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Abstract – Our group is investigating the 
antidepressant effects of high-dose propofol, but 
dosing propofol to induce standardized changes in 
EEG activity (“burst suppression”) is challenging due 
to limited knowledge of each subject’s 
pharmacokinetics (PK) and pharmacodynamics (PD). 
In this paper, we approximated PK-PD models for 
propofol-induced burst suppression (PIBS), based on 
multiple subjects over repeated treatments. We then 
applied these models to predict BSR in each subject’s 
repeated treatment, then evaluate their predictive 
performances. We hypothesized that predicting BSR 
from a greater number of previous treatments would 
improve performance, but our current results are not 
conclusive enough to validate the hypothesis. We 
discuss our contributions, limitations, and 
adjustments for future studies.  
 

I. CLINICAL BACKGROUND 
 

An estimated 17.3 million US adults suffered a 
depressive episode in 2017 [1]. One third of patients do 
not respond to first-line antidepressants [2] and are left 
with limited treatment options. While electroconvulsive 
therapy (ECT) has been proven an effective option for 
severely depressed patients [3], the induced-seizure and 
patients' perceptions of ECT’s side effects may deter 
many from considering it as a treatment option [4]. Novel 
pharmacological alternatives are being investigated, 
which include common intravenous anesthetics, for 
example nitrous oxide, ketamine, isoflurane, and 
propofol. 

 
Our group is investigating the antidepressant 

effects of propofol [5], an intravenous hypnotic typically 
used to induce and maintain anesthesia. By suppressing 
cortical activity via GABA-ergic mechanisms [6] in the 
brain, propofol can directly suppress EEG activity [7]. At 

higher doses, propofol can also significantly reduce 
cerebral blood flow and metabolic rate of oxygen, which 
has been used to provide neuroprotection during 
neurosurgery [8], and relieve intracranial hypertension [9] 
and refractory status epilepticus [10]. 

 
Propofol can induce EEG patterns (“burst 

suppression”) that are similar to those seen with ECT, but 
without the induced seizure. Our group has reported 
preliminary indications of propofol’s antidepressant 
effects [11]. The burst suppression EEG pattern of 
alternating periods of activity and quiescence alone may 
be sufficient for antidepressant efficacy [12]. However, 
accurately controlling propofol-induced burst 
suppression (PIBS) and administering a standardized 
effect remains a challenge.  
 
 

II. TECHNICAL BACKGROUND 
 

Proper dosing of propofol to induce a 
standardized level of burst suppression, across different 
subjects and over repeated treatments, must consider the 
variabilities in pharmacokinetics (PK, how drug 
distributes throughout body) and pharmacodynamics (PD, 
how drug affects body). Neither can be intraoperatively 
validated nor practically estimated. Published PK-PD 
models could alternatively be used to help predict BSR, 
but they are not fully individualized to each subject and 
still result in inaccuracies when predicting the 
concentrations of propofol in the body [13]. 
 
Quantifying Burst Suppression  
 
 Burst suppression is commonly quantified by the 
burst suppression ratio (BSR): the relative time that the 
subject’s EEG is suppressed over a given epoch (e.g. 60 
sec). Burst suppression probability (BSP) has also been 
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proposed to quantify burst suppression with a statistical 
basis [14].  
 

 
Figure 1. EEG recording of propofol-induced burst suppression, 
which includes alternating periods of “bursts” and quiescence. 
Propofol suppresses the EEG, while BSR quantifies the relative time 
(percentage) of suppressed EEG activity.  

Pharmacokinetics 
 
 The amount of propofol administered and three 
compartment PK models (e.g. Schnider, Marsh, and 
Minto [15]) are typically used to estimate patients’ 
accumulation and decay of propofol concentration over 
time. They include a central compartment along with a 
fast- and a slow compartment. They account for factors 
such as sex, height, age, and weight which affect the rate 
constants between the compartments. 

