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Abstract— Current control methods for winged eVTOL UAVs
consider the vehicle primarily as a fixed-wing aircraft with the
addition of vertical thrust used only during takeoff and landing.
These methods provide good long-range flight handling but fail
to consider the full dynamics of the vehicle for tracking complex
trajectories. We present a trajectory tracking controller for the
full dynamics of a winged eVTOL UAV in hover, fixed-wing,
and partially transitioned flight scenarios. We show that in low-
to moderate-speed flight, trajectory tracking can be achieved
using a variety of pitch angles. In these conditions, the pitch
of the vehicle is a free variable which we use to minimize
the necessary thrust, and therefore energy consumption, of the
vehicle. We use a geometric attitude controller and an airspeed-
dependent control allocation scheme to operate the vehicle at a
wide range of airspeeds, flight path angles, and angles of attack.
We provide simulation results and theoretical guarantees for the
stability of the proposed control scheme assuming a standard
aerodynamic model.

I. INTRODUCTION

Winged electric vertical takeoff and landing (eVTOL) un-
manned aerial vehicles (UAVs) are capable of vertical flight
as well as sustained horizontal flight using lifting surfaces.
These complementary features make them ideal in a variety
of applications where endurance and maneuverability are
both required. Current control methods provide good long-
range flight handling but fail to consider the full dynamics of
the vehicle for tracking complex trajectories. It is during the
phase of flight immediately after takeoff and before landing
that the vehicle is most likely to encounter obstacles and need
to navigate in a precise manner. While agility is important
during these maneuvers, efficiency also remains an important
objective. Here we present a controller which is capable
of controlling a winged eVTOL in hover, fixed-wing, and
partially transitioned flight scenarios. The control scheme is
generally applicable to a variety of winged eVTOL UAVs
including vectored thrust and lift-cruise vehicles 1.

Trajectory tracking for multirotor UAVs has been ex-
tensively studied and provides a foundation to the work
we present here. Geometric control [1] provides excellent
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tracking performance of continuous position and yaw tra-
jectories and is frequently used for multirotor control [2],
[3], [4]. This method takes advantage of the differentially
flat [4] and underactuated dynamics of multirotors to map
from a three-times differentiable position trajectory and one-
time differentiable yaw trajectory to feed-forward thrust and
attitude commands. Proportional-derivative feedback control
causes the vehicle to converge asymptotically to the desired
trajectory.

While multirotor UAVs have excellent maneuverability,
they lack the ability to perform long-endurance flights. Many
approaches to addressing this drawback exist, including
adding extra degrees of freedom to multirotors [5], [6] or
creating winged eVTOL UAVs which hybridize the use
of thrust for vertical takeoff and landing and the use of
wings for long-endurance flight [7]. Winged eVTOLs pro-
vide the largest opportunity for improvements in endurance
over multirotor and other eVTOL UAVs, and promise more
maneuverable flight than fixed-wing vehicles. These benefits
come, however, at the cost of increased complexity over mul-
tirotor and fixed-wing vehicles [8]. During maneuvers which
transition between VTOL and fixed-wing flight, a winged
eVTOL experiences high-angle-of-attack flight where stall
and unsteady aerodynamics have a large impact on the
behavior of the vehicle.

Most proposed control methods for winged eVTOLs differ
with respect to how the transition is controlled. Gain schedul-
ing using empirical data [9] and incremental nonlinear dy-
namic inversion [10] have been used to perform stability
control for human-piloted winged eVTOLs. The popular PX4
flight controller [11] mixes control inputs from a multirotor
and a fixed-wing controller over a finite transition period2.
This method allows the use of the vehicle in hover and
fixed-wing configurations but does not allow the use of
intermediate flight modes. Notarstefano and Hauser [12]
investigate the equilibrium manifold of a VTOL aircraft
with a gimballed tilt-rotor having two degrees of freedom.
Their investigation assumes a constant rotor attitude and
coordinated turn flight, allowing them to avoid modelling
the aerodynamic coefficients of the vehicle. A nonlinear
controller for the hover-to-fixed-wing transition of a quad tilt-
rotor is developed in [13]. The authors assume the vehicle
remains at zero pitch and zero angle-of-attack, conditions
which limit the transition maneuver to be at constant alti-
tude and along a straight line. Nonlinear trajectory tracking
control of a quad tilt-rotor is presented by Anglade, et
al. [14]. A simplified aerodynamic model is used to enable

