized assessment for how these practices 
actually apply. This section illustrates elements of the 
class-agnostic mission assurance approach across 
multiple real flight missions. The discussion abstracts 
many details of the missions themselves but focuses on 
one or several exemplar scenarios in the missions' 
developments that were enhanced by the class agnostic 
approach and references instances where one of the Steps 
was utilized. Table 2Error! Reference source not 

found. provides an overview of the missions discussed, 
their attributes, how they fit within the class-agnostic 
approach by reference, and the takeaways concerning 
implementation of the approach.. 

Mission A 

Mission A13 took, effectively, two nearly separate 
attempts to progress to flight. The mission was a 
concurrent measurement science mission that fizzled 
partly due to instrument and (early) CubeSat technology 
challenges but also due to a poor establishment of 
stakeholder interaction. With the delay of the partner 
mission, an assessment of the efficacy of the overall 
mission occurred; the mission was found to still add 
scientific value. 

The revamped mission quickly set up the environment 
for the design team to re-work, design, build, and test the 
entire flight system. The rework was bounded by known, 
achievable, mission objectives that the team could easily 
understand how changes they made did, or did not, affect 
mission capability (step 1, 3, 4). While this required 
notable engineering resources (staff and funding, step 1), 
the team’s overall authority to make decisions to 
progress quickly (schedule constraint), while 

maintaining a reasonably tight communication loop with 
stakeholders (few formal reviews, mostly peer and 
stakeholder discussions throughout; step 2, 6, 7) enabled 
build-to-launch to be about 18 months. The risk 
taxonomy flexed and was reduced downwards in the 
program due to both overall scoping reduction and 
timeline requirements to meet launch (see Table 2). 

Mission B  

Mission B was a technology/capability demonstration 
that purposely had large flexibility in its scope to help 
push for “art of the possible”. Unfortunately, this 
flexibility came with poorly established stakeholder 
interactions and poorly defined mission objectives to 
properly allow the team to balance risk impacts on 
capability (step 1, 2, 4). This had the effect of the mission 
being defined by delivered capability.  

As time began to run out, cost, schedule (launch), and 
technical capability (staff) all became limited, therefore, 
driving three constraints at the same time (step 3). 
Multiple de-scopes were allowed in performance and 
functionality; focus on “what matters” was hard to define 
(step 4, 5). Over time, the taxonomy in Table 1 was 
heavily used to re-evaluate the program and defined both 
final design attributes as well as verification/risk level 
(note that the taxonomy should not be used to define 
design attributes, only risk/verification levels). By the 
end, a Do No Harm violation was discovered and the 
lack of remaining budget or schedule to find root cause 
led to de-manifestation of the mission (steps 6, 7). Key 
challenges on this program resulted from the lack of 
experienced management, consistent loss of personnel, 
and poorly defined objectives and constraints making it 
unclear which “knobs” existed for the team (step 7, 1). 

Mission C 

Mission C was a technology/capability demonstration. 
Technology developments were prioritized early on over 
mission development. This led to some "cart before the 
horse" issues for vendor specifications and definition of 
the needs of the overall mission (step 1, 3). Further, 
iteration loops and assessments as well as stakeholder 
interactions were not well established at the beginning 
(step 2). Multiple technology risk reduction decisions 
were made (acceptable for the program). 
Programmatically, the team identified a lack of correct 
staffing or skillset availability (step 3) which was only 
addressed late in the program with a notable staffing 
increase (step 6, 1). Towards the end of development, 
delivery delays of both vehicle and payload, along with 
launch schedule deadlines, required the team to utilize 
the risk taxonomy as a framework to define a test 
campaign that was sufficient for stakeholders (minimum 
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success) while meeting the hard schedule constraint of 
launch (step 4, 5).  

Descoping was the most common outcome when issues 
occurred on this program; however, a launch slip 
allowed the team to expand their test campaign to 
include more edge case testing, buy down more risk with 
the ground segment and flight hardware, and mitigate 
several late-breaking risks. This yielded greater 
functionality and even helped reduce known capability 
gaps that had been "accepted" prior to the slip (step 6, 7, 
taxonomy).taxonomy) It shows the agile adjustment of 
the class agnostic approach.  

In the end, many of the issues experienced by Mission C 
could have been reduced by having a more experienced 
team, or better mentoring and coaching (say through peer 
review). Multiple unnecessary rework and scope 
reductions occurred due to these issues and the mission 
would not have been recoverable without a late staffing 
increase. 

