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Abstract—The main limitation to the resolution
enhancement of spaceborne scatterometers is the
amplification of both measurement noise and model
error. A few components to model error include:
model discretization errors, interpolation errors, and
the aliasing of frequency content introduced by each
measurement spatial response function (MSRF). Us-
ing bandlimited reconstruction theory, we estimate
the maximum resolution enhancement of a given sam-
pling geometry through its inherent maximum square
bandlimit. Simulations suggest that under bandlim-
ited assumptions, the number of independent and
uniformly distributed samples are proportional to the
area of the sampling geometry’s supported bandlimit.
Furthermore, if we assume that the measurement
noise is white Gaussian noise, then the supported
bandlimit does not change. Using the simulations
described in this paper, a rough estimate of the
theoretical maximum resolution of a single swath of
RapidScat ‘egg’ measurement is 5.55kmx5.55km.

I. INTRODUCTION

Spaceborne scatterometers are essential tools
for understanding the Earth’s climate. Scat-
terometers use active radar sensors to mea-
sure the microwave backscatter reflected off
the Earth’s surface. Several important features
of the Earth’s climate can be derived from
these measurements. For example, oceanic sur-
face wind vectors can be inferred from scat-
terometer measurements. To this end, NASA
has launched several scatterometer missions,
which have all ended: NASA scatterometer
(NSCAT), QuickScat, SeaWinds, and most re-
cently RapidScat.

In an attempt to measure the entire surface
of the Earth, most scatterometer measurement

footprints cover a large area, which results
in coarse measurement resolution. RapidScat’s
measurement footprint is about 16km wide
with its measurement swath width being around
900km wide [1]. Many data products average
measurements over a predefined grid, using a
‘drop in the bucket’ (DIB) technique. Products
produced by DIB techniques are limited by
the coarse resolution of individual measure-
ment footprint areas. However, by taking ad-
vantage of the overlap between measurement
footprints, resolution enhancement algorithms
can resolve features smaller than each mea-
surement footprint. For example, Stogryn en-
hanced radiometer measurements by applying
the Backus Gilbert Inversion (BGI) method,
and Long enhanced scatterometer measure-
ments using the Scatterometer Image Recon-
struction (SIR) algorithm [2], [3]. High res-
olution data products using RapidScat ‘egg’
measurements are subjectively enhanced to a
4.45km resolution grid and RapidScat ‘slice’
measurements on a 2.225km grid [4].

While it is known that resolution enhance-
ment can increase the amount of resolvable
features in scatterometer data products, the
limitations of enhancement can be difficult
to ascertain. The most apparent limitation to
resolution enhancement is noise amplification.
Most resolution enhancement algorithms are
known to trade off improvements in spatial
resolution with an increase in noise. The degree
of enhancement is limited due to each algo-
rithm’s unique response to noise. For example,
studies have shown that the SIR algorithm has
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a smaller noise profile than BGI for similar
gains in resolution, at least in the case of
enhancing scatterometer measurements [5]. For
most applications it is common to subjectively
chose a resolution which appropriately bal-
ances both resolution enhancement and noise
amplification. Due to the variation in noise
amplification and resolution enhancing capabil-
ities, it is difficult to determine the extent to
which the resolution a particular scatterometer
can be enhanced.

In order to better understand the limitations
of scatterometer resolution enhancement, we
briefly discuss some bandlimited reconstruction
theory, some of the limitations of discrete es-
timation, and a basic approach to estimating
the maximum square resolution supported by a
particular sampling geometry. Then, using this
approach, we roughly estimate the theoretical
square maximum resolution inherent to Rapid-
Scat egg measurements.

II. THEORY

A. Bandlimited Reconstruction

The theoretical max resolution should be
solely based on a particular instrument’s mea-
surement geometry and sampling configuration.
According to bandlimited reconstruction the-
ory, the only type of surface a finite set of
measurements can reconstruct is a bandlim-
ited surface (i.e., a surface with a finite fre-
quency response) [6]. In 1D sampling theory
the Nyquist theorem assures us if the highest
frequency in f(t) is less than 2/T , f(t) can be
fully represented by an infinite number of ideal
samples f [n] = f(nT ):

f(t) =
∞∑
−∞

f [n]d(t− nT ), (1)

where f(t) is bandlimited function, f [n] rep-
resents ideal samples of f(nT ) = f [n], and
d(t − nT ) is the bandlimited identity function
corresponding the the bandlimit of f(t). A
more finely spaced grid (a smaller T ) corre-
sponds to a higher bandlimit (2/T ).