2For more details, see https://dev.px4.io/master/
en/flight_stack/controller_diagrams.html#
vtol-flight-controller
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stability proofs. The vehicle always points in the direction of
travel, an assumption which aids efficiency in forward flight,
but fails for purely vertical, sideways, and rearward flight.
This significantly reduces the number of possible maneuvers
the vehicle can make, reducing the advantage of a highly
maneuverable airframe. Differential flatness for a tilt-wing
eVTOL based on Euler angles and using position, angle-
of-attack, and sideslip as flat outputs is shown by [15].
A velocity controller for a tilt-wing UAV is developed in
[16]. The nested rate controller uses virtual outputs which
are converted to the proper actuator commands using an
allocation scheme which varies with the current flight state.

The approach we take is to track a trajectory consisting of
the three-dimensional position and the yaw of the vehicle,
similar to what is done for multirotors in [1]. By including
the yaw angle in the trajectory, we are able to command
a much larger set of flight behaviors than is possible when
pointing the nose of the vehicle along the velocity vector as
done in [14]. The consequence of this is that efficient flight,
where the vehicle points in the direction of its velocity, be-
comes a planning problem. While we don’t prove differential
flatness for a winged eVTOL, our approach to control design
follows a similar progression as a differential flatness proof.
It would be trivial to show that our model is differentially flat
with position, yaw, and pitch or thrust angle as flat outputs by
following our trajectory tracking control derivation without
feedback terms.

In section II we present the winged eVTOL model as
a generic rigid body capable of producing forces in its
longitudinal plane. Our controller development begins in
section III where we initially assume zero pitch and choose
the roll angle such that the desired acceleration vector
resides in the body longitudinal plane. We then find the
optimal pitch angle using a nonlinear optimization of the
longitudinal aerodynamics as shown in section IV. This
augments the desired attitude, which, as described in sec-
tion V, is controlled using a nonlinear attitude controller
and proportional-integral-derivative (PID) loops outputting
virtual torque commands. The virtual torques and thrust are
then allocated to the appropriate actuators using a linear
control allocation in section VI. A flowchart showing these
control stages and the control variables passed between them
is shown in fig. 1. The controller is simulated for a tilt-
rotor UAV in our Python3 simulation environment described
in [17]. While we apply the control scheme to a tilt-rotor,
it is generally applicable to winged eVTOLs which produce
thrust in the body longitudinal plane. The platform-specific
aspects of the control design are in the constraints of the
pitch optimization and in the control allocation scheme.

II. DYNAMIC MODEL

Throughout this paper the notation rca/b is used to denote
a vector quantity r of frame a with respect to frame b and
expressed in frame c. We use i to refer to the north-east-down
inertial frame, and b to refer to the true body-fixed frame.
The reference, desired, desired pitch, and control frames,

Fig. 1. The flow of the control variables through the various stages
described in the paper. At the top-level, a three-times differentiable position
and a differentiable yaw trajectory is provided to the controller. The
trajectory tracking controller assumes zero pitch and finds the desired
attitude, rates, and applied forces such that all of the necessary applied
forces reside in the body longitudinal plane. The pitch of the vehicle is
then optimized to minimize the necessary thrust. The geometric attitude
controller assumes instantaneous angular rates which are controlled by high-
rate PID loops. The virtual torque and thrust outputs are converted to rotor
thrust, elevon, and rotor angle commands using a linear control allocation
scheme.

described when they are used, are denoted r, d, p, and c
respectively.