Mission D 

Mission D is the first mission to start with the class-
agnostic/constraint-based mission approach and was 
another technology/capability demonstration. As a cost-
constrained mission, it became apparent that a high 
functioning team was required to stay within limitations 
without too many design iterations. Multiple early 
reviews and discussions were held with stakeholders to 
establish “knobs,” acquisition strategy, etc. Eventually 
key risk ranking and mitigation options were discussed 
and prioritized. This emphasizes the need for a well 
scoped and well-established program/execution plan 
early on (steps 1 – 3). The largest design review was only 
a preliminary design review (PDR) and stakeholder 
meetings are generally only held two times a year for 
updates and decisions (step 2, 6, 7). Risk assessment has 
been one of the key tools used by the team to convey 
areas for investment (time or funds) and to focus 
conversations of “this will or will not affect success, so 
does it matter?” (step 3, 4, 5). 

Over time, and thanks to the team’s efficiency, the 
program has expanded its risk taxonomy level beyond 
minimum functionality, allowing for better system 
characterization. Cost and scope are now the primary 
drivers, instead of just cost, since the stakeholders have 
gained high confidence in the team and the established 
communication structure. The class-agnostic approach 
built trust and yielded a highly effective communication 
approach that has enabled the team to own much of the 
decision-making and expand capability when the 
opportunity arose while ensuring stakeholders had the 
correct buy-in and buy-off to major risks and trades. 

Mission E 

Mission E is a capability demonstration and had 
numerous, known, technical hurdles to overcome before 
a space test could be performed. This program started 
with risk mitigation activities to ensure a space 
demonstration was possible. With this effort, the overall 
scope and objectives became very clear and have been 
very static throughout the development process (steps 3, 
4, 5, 7, 1). Again, well-defined scope (e.g.,. defining 
“what matters”) has greatly aided execution of this 
mission and enabled a small team at the program / system 
engineering level. Generally, stakeholder interactions 
were minimal and/or low effort but frequent, reducing 
overall communication burden (step 2). Further, 
significant portions of the mission have been completed 
by subject matter experts (in-house or contractor) who 
were brought into the project early creating much more 
effective risk identification, evaluation, and iteration 
within the well understood scope of the mission (steps 3-
6). 

Multiple technical risks emerged including poor intra-
team communication and shifts to under-developed 
products, causing related programmatic risks. The class-
agnostic approach was not well utilized in addressing 
these risks and multiple trades/discussions were fairly 
drawn out or somewhat ambiguously concluded. 
Further, the class-agnostic approach still does not have a 
particularly effective counter to realized risks 
(issues/problems) which have been an issue for the 
Mission E. However, the approach does encourage 
earlier identification of risks and prioritization, as well 
as a framework for handling how to address realized 
risks (changes to knobs, shifting in the taxonomy). For 
Mission E, this has resulted in schedule elongation (a 
constraint) to trade for higher quality deliverables. 

Mission F 

Mission F was a half-ESPA class satellite with five 
experimental payloads and a relatively low budget 
(<$50M). It was part of a commercial rideshare with a 
fixed launched date. The mission had an initial risk 
posture of Class D and a mission assurance approach that 
involved a small team of four generalists embedded in 
the program.  

The program encountered issues during integration, 
primarily related to software, that held up environmental 
testing. Cost overruns led to severely limited funds. The 
team employed class-agnostic concepts, allocating 
resources to software efforts necessary for survival and 
minimal functionality (steps 4 and 5). The cost and 
schedule “knobs” were fixed; the risk and requirements 
knobs were adjusted (step 6). On orbit, the mission 
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scaled back objectives to prioritize the collection of 
science data. The team worked around data issues.  

Critical to the implementation of the class-agnostic 
approach was the recognition that the cost and schedule 
slips were also the greatest technical risk (step 1); if the 
satellite missed its launch, it would be unlikely that the 
five payloads would ever be re-manifested. The satellite 
had to meet Do No Harm and safety requirements, but 
despite the Class D designation the real driver of mission 
assurance efforts (beyond Do No Harm) was the highest 
bang for the buck.  