Fig. 1. Top, a rectangular sampling grid ∆x = 8km, ∆y =
4km. Middle, the corresponding maximum bandlimited identity
function (the convolution of two Dirichlet kernels). Bottom,
the maximum bandlimit’s spectrum 1/∆x = 0.125km−1,
1/∆y = 0.25km−1 (λx: [-0.0625, 0.0625] km−1,λy: [-0.125,
0.125] km−1.
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When considering samples in 2D, the shape
of the supported bandlimit depends on the
sampling density and distribution. For example,
a uniformly spaced rectangular grid with sam-
ples every ∆x, ∆y would have a rectangular
region of support in the frequency domain
with dimensions 1/∆x, 1/∆y (see Fig. 1).
Irregularly spaced samples may possess non-
rectangular regions and spatial nulls in their
spectrum of support. Instead of attempting to
determine the spectrum shape that maximizes
the 2D frequency content reconstructable from
irregular samples, in this paper we simplify
the estimation of a measurement geometry’s
supported bandlimit to its largest supported
square bandlimit.

B. Discrete Estimation

In order to demonstrate the estimation of
a sampling geometries maximum square ban-
dlimit d(t), we use a discrete 2D bandlimited
reconstruction model:

f [kj, lj] =

Ni∑
i=1

a[xi, yi]d[xi − kj, yi − lj], (2)

where f [kj, lj] is an ideal sample of a ban-
dlimited surface indexed by horizontal and
vertical indices kj and lj respectively, Ni is
the total amount of surface values a[xi, yi]
to reconstruct, a[xi, yi] is each value of the
bandlimited surface indexed by horizontal and
vertical indices xi and yi respectively, and
d[xi − kj, yi − lj] is the discrete bandlim-
ited identity corresponding to the bandlimit
of a[x, y] centered at [kj, lj] and evaluated at
[xi, yi].

By placing the bandlimited surface a[xi, yi]
on a regularly spaced square grid with a sepa-
ration of ∆r, we can specify a reconstruction
matrix D and vectorize Eq. 2:

f =
[
f [1] f [2] ... f [Nj]

]T
,

a =
[
a[1] a[2] ... a[Ni]

]T
,

Dji = d[xi − kj, yi − lj],

f = Ds,

(3)

where f is a vector of ideal samples, Nj is the
total number of ideal samples, a is a vector
linearized into 1D indices i = k + (l− 1)Ni of
surface values a[xi, yi], Ni is the total number
of values to reconstruct, Dji is a matrix of
bandlimited identity functions with dimensions
[Nj, Ni]. The 2D DFT of d[x, y] is known to
be a square centered at zero with dimensions
[1/∆r, 1/∆r]. In order to avoid indexing and
discretization errors when computing the DFT,
a 2D [

√
Ni,
√
Ni] point FFT is used, where√

Ni is forced to be odd.
To reconstruct the surface a[xi, yi], we must

take the pseudo-inverse of D:

a = D†f, (4)

where D† is the pseudo-inverse of D. Note that
although d[xi− kj, yi− lj] = d[kj −xi, lj − yi],
Eq. 2 can not be reversed (i.e., DT f 6= a, unless
D is square and full rank).

In order to verify if a particular square
bandlimit is supported by the ideal sampling in
f, we can create an error metric which checks
Eq. 4:

eb =
1

Ni

||a− D†f||2, (5)

where eb is the bandlimited reconstruction error
per pixel for a particular square bandlimit b.

C. Measurement Footprints

To incorporate samples with non-idealized
measurement footprints, we modify the discrete
bandlimited reconstruction case, by assuming
that each measurement is accurately repre-
sented by:

zj =

Ni∑
i=1

hj[xi, yi]d[xi − kj, yi − lj]a[xi, yi],

(6)

where zj is a non-idealized measurement, and
hj[xi, yi] is the measurement spatial response
function (MSRF) which represents how each
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zj was measured. By vectorizing hj[xi, yi] into
1D indices i = k+(l−1)Ni, we vectorize Eq.6:

z =
[
z[1] z[2] ... f [Nj]

]T
,

Hji =
[
hj[1] hj[2] ... hj[Ni]

]T
,

z = (H · D)a,

(7)

where H is the MSRF matrix with dimensions
[Nj, Ni], and (H ·D) denotes the element-wise
multiplication of H and D. Note that (H ·D) is
equivalent to bandlimiting each hj[xi, yi] with
the bandlimited identity of a. To reconstruct a
we must take the pseudo-inverse of the ban-
dlimited H:

a = (H · D)†z, (8)

In order to verify if a particular square ban-
dlimit is supported by the sampling in z, we
can create an error metric which checks Eq. 8:

eb =
1

Ni

||a− (H · D)†z||2, (9)

where eb is the bandlimited reconstruction error
per pixel for a particular square bandlimit b.