Let pib/i ∈ R3 be the position of the vehicle body with
respect to the inertial frame, vib/i ∈ R3 be the velocity of
the vehicle body with respect to the inertial frame, Rib =
[xib,y

i
b, z

i
b] ∈ SO(3) be the rotation matrix which rotates

body-frame vectors into the inertial frame, with its columns
xib, y

i
b, and zib respectively the body-frame x, y, and z

basis vectors represented in the inertial frame, ωbb/i ∈ R3

be the angular velocity of the vehicle body with respect to
the inertial frame and expressed in the body frame, m be the
mass of the vehicle, J ∈ R3×3 be the inertia matrix, and g be
the acceleration due to gravity. We define the operator which
forms a 3× 3 skew-symmetric matrix from a vector ω ∈ R3

as bωc×, and the canonical unit vectors in R3 as e1, e2, and
e3. For control design, we assume that the vehicle is yaw-
stable and that sideways flight occurs only at low airspeed,
so forces in the lateral plane of the vehicle are negligible.
The rigid body dynamics are then given by

ṗib/i = vib/i (1a)

v̇ib/i = ge3 +
1

m
RibBF

b
b (1b)

Ṙib = Rib

⌊
ωbb/i

⌋
×

(1c)

ω̇bb/i = −J−1
⌊
ωbb/i

⌋
×
Jωbb/i + J−1M b

b (1d)

where F bb = [F bx,b, F
b
z,b]
> is the vector of applied forces in
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the body longitudinal plane,

B =

1 0
0 0
0 1

 (2)

expands F from two dimensions to three, and M b
b =

[M b
x,b,M

b
y,b,M

b
z,b]
> is the vector of applied moments in the

body frame.
The full aerodynamic models for F and M are given

in [17] and omitted here for brevity. The simulation model
described in [17] and used for the results in section VII
extends eq. (1) to include lateral aerodynamic forces. Por-
tions of the aerodynamic models will be given as needed in
subsequent sections.

III. PITCH-FREE GEOMETRIC TRAJECTORY TRACKING

From the model in eq. (1) it is apparent that a winged
eVTOL can be generally considered as a rigid body capable
of producing moments about its three body axes as well as
producing a force in its body longitudinal plane. The forces
produced in the body longitudinal plane are the sum of thrust
and aerodynamic forces. The aerodynamic forces the wing
generates are determined by the airspeed and the angle-of-
attack. Because the thrust has two degrees of freedom which
can be directly controlled, and the pitch affects the amount
of aerodynamic forces the vehicle produces, the mapping
from pitch and thrust to total body forces is many-to-one.
We therefore initially assume zero pitch and find the desired
total body forces. Then in section IV the pitch and thrust are
determined.

A. Pitch-Free Geometric Control

We will first focus on trajectory tracking, finding a desired
attitude Rid that will orient the desired force F dd to move the
vehicle towards a position and yaw reference trajectory. We
begin by ignoring thrust angle constraints, so F dd can be any
vector in the longitudinal plane; thrust angle constraints are
handled by the optimization in section IV. The position and
yaw reference trajectories are pir/i(t), and ψr/i(t) respec-
tively, where the subscript r denotes the reference frame.
We assume that pir/i(t) is three times differentiable and that
ψir/i(t) is two times differentiable.

We start by defining the position error

pib/r = pib/i − p
i
r/i. (3)

Differentiating, the velocity and acceleration errors give the
error-state model

ṗib/r = vib/i − ṗ
i
r/i (4)

p̈ib/r = v̇ib/i − p̈
i
r/i = ge3 +

1

m
RibBF

b
b − p̈ir/i. (5)

We now find the desired attitude and force vector that will
cause the tracking error

∥∥∥pb/r∥∥∥ to go to zero.

Theorem 1. Given the dynamics listed in Equation (4)–(5),
if the desired force is

F dd =

[
(xid)

>f id
(zid)

>f id

]
(6)

and the desired attitude is

Rid = [xid,y
i
d, z

i
d] (7)

where

f id = m(p̈ir/i − ge3 −Kpp
i
b/r −Kdṗ

i
b/r) (8)

xid = [cosψr/i, sinψr/i, 0]>, (9)

yid =
xid × f

i
d

‖xid × f
i
d‖

(10)

zid = xid × yid, (11)

and where Kp = K>p > 0 and Kd = K>d > 0, then∥∥∥ṗib/r∥∥∥→ 0 and
∥∥∥pib/r∥∥∥→ 0.