Mission G 

Mission G is a large Class C/D mission with Class A 
elements. It includes two operational demonstrations and 
several smaller experimental payloads. While the overall 
risk acceptance level of the mission was listed at Class 
C/D, the mission – a long-lifetime satellite designed for 
geosynchronous orbit – required much greater mission 
assurance than typically implied by a Class C/D 
designation. The approach followed on this mission was 
more a traditional / tailored approach, but as issues arose, 
class-agnostic concepts were used to determine how best 
to adjust the mission’s “knobs.” Since requirements and 
risk posture were more fixed than usual in a Class C/D 
mission, the schedule was lengthened to accommodate 
the resolution of issues (steps 1 and 6). Initially funding 
was also increased, but toward the end of integration a 
greater risk posture was accepted in order to cap 
overruns at an acceptable level. Cost pressures required 
smart decision-making in order to prioritize the greatest 
“bang for the buck,” and class-agnostic concepts were 
used to drive decision-making on risk.  

This mission demonstrates several limitations of the 
traditional “class system” approach – missions rarely fit 
neatly into a single category, and Class C or D category 
designations are sometimes chosen more to reflect the 
optimistic hope of cost savings than the real risk 
tolerance of stakeholders. The class-agnostic system is 
more transparent regarding the decision-making required 
to achieve the mission: in this case, cost and schedule 
were flexible enough to maintain requirements up to a 
point, and after that point, the cost “knob” was fixed, and 
risk posture increased.  

Mission H 

Mission H is a more traditional operational mission, a 
larger high-value asset with a low risk tolerance. 
However, the mission is being executed by a small team 
on a compressed schedule, and very few resources are 
available for independent mission assurance (step 1). 
The mission is in its early stages, but the class-agnostic 
approach is being used to drive mission assurance 
efforts. 

One class-agnostic concept used in this mission is the up-
front mission assurance “blitz,” (step1) where a 
(comparatively) large set of subject-matter experts are 
reviewing the mission’s preliminary requirements 
flowdown and design in order to determine where best to 
apply risk-reduction efforts. Peer review and focused 
analysis on the areas of greatest risk have helped drive 
early decision-making. Major milestone reviews are 
being conducted in a more Agile, iterative process, 
where traditional system requirements review (SRR), 
preliminary design review (PDR), and critical design 
review (CDR)SRR, PDR, and CDR meetings are as short 
capstone events to a longer informal subject-matter 
expert review period (step 2). The mission is constrained 
by schedule and staffing, but seeks to maintain a low risk 
posture; the scope, requirements, and budget “knobs” 
may end up being the primary method by which 
stakeholders handle issues. Already, however, the 
schedule is slipping, mainly due to funding availability; 
in the end, the schedule may also need to be flexible.  

The application of class-agnostic mission assurance to 
this mission is unusual due to its large size, budget, and 
mission-critical nature. It remains to be seen if the 
approach will enable the mission to make hard choices 
between cost, schedule, performance, and risk, or if the 
class-agnostic approach will become harder to execute 
as the mission moves on and the natural tendency for risk 
tolerance to decrease kicks in. 

Mission J 

Mission J was a demonstration mission carrying five 
experimental payloads and designed to be deployed 
through the International Space Station (ISS) airlock. As 
such, it was a lower-budget, small-team mission limited 
primarily by form factor and staffing, but also by cost. 
Schedule was slightly more flexible given the ability to 
re-manifest to a later commercial resupply mission if 
needed. The initial, and final, mission designation was 
minimal functionality; however, the actual success 
criteria for the mission were not formally documented 
(step 1 and the risk taxonomy).  

The mission prioritized functional testing and 
successfully uncovered and fixed several issues before 
launch. The mission was successful in collecting data on 
orbit; however, a failure in a key component led to 
mission loss after about four months of data collection. 
“Do No Harm” was preserved – the mission will re-enter 
approximately two years after deployment, and will not 
pose a safety hazard to the ISS. While the foreshortened 
mission was sufficient to meet minimum functionality, it 
led to issues with the mishap prevention community, 
who conducted a full failure investigation – perhaps 
overkill for a low-budget, experimental, single-string 
mission. This mission illustrates the benefit of defining 
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clear success criteria up front and interacting with 
stakeholders (including non-obvious stakeholders such 
as those responsible for identifying and reporting 
mishaps) to ensure that the risk posture is fully 
understood (step 1, and the definition of minimum 
success criteria). The taxonomy in Table 1, and the class-
agnostic approach, may provide a way for missions to 
better document the true objectives of a mission, and the 
true risk posture being accepted, to ensure that 
expectations are clear across all stakeholders.  