D. Discretization Errors

Since the discrete bandlimited reconstruction
model used above assumes that a[xi, yi] is the
original discrete surface and measurement loca-
tions [kj, lj] fall on the exact locations [xi, yi],
there is no MSRF discretization error in the
above simulations. However, typical scatterom-
eter measurements are modeled using the linear
system:

zj =

∫∫
hj(x, y)a(x, y)dxdy, (10)

where hj(x, y) and a(x, y) are continuous rep-
resentations of hj[xi, yi] and a[xi, yi] respec-
tively. If a(x, y) is assumed to be square ban-
dlimited, then under bandlimited assumptions
similar to Eq.6:

zj =

∫∫
hj(x, y)d(x− k, y − l)a(x, y)dxdy,

(11)

where d(x− k, y − l) is the continuous equiv-
alent to d[xi − kj, yi − lj]. The relationship
between hj[xi, yi] 6= hj(xi, yi). Ideally, the
discrete bandlimited verison of hj[xi, yi] =
hj(xi, yi)d(x − k, y − l). Mis-discretization of
a bandlimited hj(x, y) contributes model error
to the reconstruction process.

E. Interpolation Errors

Since real scatterometer measurements do
not fall on a regular gird, in order to pre-
form the maximum square resolution estima-
tion on real data, measurement locations are
interpolated onto a regular grid–contributing to
model error. Another limiting aspect of this
interpolating onto the [

√
Nix
√
Ni] ∆r grid is

quantization error. The 2D [
√
Ni,
√
Ni] point

FFT is limited to 1/(
√
Ni∆r) width bins when

estimating the maximum supported bandwidth,
so the estimate of the maximum resolution
is quantized to the closest integer multiple of
1/(
√
Ni∆r).

III. SIMULATIONS

A. Ideal Sampling

To estimate the square maximum resolution
of ideal sampling geometries, we simulate the
ideal discrete bandlimited reconstruction case
for two ideal grids with samples spaced ∆r1 =
4km and ∆r2 = 2km respectively (making
Nj = 625 and Nj = 2500 respectively) over
a discrete bandlimited image

√
Ni = 101km.

Additionally, to compare against irregular sam-
ples, random ideal non repeating samples are
generated to match each Nj in each gridded
case. Results are shown in Fig. 2, in which the
maximum dimension of the square bandlimit
corresponds to 1/∆r1 and 1/∆r2 respectively
for gridded samples. Under the restriction that
the random sampling is approximately uni-
formly distributed and samples are non repeat-
ing, the maximum supported bandlimit matches
each gridded simulation.

This suggests that as long as measurements
are uniformly distributed and independent, the
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maximum resolution is proportional to
√

Nj .
This assumption is supported by assuming that
the rank of the bandlimited sampling matrix D
is proportional to the maximum discrete square
bandlimit’s area.

Fig. 2. The simulation results of bandlimited reconstruction
error/pixel vs simulated square bandlimit areas. The ‘Grd-1/4’
and ‘Grd-1/16’ plots are spaced ∆r1 = 4km and ∆r2 = 2km
respectively. The ‘Rand-1/4’ and ‘Rand-1/16’ plots are ran-
domly space over a uniform distribution with the same Nj

as in each Gridded simulations. The jump in error occurs
respectively around .25km−1 and .5km−1.

Fig. 3. Using random MSRFs, the bandlimited reconstruction
error/pixel vs simulated square bandlimit areas is simulated.
The ‘Grd-1/4’ and ‘Grd-1/16’ plots are spaced ∆r1 = 4km
and ∆r2 = 2km respectively. The ‘Rand-1/4’ and ‘Rand-1/16’
plots are randomly space over a uniform distribution with the
same Nj as in each Gridded simulations. The jump in error
occurs respectively around .25km−1 and 0.5 km−1.

B. Footprint Sampling
To test how non-ideal measurements with

MSRFs compare to the ideal sampling case,
we repeat the above simulations but include
a randomly generated MSRF for each mea-
surement. Results are shown in Fig. 3. The
results indicate that the addition of MSRFs did
not change the estimated maximum resolution.
Instead, the reconstruction error/pixel past the
maximum square bandlimit is noticeably lower
when using MSRFs. This could be due to the
Gaussian MSRFs acting as low pass filter on
the accumulated reconstruction error.