The proof is given in appendix A and consists of showing
that the selection of F dd and Rid implies that

p̈ib/r +Kdṗ
i
b/r +Kpp

i
b/r = 0. (12)

B. Feed-Forward Angular Rates
The rate of change of the desired attitude of the vehicle

provides a feed-forward term for the commanded angular
rates of the vehicle. The feed-forward angular rates ωdd/i can
be determined analytically by differentiating eqs. (9) to (11).
Substituting Rid for Rib and ωdd/i for ωdb/i in eq. (1c) and

solving for ωdd/i by multiplying on the left by Rid
> and

using the inverse skew operator, (·)∨, we have

ωdd/i =
(
Rid
>
Ṙid

)∨
. (13)

The time derivative of Rid can be found by taking the time
derivative of xid, yid, and zid as shown in appendix B.

IV. PITCH AND THRUST OPTIMIZATION

By assuming zero pitch, the trajectory tracking controller
is able to satisfy the vehicle’s dynamic constraints. The task
now remains to find the optimal pitch to achieve the desired
applied forces, F dd, found in section III. To do so, we find the
pitch angle which minimizes the thrust necessary to achieve
F dd. We begin by describing the relationship between the
total forces F dd, the thrust T pd and the aerodynamic forces
F aero. We let p denote the desired pitch frame, which is
rotated about the ydd axis from the desired frame by θp/d.

We assume zero wind so we let Va = ‖vdd/i‖ be the
magnitude of the desired airspeed. We define the angle-of-
attack to be

αp/d = tan−1

(
vpz,d/i

vpx,d/i

)
. (14)

The difference between the angle-of-attack and the pitch
angle is the flight path angle,

γp/d = θp/d − αp/d = tan−1

(
−vdz,d/i
vdx,d/i

)
. (15)
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We then define the longitudinal aerodynamic force vector to
be

F aero(α, Va) =

[
cosα − sinα
sinα cosα

] [
−Fdrag(α, Va)
−Flift(α, Va)

]
(16)

where Flift and Fdrag are defined in [17]. We define the angle
of the thrust with respect to the desired frame as

ξT/p = tan−1

(
−T pz,d
T px,d

)
. (17)

The relationship between the aerodynamic forces, thrust, and
total forces is then

F aero(αp/d, Va) + T pd = R̄pdF
d
d (18)

where
R̄pd =

[
cos θp/d − sin θp/d
sin θp/d cos θp/d

]
. (19)

These quantities are depicted in fig. 2.

Fig. 2. Depiction of the vectors and angles used in computing the
aerodynamic forces and thrust. The origin of the pitch frame coincides with
the origin of the desired frame. The xi

d axis of the desired frame is in the
horizontal plane, that is, it is perpendicular to the zii axis of the inertial
frame.

A. Pitch and Thrust Optimization

The optimization variables are the desired thrust T pd, and
the desired pitch angle θp/d. To use the most efficient travel
mode possible the optimization objective is to minimize
‖T pd‖. Constraints ensure F dd is achieved within limits on the
pitch and thrust angle. We additionally enforce a constraint
on the rate of change of the pitch from the previous optimal
pitch to ensure dynamically feasible results.

The optimization is then

given Va, γp/d,F
d
d

minimize ‖T pd‖
with respect to T pd, θp/d

subject to F aero(θp/d − γp/d, Va) + T pd = R̄pdF
d
d

θmin ≤ θp/d ≤ θmax

ξmin ≤ ξT/p ≤ ξmax

|θp/d − θprev| ≤ ∆tωymax

(20)
with γp/d held constant. We solve the optimization using the
SNOPT optimizer [18] and the PyOptSparse library [19].

As given in eq. (20), the optimization will fail when the
desired force vector is outside the range that is achievable
while satisfying θmin ≤ θp/d ≤ θmax and ξmin ≤ ξT/p ≤

ξmax. Some of these scenarios are dynamically infeasible,
and should be avoided by the trajectory planner. But when
the desired force vector points above and to the rear of the
vehicle, such as would occur when the vehicle is rapidly de-
celerating or flying backwards, relaxing the maximum pitch
constraint allows the vehicle to pitch up higher and produce
the desired force vector. To accommodate this scenario, we
define

ξF/d = tan−1

(
−F dz,d
F dx,d

)
(21)

and we modify the constraint on θp/d to be

θmin ≤ θp/d ≤ θ?max (22)

where θ?max = max
(
θmax, ξF/d − 90◦

)
.