 
Figure 2. Layout of a classic three compartment PK model, which 
includes multiple rate constants. Drug is administered to the central 
compartment; then transferred between the rapid peripheral, slow 
peripheral, and effect site compartments; and eventually eliminated 
from the system. Source: Al-Rifai et al. BJA Education 16(3), 2016 

 Given that there is generally a delay between 
changes in the central compartment's concentration of 
propofol and changes in observed response (e.g. BSR), a 
fourth compartment is often included to represent the 
“effect site” or “biophase” with its own rate constant (ke0) 
[16]. Each model’s ke0 depends on the underlying PK 
model and method (e.g., arterial vs. venous blood 
sampling), as well as the measured effect [17]. To our 
knowledge, a ke0 or PK-PD model specific to PIBS and 

BSR has not been reported before. Understanding 
biophase is essential to modeling the relationships 
between dose and effect-site concentration, and the 
relationship between the effect-site concentration and the 
observed response (PD).   
 

 
Figure 3. BSR (black) and predicted effect-site concentration (pCe, 
blue) during a high-dose propofol treatment. BSR generally correlates 
with administration of propofol and accumulation of pCe, but the 
relationship is inexact and nonlinear. The PK parameters used (Marsh 
model) have not been clinically validated for BSR.  

Pharmacodynamics  
  

Pharmacodynamic models for propofol are 
generally modeled through a sigmoidal Hill curve [18], 
which reflect a lower threshold to observe the effect and 
saturation of the effect at higher concentrations, similar to 
how biochemical receptors behave [19]. Our study’s 
fitted-PD models specifically relate the predicted effect-
site concentration (pCe(t), mcg/mL) to the observed burst 
suppression ratio (BSR) for each high-dose propofol 
treatment.  

 

Hill Equation: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = [𝑝𝑝𝑝𝑝𝑝𝑝]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝐸𝐸𝑝𝑝50𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+[𝑝𝑝𝑝𝑝𝑝𝑝]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
 

 
pBSR represents the model’s predicted BSR. The 

Hill coefficient characterizes the general steepness of the 
PD response curve. The EC50 parameter defines the pCe 
associated with 50% BSR.  
 

 
Figure 4. pCe (same from Figure 3) plotted directly against the 
observed BSR (black). Hysteresis has not yet been resolved.   
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Figure 5. Relationship between pCe vs BSR (black) improved by 
optimizing the ke0 to minimize the regression’s root mean square error 
(RMSE) and maximize fit to the Hill curve (red).  

Model-Based Predictions 

Beyond analyzing each high-dose propofol 
treatment and individualizing the fit of each PK-PD 
model, our group is interested in the model’s application 
and utility in predicting the observed BSR over repeated 
treatments, for example to guide or control propofol 
dosing. However, we first need to quantify the predictive 
performance of these model-based predictions before 
implementation.  

 
Figure 6. Observed BSR (blue) compared with the Predicted BSR 
(magenta), which is based on an individualized PK(predicted)-PD 
model from the previous treatment.  

 

III. OBJECTIVES 
 
Despite the challenges in predicting and 

controlling BSR, we believe that dosing can be 
individualized by inferring PK-PD parameters from 
previous treatments. In this paper, our objectives are to 1) 
approximate and optimize a PK-PD model for each high-
dose propofol treatment and then 2) apply models to 
predict BSR in future treatments and evaluate their 
performances.  

We hypothesize that predicting BSR from a 
greater number of previous treatments and models will 
improve the accuracy of predicting BSR.  
  

IV. METHODS 
 

We conducted a post hoc study of an ongoing 
randomized-controlled trial (NCT: NCT03684447 on 
ClinicalTrials.gov) at the University of Utah. We 
analyzed the high-dose propofol treatments, in which 
clinicians target a BSR of 80% ± 10% for 15 min. 
Propofol was the only hypnotic that was administered. 
We fitted and individualized PK-PD models for propofol-
induced burst suppression, then analyzed how the models 
performed predicting BSR in future PIBS treatments.  
 
Data Collection 
 
 Following IRB approval and informed consent, 
each of five patients (3:2 female:male, 33-51 yo, BMI 
18.3-33.9 kg/m2) underwent 4 to 8 PIBS treatments within 
a 3-week period each. For each treatment, we recorded the 
administered boluses and infusion rates for propofol, 
along with the BSR(t) from a BIS™ Vista Monitor 
(Medtronic, Dublin, Ireland).  
 