Mission K 

Mission K was executed several years before the first 
formal documentation of class-agnostic mission 
assurance. Nevertheless, it helped define the approach 
and provides several instructive examples. The mission 
was larger than ESPA-class, with a relatively large 
budget, but a highly-constrained schedule. Early in the 
mission, the mission priorities were established: 
schedule (launching on time with minimum 
functionality) was considered the highest priority, with 
cost as the second-highest priority, and performance as 
the third priority (step 1). 

The mission used an airborne payload minimally 
modified for space applications, and the bus was based 
on a previously-flown satellite. During execution, the 
stated priorities (schedule first, then cost, then 
performance) were not always followed; repeated 
inquiries about adding performance or incorporating 
additional capabilities led to cost growth. The team 
learned to keep the primary goal in mind, and strictly 
limit investigations into possible enhancements until that 
mission had been achieved. The team also learned to 
formally document all decisions – as leadership changed 
throughout the program, previous decisions (especially 
hard ones) were continuously revisited, leading to 
wasted time (step 7). 

Despite this, the mission ultimately accepted many risks 
instead of mitigating them, keeping the schedule “knob” 
relatively fixed and accepting risk against performance 
when issues were uncovered during testing. Having a 
small, high-performing team helped; once roles were 
established and bureaucracy was minimized, the team 
wasted little time with unnecessary documentation. The 
mission was successful on orbit, but required significant 
courage (for lack of a better term) to launch: the risk 
acceptance level at Flight Readiness Review was high. 
Fortunately, issues encountered on-orbit were not 
mission-threatening, likely due to the focus on critical 
activities and a strong “test like you fly” mentality.  
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Table 2: Summary of Missions 
  

Mission Attributes Vehicle / 

System 

Config 

Driving 

Constraint 

Spectrum of MA 

(Figure 1) 

Taxonomy 

Baselined 

(Table 1) 

Taxonomy 

Implemented 

(Table 1) 

Key Takeaways 
M

is
si

o
n

 A
 

Late application of the approach; one of 
key missions to help formalize this 
approach. Schedule constrained system. 
High risk approach for new technology 

CubeSat 6U Schedule Constraints 
Driven / High Risk 
Tolerance 

Full 
Functionality 

Minimum 
Functionality 

- Development team had to make quick 
course corrections (sometimes sweeping) 
- Team prioritized functionality and 
testing over large trade studies / analysis 
- Enabled a revamped mission to build and 
launch in ~18 months (after several years 
of stagnation) 

M
is

si
o

n
 B

 Late application of the approach; 
schedule and staff constrained system. 
High risk approach for new technology 

Half ESPA Schedule and 
Staff 

Constraints 
Driven / High Risk 
Tolerance 

Full 
Functionality 

Do No Harm - Taxonomy and agile approach enabled 
mission team and stakeholders to discuss 
issues, impacts to scope, and agree on 
immutable requirements 

M
is

si
o

n
 C

 Late application of the approach; overall 
mission developed on CubeSat-like 
approach with limited staff and high risk 
approach for new technology 

CubeSat 12U Staff-
>Schedule  

Constraints 
Driven / High Risk 
Tolerance 

Full 
Functionality 

Minimum 
Functionality / 
Full Functionality 

- Agile implementation can suffer from 
continually reducing scope, creating 
unnecessary rework 
- Experience and/or good mentorship are 
required  

M
is

si
o

n
 D

 

First mission to go through the full 
approach purposefully; CubeSat-like 
approach with limited funding but 
evolutionary hardware/software from 
previous missions. Medium risk 
tolerance for new technology and 
mission application 

CubeSat 6U - 
12U 

Cost Constraints 
Driven / Low(er) 
Risk Tolerance 

Minimum 
Functionality 

Minimum 
Functionality / 
Full Functionality 

- Class-agnostic approach provided a 
communication tool with stakeholders, 
and within the development team, to 
define risks and trades 
- Active "knob adjustments" allowed team 
to start by "promising less and delivering 
more" 

M
is

si
o

n
 E

 

Late application of the approach; overall 
mission developed on CubeSat-like 
approach. Medium risk tolerance for 
new technology and mission application 

CubeSat 12U Staff Constraints 
Driven / Low(er) 
Risk Tolerance 

Full 
Functionality 

TBD - Expect Full 
Functionality 

- Demonstrated key practices of properly 
scoping the mission and addressing high 
value efforts first 
- Focused time and funds on early risk 
mitigation activities leading to successful 
implementation. 
- Constraints can be variable and is one of 
the adjustable "knobs"  
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M
is

si
o

n
 F

 
Helped refine the approach; initial 
mission developed under Class D 
mission assurance practices, but used 
class-agnostic approach as funding and 
schedule became tight. High risk 
tolerance for new technology and 
mission application 