B. Augmenting with optimal thrust and pitch

Once the optimal thrust and pitch have been found, it is
necessary to augment the desired vehicle attitude to include
pitch, and to represent the angular rates and thrust in the
appropriate reference frames. To do so, we use the angle-
axis representation to find a rotation matrix which rotates
vectors about the ydd axis by θp/d, and multiply it by Rid on
the left. Since ydd = e2, we have

Rdp = exp(θp/d be2c×), (23)

and Rip = RidR
d
p. We rotate the desired angular rates into

the pitched frame

ωpp/i = (Rdp)
Tωdd/i (24)

and we rotate the optimal thrust into the vehicle’s body frame

T bd = BTRbdR
d
pBT

p
d. (25)

V. ATTITUDE AND ANGULAR RATE CONTROL

The pitch-augmented rotation matrix Rip represents the at-
titude that will cause the vehicle to most efficiently converge
to the reference trajectory. With a combination of differential
thrust and the use of the elevons, we are able to produce
torques about the three body axes to achieve the desired
attitude. To allow for eventual high-update-rate control of the
angular rates on an embedded flight controller, we separate
the attitude and rate control into two stages.

A. Attitude Control

Here we are concerned with determining the necessary
angular rates to achieve and track the desired attitude.
Assuming that the body angular rates ωbb/i converge instan-
taneously to the commanded angular rates ωbc/i, the attitude
dynamics, from eq. (1), are

Ṙib = Rib

⌊
ωbc/i

⌋
×
. (26)

Theorem 2. Let Pa(R) = 1
2 (R−RT ) be the operator which

takes the antisymmetric part of R, and let KR ∈ R3×3

be a symmetric, positive definite gain matrix. With Rbp =
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(Rib)
TRip, and supposing that for all time 1

2 tr
(
I −Rbp

)
< 2,

the commanded angular velocity

ωbc/i = Rbpω
p
p/i +KRPa

(
Rbp
)∨

(27)

will cause Rib → Rip and ωbb/i → ωbp/i asymptotically.

The proof of theorem 2 is not given due to space con-
straints, but is similar to the proof in [1].

B. Rate Control

Given ωbc/i from eq. (27), we use high-update-rate PID
loops as defined in theorem 3 to control the angular rate
dynamics.

Theorem 3. Let Kω,p,Kω,d,Kω,i ∈ R3×3 be diagonal
matrices with positive entries, and define ωbc/b = ωbc/i−ω

b
b/i.

Then

τ bc/b = Kω,pω
b
c/b +Kω,dω̇

b
c/b +Kω,i

∫ t

0

ωbc/bdt (28)

will cause ωbb/i → ωbc/i.

VI. LOW-LEVEL CONTROL ALLOCATION

While the previous sections assume a fairly general model
for a winged eVTOL UAV, this section develops the bridge
between the general model and the real vehicle. Here the goal
is to transform the desired thrust T bd and the desired torque
τ bc/b to individual motor throttle, motor angle, and control
surface commands. In appendix C we derive an allocation
matrix G which provides a linear relationship between the
thrust and torque, and a vector consisting of rotor thrust
components Z and elevon commands δe,[

T bd
τ bc/i

]
= G

[
Z
δe

]
(29)

To produce a commanded thrust and torque, the minimum-
norm pseudoinverse of eq. (29) is found. This method does
not ensure that the control inputs will remain in a feasible
range. Approaches to resolve this include saturating the re-
sults, limiting the aggressiveness of the trajectory, and using
a linear program to find the minimum error solution [20]. In
our simulation results, we saturated the control inputs prior
to passing them into the simulation model.

VII. SIMULATION RESULTS

Simulation results for the controller developed here are
shown in figs. 3 and 4. The vehicle simulated is the 0.77kg
E-flite Convergence tri-tilt-rotor. The full aerodynamic model
and simulation environment are described in [17]. Knowl-
edge of the full vehicle state was assumed in the simula-
tion. Because this control scheme utilizes a more general
trajectory than other controllers such as [14], we compare
this controller to a controller developed for multirotors and
typically used for eVTOLs in hover mode. The comparison
controller assumes that the vehicle is only capable of pro-
ducing thrust along zib; the desired attitude and thrust are
determined using the method outlined in [1]. We refer to

the multirotor-like controller as the Tx = 0 controller and
we refer to our proposed controller as the θ,T optimized
controller. Both controllers share the same attitude, rate,
and control allocation components. The reference trajectory
is a three-times differentiable polynomial spline, computed
in a manner similar to that shown in [21]. The trajectory
keypoints are chosen to create a typical urban air mobility
scenario, with vertical takeoff, level flight up to moderate
speeds of 6.4m/s, and vertical landing while yawing 90◦.