Demographic Parameters 
Subject Sex Height (cm) Age (yr) Weight (kg) n (1) 

A M 183 34 92 5 
B M 175 37 104 8 
C F 187 51 69 6 
D F 173 40 81 6 
E F 170 51 67 8 

Table 1. Summary of the subjects’ demographic parameters, along 
with the number of treatments (n) analyzed in this paper.  
 
PK-PD Modeling  
 
 For each treatment, we derived pCe(t) 
(concentration domain) from the recorded administrations 
of propofol (dose domain). We used each subject’s 
demographic parameters (sex, height, age, and weight) to 
approximate their pharmacokinetics via Eleveld’s PK 
model [17], then calculated pCe(t) (concentration) using 
Shafer’s simple pocket calculator approach [20].  
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Figure 7. A typical example of how pCe(t) changes during a high-dose 
propofol treatment, which includes an initial bolus and base infusion.  

 We then related pCe(t) to BSR(t) for each 
treatment by first optimizing ke0 to maximizing the 
relationship’s fit to the Hill Equation. Specifically, we 
used an iterative method to test ke0 between 0.80 and 2.00 
min-1 and minimized the regression’s root mean squared 
error (RMSE). After optimizing ke0, the regression for 
the Hill curve provided the corresponding Hill and EC50 
parameters for each treatment. 
 
Predicting BSR from Previous Treatment(s) 
 
 For each subject, after their first treatment, we 
compared each of following treatment’s BSR(t) with the 
pBSR(t), which was based upon the individualized PK-
PD model(s) from previous treatment(s). For each 
treatment after the second treatment, pBSR(t) was 
determined using two methods: the “Prior Treatment” 
approach (PTA) and the “Rolling Average” approach 
(RAA). 
 
 Prior Treatment Approach: For each repeated 
treatment, pCe(t) was derived from the original 
recordings of administered propofol, by applying the 
Eleveld PK model and the optimized ke0 from the 
previous treatment. pBSR(t) was then derived from pCe(t) 
using the Hill equation and parameters (Hill coefficient 
and EC50) from the immediately preceding treatment.  
 
 Rolling Average Approach: For each repeated 
treatment, pCe(t) was derived from the original 
recordings of administered propofol, by applying the 
Eleveld PK model and taking the median of the optimized 
ke0s from all of the previous treatments of that particular 

patient. pBSR(t) was then derived from pCe(t) using the 
Hill equation and median of the parameters (Hill 
coefficient and EC50) from all of the previous treatments. 
 
Analysis 
 

For each repeated treatment, we quantified each 
approach’s performance by measuring the median 
percentage error (MdPE), median absolute percentage 
error (MdAPE), median magnitude error (MdME), 
median absolute magnitude error (MdAME), and 
Controlled—percentage of treatment time within ± 5% 
BSR error [21]. Percentage error (PE) was defined as 
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝)/𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝. ME was 
defined as (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝).  

 
We compiled and compared the performances 

between the two BSR-prediction approaches across all 
five subjects and their repeated treatments. For each 
subject, the second treatments were omitted in the 
comparison, because both approaches’ pBSR(t) are 
derived solely from the first treatment’s individualized 
model and thus equivalent.   
 

V. RESULTS  
 

For each subject and each of their repeated 
treatments, we optimized and recorded ke0, along with 
Hill and EC50. We characterized each subject’s inter-
treatment distribution for the three parameters in Table 2, 
which offers preliminary insight into intra-subject PK/PD 
variability.  
 

PK(predicted)-PD Modeling 
Param. ke0 (min-1) Hill EC50 (mcg/mL) 
Subject Mean CV Mean CV Mean CV 

A 0.11 17% 6.4 46% 5.4 8% 
B 0.14 53% 12.4 48% 4.3 37% 
C 0.11 57% 7.2 49% 5.9 42% 
D 0.11 37% 6.1 77% 6.5 23% 
E 0.11 20% 8.8 45% 4.4 13% 

Table 2. Summary of each subject’s optimized model parameters and 
insight into their inter-treatment variabilities. Distribution 
characterized by the mean and log-normal coefficients of variations 
(CV). 
 