C. Scatterometer Geometries
1) RapidScat Egg Measurements: For the

RapidScat egg simulations, a square region
over the Amazon was selected that cov-
ered the entire swath-width (specifically Lat-
itudes [−5◦, 0◦] and Longitudes [−65◦,−60◦]).
Only measurements from a single ascend-
ing pass were selected (specifically those col-
lected on Oct 27, 2015). In order to use the
above simulation’s format, measurements and
MSRFs were interpolated onto a regular grid
with 3.27kmx3.27km spacing. Measurements
of poor instrument quality or invalid MSRFs
were discarded in this simulation. The noise-
free result is shown in Fig. 4, with a result of
a maximum square bandlimit around 0.18km−1

square. The corresponding estimate of the the-
oretical maximum resolution for RapidScat egg
measurements is 5.55kmx5.55km, with a quan-
tization error around 0.1km in each dimension.

To visualize the effect of additive white
Gaussian noise on the estimation of a Rapid-
Scat egg theoretical maximum resolution, the
simulation described above was repeated with
measurement noise added to the bandlimited
measurements before reconstruction. The re-
sults using a various SNR levels are appended
to the previous results and are shown in Fig. 5.
Upon observation, it is apparent that for high
SNR levels the theoretical maximum bandlimit
did not change; however, for square bandlimit
dimensions less than the supported bandlimit,
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Fig. 4. Simulations using RapidScat egg measurements,
which compare the bandlimited reconstruction error/pixel vs
simulated square bandlimit areas. Samples were interpolated
onto a 3.27kmx3.27km grid and over the Amazon (Lati-
tude of [−5◦, 0◦] and Longitude of [−65◦,−60◦]) using
a single ascending pass. The jump in error occurs around
0.18km−1 corresponding to a theoretical maximum resolution
of 5.55kmx5.55km.

a baseline level of noise is observed. The
amount of reconstruction error increases as
the bandlimiting dimension is increased. This
most likely because the bandlimit acts as a
low pass filter on the cumulative reconstruction
error. Note that at low SNR levels, the signal
components of the image are overpowered by
measurement noise, thereby making accurate
reconstruction impossible.

The maximum resolution for a single swath
of RapidScat egg measurements can be im-
proved by aggregating multiple passes together.
If we were to assume that the overlap of
two RapidScat egg swaths double the amount
of independent measurements–and additionally
assuming that measurements are relatively uni-
formly distributed–we can roughly estimate the
effective max resolution dimension of two ag-
gregated swaths as half the resolution area of
a single swath: 5.55km

√
2 = 3.92km. This re-

sult supports the resolutions tested in previous
works, as the aggregate resolution is coarser
than the resolution chosen for egg SIR images
and finer than the resolution chosen for slice
SIR images [4].

Fig. 5. Simulations incorporating additive white Gaussian
measurement noise at SNRs=[10dB,20dB,30dB,40dB] using
RapidScat egg measurements, which compare the bandlimited
reconstruction error/pixel vs simulated square bandlimit areas.
Samples were interpolated onto a 3.27kmx3.27km grid and
over the Amazon (Latitude of [−5◦, 0◦] and Longitude of
[−65◦,−60◦]) using a single ascending pass. The jump in
error (expect for the 10dB noise simulation) occurs around
0.18km−1 corresponding to a theoretical maximum resolution
of 5.55kmx5.55km.

IV. CONCLUSION

The main limitation to the resolution en-
hancement of spaceborne scatterometers is the
amplification of both measurement noise and
model error. A few components to model error
include: model discretization errors, interpo-
lation errors, and the aliasing of frequency
content introduced by each MSRF.

Typically, scatterometer resolution enhance-
ment applications attempt to find a trade off
between resolution enhancement and noise am-
plification specific to their chosen reconstruc-
tion algorithm. While this method is effective,
it can be improved if we have and estimate
of the theoretical maximum resolution. Using
bandlimited reconstruction theory, we can find
the maximum square resolution of a particular
sampling geometry through an estimate of its
inherent maximum square bandlimit.

Under bandlimited assumptions, our simula-
tions show that the number of independent and
uniformly distributed samples is proportional to
the area of the sampling geometry’s supported
bandlimit. Additionally, if we assume that the
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measurement noise is white Gaussian noise
with a low SNR, then the supported bandlimit
does does not change. Using the simulations
described in this paper, a rough estimate of
the theoretical maximum resolution of a sin-
gle swath of RapidScat egg measurement is
5.55kmx5.55km.

Future work may revise these simulation to
more efficiently and accurately estimate the
bandlimited MSRF’s pseudo-inverse, so that
larger data sets and finer sampling grids can
be used. Additionally, the results of these
simulations can be validated by replacing the
pseudo-inverse calculation with a resolution
enhancement algorithm modified to be fully
bandlimited.
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