Figure 3 shows the simulated position trajectories for the
two controllers. Both controllers experience some tracking
error, with the majority being in the zii direction. We attribute
these errors to the aerodynamics present in the simulation
model that are not included in the optimization and control
allocation models. Tracking errors are also caused by the sat-
uration of control inputs calculated in the control allocation.

Figure 4 shows position error, thrust magnitude, and pitch
angle for both controllers simulated on the same trajectory as
shown in fig. 3. The average position error for the proposed
θ and T optimized control method is 0.83 m, and the average
position error for the Tx = 0 control method is 1.6 m. The
average thrust used by the proposed method is 8.86 N, and
is 10.06 N for the Tx = 0 control method. The reduced
thrust is due to the proposed method taking advantage of
aerodynamic lift, even at low airspeeds. Notice that between
5 and 15 seconds, the thrust of the proposed control method
drops to over half the thrust of the Tx = 0 method. This
occurs during the portion of flight where the vehicle travels at
approximately 6 m s−1, a speed that falls in the transitioning
range where partial lift is produced. In the lowest panel, the
pitch angle of the proposed method can be seen to saturate
at θmax for much of the trajectory. This allows it to generate
maximum lift, reducing necessary additional thrust.

This comparison demonstrates how the energy consump-
tion of a transitioning UAV in low-speed flight improves
when its unique aerodynamic and control characteristics are
explicitly considered in the control design.

VIII. CONCLUSION AND FUTURE WORK

We have developed a nonlinear trajectory tracking con-
troller for winged eVTOL UAVs capable of producing thrust
in the body longitudinal plane. To efficiently allocate thrust,
we use a nonlinear optimization to find the maximum lift
the vehicle can produce given desired flight conditions.
To control the attitude of the vehicle we use an attitude
controller developed on SO(3) and PID rate control. To
find the actuator commands, we perform a linear control
allocation given thrust and torque virtual inputs. Separating
the attitude and rate control, and using a linear control
allocation method allows for future implementation of our
work on flight hardware.

The architecture we have proposed provides a novel
method for tracking a larger set of trajectories than has
previously been proposed. We believe this work can provide
a framework for the development of robust trajectory tracking
controllers for winged eVTOL UAVs. Future work includes
developing new methods for modelling or estimating the
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Fig. 3. Simulated position trajectories of the proposed θ and T optimized
control method, compared with simulated trajectories of a geometric con-
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with the reference trajectory pi
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simulation model are described in [17]. Both controllers experience some
tracking error, with the majority being in the zii direction. We attribute
these errors to the aerodynamics present in the simulation model that are
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Fig. 4. Comparison of position error, thrust magnitude, and pitch angle
for the same reference trajectory as is shown in fig. 3. The average position
error for the proposed θ and T optimized control method is half the average
position error for the Tx = 0 control method. The average thrust used by the
proposed method is 20% less than the Tx = 0 control method. The reduced
thrust is due to the proposed method taking advantage of aerodynamic lift,
even at low airspeeds. In the lowest panel, the pitch angle of the proposed
method can be seen to saturate at θmax for much of the trajectory. This
allows it to generate maximum lift, reducing necessary additional thrust.

aerodynamic characteristics of the vehicle. This, along with
a reduction in computation time would improve the pitch
and thrust optimization. Estimating disturbances, using an
airspeed-dependent rotor model, and handling saturated input
constraints would improve the control allocation.