For each subject and across their repeated 
treatments, the performances for both predicted-BSR 
approaches are summarized in Tables 3 and 4. Between 
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different subjects, the predictive performance of each 
approach also differed.   

 
Prior Treatment Approach (PTA) 

Subject MdPE MdAPE MdME MdAME Controlled 
A -2.3% 9.0% -0.8% 4.1% 58.5% 
B -9.5% 24.4% -2.1% 9.0% 35.8% 
C -13% 46.6% -3.1% 18.6% 19.3% 
D 0.0% 24.4% -0.1% 14.5% 26.4% 
E 1.0% 11.8% 0.4% 6.6% 39.7% 

Table 3. Predictive performance for Prior Treatment Approach. 
 

Rolling Average Approach (RAA) 
Subject MdPE MdAPE MdME MdAME Controlled 

A -2.1% 9.9% -0.7 4.7% 51.9% 
B 30.7% 50.8% 4.8% 9.0% 35.6% 
C 14.0% 44.4% 4.2% 13.3% 25.5% 
D 1.7% 14.3% 0.5% 6.8% 35.9% 
E 2.6% 10.3% 1.7% 4.3% 55.8% 

Table 4. Predictive performance for Rolling Average Approach. 
 
 Table 5 shows the median performance across all 
23 repeated treatments for each metric. Across treatments 
and compared to the Prior Treatment Approach (PTA), 
the Rolling Average Approach (RAA) improved the 
Controlled metric by 11.7 percentage points. While RAA 
increased the median error (MdPe, MdME), RAA 
decreased the absolute error compared to PTA.  
 

Compiled BSR-Prediction Performance 
Method MdPE MdAPE MdME MdAME Controlled 

PTA -2.2% 18.1% -0.8% 8.0% 35.8% 
RAA 2.6% 14.3% 1.3% 5.5% 47.5% 

Δ +4.8% -3.8% +2.1% -2.5% +11.7% 
Table 5. Compiled performances for the Prior Treatment Approach 
(PTA) and Rolling Average Approach (RAA), then differences (Δ) in 
performances summarized in the bottom row. Results that support 
hypothesis are colored in green.  
 

VI. DISCUSSION 
 
In this study individualized PK-PD model 

parameters were determined for PIBS, based on multiple 
subjects and across repeated treatments. Our results offer 
preliminary insight into inter- and intra-subject PK/PD 
variabilities, which may impact the performance in 
predicting BSR. Inter- and intra-subject variabilities in 
model parameters, along with predictive performance, 
may be confounded by demographic and clinical factors.   

 
Compared to PTA, RAA seems to demonstrate 

slightly better performance in predicting BSR, based on 
the Controlled and absolute performance metrics – but 
slightly worse performance based on the non-absolute 

metrics. The differences do not reach statistical 
significance (likely because of a too small sample size) 
and do not allow conclusions about the hypothesis. 
Additionally, the experiment was not designed primarily 
as a pharmacokinetic or -dynamic study. RAA’s compiled 
MdAPE (14.3%) to predict BSR was considerably larger 
than a PD model that predicted BIS with an MdAPE of 
4.85% [22].  

 
Future studies may be warranted and should 

target the PK-PD aspects in their experimental design and 
pursue a larger sample size. Furthermore, different 
approaches to predict BSR beyond PTA and RAA could 
also be considered to test the hypothesis. This includes 
how model parameters are derived from previous 
treatment(s), and ways to further optimize ke0 and other 
PK parameters to improve the model’s fit.  
 

VII. CONCLUSION 
 

Despite the challenges in dosing propofol, 
understanding each subject’s unique PK/PD, and 
targeting a specific BSR for a specific duration, 
individualized models from previous treatments may be 
helpful in predicting and controlling BSR. Standardizing 
how PIBS is administered would reduce confounding in 
our group’s clinical investigation, and may also be useful 
in clinical practice. Our study explored model 
performance across multiple treatments, but was not able 
to demonstrate whether predictive performance can be 
improved across repeated treatments of PIBS. Future 
studies and adjustments are necessary to fully explore our 
hypothesis.  
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