Half-ESPA Schedule and 
Cost 

Constraints 
Driven / High Risk 
Tolerance 

Full 
Functionality 

Minimum 
Functionality / 
Full Functionality 

- Helped refine the approach 
- Focused efforts on critical-for-launch 
issues and accepted scope changes and 
risk 
- Experienced on-orbit anomalies in high-
risk areas but completed mission 

M
is

si
o

n
 G

 

Class C/D mission with Class A 
elements; two operational 
demonstrations and multiple 
experimental payloads. Class-agnostic 
concepts used to focus effort in critical 
areas toward end of development 

Large Requirements Requirements 
Driven / High(er) 
Risk Tolerance 

Full 
Functionality 

Full Functionality - Missions are rarely monolithic and 
single-class 
- Important to "pick your battles" when 
budget is fixed 

M
is

si
o

n
 H

 

Mission still in early development but 
using the approach purposefully. 
Operational mission with critical 
implications, but heavily constrained by 
resources. Low risk tolerance, desire for 
full functionality 

Larger than 
ESPA 

Staff Requirements 
Driven / Low Risk 
Tolerance 

Full 
Functionality 

TBD - An up-front full mission assurance 
"survey" can help identify critical areas 
early 
- Mindful trades can reduce risk 
- Harder decisions are coming 

M
is

si
o

n
 J

 

Demonstration mission carrying 
multiple payloads. CubeSat-based 
approach in larger form factor designed 
for deployment from ISS. Completed 
on-orbit mission but failed before end of 
design life 

ISS Airlock 
Deployable 

Form Factor Constraints 
Driven / High Risk 
Tolerance 

Minimum 
Functionality 

Minimum 
Functionality 

- Focus on high-value testing uncovered 
issues early 
- Would have benefited from better 
definition of minimum success criteria 

M
is

si
o

n
 K

 

Operational but heavily constraints-
driven (schedule). Larger budget than 
most, higher risk tolerance. Successful 
on orbit 

Larger than 
ESPA 

Schedule Constraints 
Driven / Low(er) 
Risk Tolerance 

Full 
Functionality 

Full Functionality - Good prioritization of requirements 
(schedule, then cost, then requirements) 
but prioritization not always followed 
- Good example of deliberative risk 
decision-making 
- On-orbit issues were in lower-criticality 
areas 
- Communication with stakeholders and 
documentation of decision-making is 
critical 
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CONCLUSIONS AND FUTURE WORK 

The class-agnostic mission assurance approach, like any 
Agile process, is aa dynamic, living process. It is 
intentionally not prescriptive and should adjust to the 
needs of the program, the needs of the organization, and 
the needs of stakeholders. So much of the class-agnostic 
approach really is about finding and assessing what 

matters for mission success, creating and maintaining a 
communication structure to convey this to stakeholders, 
and making timely decisions. 

The class-agnostic approach also relies heavily on 
experience. While process documentation, lessons 
learned, and reference material are important, truly 
efficient mission assurance requires apprenticeship. 
Documents and “how to” manuals have their place, but 
are no substitute. Young engineers should be paired with 
experienced engineers to help them develop good 
instincts. 

The program team (program managers, mission 
assurance, engineering team) should continuously 
evaluate what works for them and what improvement is 
needed. Similarly, this discussion and assessment should 
occur with stakeholders to get buy-in and cognizance of 
the flow of the approach. In the end, this is a messy 
approach and will be naturally tailored throughout a 
program (instead of purely up front). The Agile mindset 
encourages re-evaluating and discarding things that do 
not work. This takes experience, mentoring, and practice 

to get right. 

In an effort to figure out what matters, the class-agnostic 
approach is also continuously being evaluated as it is 
applied to programs. This has yielded changes and 
understanding of the useful elements (presented here) 
but also elicits further questions. Future work may 
include further study and comparison to how Agile, a 
more software-based process, merges with the 
software/hardware development of space and ground 
systems (perhaps considering examples like the Toyota 
Production System). Also the merging of traditional 
Class A-D approaches with the class-agnostic system is 
mostly unexplored but could be correct for higher 
reliability non-unique systems; in the end when missions 
are constraints-driven, and mission risk posture is just 
one more requirement that can be traded, the Class 
Agnostic heuristic can apply. 
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