APPENDIX

A. Proof of Theorem 1

Proof: We begin by assuming that the attitude and forces
are achieved instantaneously, so Rib = Rid and F bb = F dd, and
we assume that

RibBF
b
b = RidBF

d
d = f id. (30)

Substituting eq. (30) in eq. (5) gives

p̈ib/r = ge3 +
1

m
f id − p̈ir/i (31)

= ge3 +
1

m
m(p̈ir/i − ge3 −Kpp

i
b/r −Kdṗ

i
b/r)− p̈

i
r/i

(32)

= −Kpp
i
b/r −Kdṗ

i
b/r (33)

which, with Kp,Kd ∈ R3×3, Kp = K>p > 0 and Kd =
K>d > 0, is a stable second-order system. To show that our
assumption in eq. (30) holds, we first multiply the second
equality on both sides by (xid)

>, (yid)
>, and (zid)

>, to obtain

Fx,d = (xid)
>f id (34)

0 = (yid)
>f id (35)

Fz,d = (zid)
>f id (36)

respectively. We now find xid, yid, and zid so that these
relationships hold, and such that ψd/i = ψr/i. Since we are
assuming zero pitch, xid will lie in the inertial horizontal
plane and will be fully defined by ψr/i:

xid = [cosψr/i, sinψr/i, 0]>. (37)

To satisfy eq. (35) and the orthogonality of Rid it is necessary
to pick yid such that it is orthogonal to both f id and xid. To do
so, we make the assumption that ‖xid × f

i
d‖ 6= 0. The same

assumption is made in [1], and will only be violated if it is
desired for the UAV to accelerate downwards at gm

s2 , which
is unlikely and physically impossible due to the drag of the
wing and the constraints on the orientation of the rotors. We
then have

yid =
xid × f

i
d

‖xid × f
i
d‖
. (38)

By eliminating accelerations along yid, this additionally satis-
fies the coordinated flight condition for fixed-wing vehicles.
Finally, zid is chosen to be orthogonal to xid and yid and to
satisfy the right hand rule

zid = xid × yid. (39)

Therefore the choice of Rid = [xid,y
i
d, z

i
d] satisfies eq. (30).

B. Time Derivative of Rid
The time derivative of Rid can be found by differentiating

xid, yid, and zid,

Ṙid = [ẋid, ẏ
i
d, ż

i
d]. (40)

These derivatives are

ẋid = [−ψ̇r/i sinψr/i, ψ̇r/i cosψr/i, 0]>, (41)

ẏid =
ẋid × f

i
d + xid × ḟ

i

d

‖yid‖

− yid
(yid)

>(ẋid × f
i
d + xid × ḟ

i

d)

‖yid‖3

(42)
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Fig. 5. Notation used for the actuators on the E-flite Convergence tri-tilt-
rotor eVTOL. Actuators include the rotor throttle δr∗ , rotor angle ξe∗ , and
elevon deflection δe∗ . Also shown are the rotor positions, denoted q∗.

with

ḟd =
d

dt
m(p̈ir/i − ge3 −Kpp

i
b/r −Kdṗ

i
b/r) (43)

= m(
...
pir/i −Kpṗ

i
b/r −Kdp̈

i
b/r) (44)

= m(
...
pir/i −Kpṗ

i
b/r −Kd(−Kpp

i
b/r −Kdṗ

i
b/r)),

(45)

and finally,
żid = ẋid × yid + xid × ẏid. (46)

C. Control Allocation

Here the goal is to transform the desired thrust T bd =
[T bx,d, T

b
z,d] and the desired torque τ bc/b = [τx, τy, τz] to

individual motor throttle, motor angle, and control surface
commands. The vehicle we consider is the tri-tilt-rotor
Convergence aircraft manufactured by E-flite. A diagram
showing the naming conventions for the vehicle actuators
is shown in fig. 5. The actuator inputs are rotor throttles,
δr = [δr1 , δr2 , δr3 ] where δr∗ ∈ [0, 1], rotor angles ξr =
[ξr1 , ξr2 , ξr3 ] where ξr∗ ∈ [ξmin, ξmax] with ξr3 = π

2 , and the
elevon deflections δe = [δe1 , δe2 ] where δe∗ ∈ [−1, 1]. The
model is described in more detail in [17].

We begin by finding a linear relationship between the
rotor command δr∗ and the thrust and torque produced by
that rotor. We then assemble an allocation matrix using the
geometry of the vehicle and augment it with an airspeed
dependent elevon model.

1) Linear Rotor Model: The airspeed of a multirotor is
always near zero, so it is typical to use a linear rotor model
for both thrust and torque [3]. As the airspeed of the vehicle
increases, it has a significant affect on the performance of
the propeller. While this affect occurs, the use of feedback
control can allow the control allocation scheme to use a linear
model which assumes zero airspeed. In future work, a more
precise approach will be to vary the linear model based on
the current airspeed of the vehicle.

Define qi to be the measured rotor positions and define
the rotor axis direction vector to be

sri = [cos ξri , 0,− sin ξri ]
>. (47)

At hover, the rotor thrust and torque is approximately linear
in δr, and we denote the linear coefficients as kTi ∈ R for

the thrust, and kMi
∈ R for the torque. These coefficients

can be found experimentally for a vehicle in hover by
measuring the attitude Rib, commanded throttles δr, rotor
angles ξr, and assuming the rotor positions are known. Since
the aerodynamic forces and moments are zero when in hover,
we have the force balance

RbiF hover =

3∑
i=1

kTiδrisri

M hover =

3∑
i=1

kTiδri(qi × sri)− kMi
δrisri

(48)

where F hover = [0, 0,−mg]> and M hover = [0, 0, 0]>. Since
s>rie2 = 0, this produces a system of 5 equations and 6
unknowns. The front two rotors use identical motors, so the
two additional constraints kT1

= kT2
and kM1

= kM2
are

used to make the system overconstrained. The least-squares
solution is then used to find kTi and kMi .

2) Allocation Matrix: Once kTi and kMi are determined,
they can be used to construct a linear relationship from δr
and δe to T bd and τ bc/i. To do so, we first note that

qi × sri =

 −qi2 sin(ξri)
qi3 cos(ξri) + qi1 sin(ξri)

−qi2 cos(ξri)

 . (49)

We then have

T =

3∑
i=1

kTiδisri . (50)

and

τ =

3∑
i=1

kTiδri(qi × sri)− kMiδrisri . (51)

Due to the rotor angles, the relationships in eqs. (50) and (51)
are not linear in the control variables. However, we can use
a rectangular coordinate transform to define a new set of
controls representing the body frame horizontal and vertical
throttle commands,

ζix = δri cos(ξri) (52)
ζiz = δri sin(ξri) (53)

In the reverse, we have,

δri =
√
ζ2ix + ζ2iz (54)

and

ξri = tan−1
(
ζ1z
ζ1x

)
. (55)

The second row of eq. (50) is all zeros, and ζ3x = 0. Define

Z = [ζ1x, ζ1z, ζ2x, ζ2z, ζ3z] (56)

then, the matrix form of eqs. (50) and (51) can be written as[
T bb
τ bb/i

]
= GrZ. (57)
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TABLE I
ACTUATOR TO VIRTUAL INPUT MATRIX RELATIONSHIP

[
T b

d
τb
c/i

]
= G

[
Z
δe

]
=


kT1 0 kT2 0 kT3 0 0 0
0 −kT1

0 −kT2
0 −kT3

0 0
−kM1 −kT1q12 −kM2 −kT1q22 −kM3 −kT3q32 ΓClδe

ΓClδe
kT1

q13 kT1
q11 kT2

q23 kT2
q21 kT3

q33 kT3
q31 −ΓCmδe

ΓCmδe
−kT1q12 kM1 −kT2q22 kM2 −kT3q32 kM3 0 0





ζ1x
ζ1z
ζ2x
ζ2z
ζ3x
ζ3z
δe1
δe2


(58)

To perform control allocation for hover flight, eq. (57) can
be inverted. However, this does not include the relationships
necessary to allocate the use of the elevons in fixed wing
flight. A linear model for the moments produced by an elevon
is

Mδe =
1

2
ρV 2

a SbC∗δe δe (59)

where C∗δe = Clδe for the rolling moment and where C∗δe =
Cmδe for the pitching moment. The moment produced by an
elevon is proportional to the square of Va. We use the mea-
sured airspeed to determine how effective the elevons will
be at the current flight condition. We then augment Gr with
the elevon torques to represent the relationship between all
available actuators and the thrust and torques they produce.
Defining Γ(Va) = 1

2ρV
2
a Sb, and G = [Gr,Ge], where Ge

is the elevon allocation matrix, we have the result shown in
table I.
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