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Farm Efficiency and Productivity Growth:  
The Effect of Commodity Prices

Elizabeth Canales (Mississippi State University), Jason S. Bergtold (Kansas  
State University), and Allen Featherstone (Kansas State University)

INTRODUCTION
The agricultural sector has undergone notable 
changes. An increase in the demand for crops in 
the early 2000s for use in biofuel production was 
one reason for a significant increase in nominal 
crop and livestock prices (Babcock, 2012; Demirer 
et al., 2012; Dicks et al., 2009; Serra & Zilber-
man, 2013). According to Sumner (2009), prices of 
important agricultural commodities in 2008 saw 
the largest nominal price increases when compared 
to similar events over the past several decades. The 
need for the agricultural sector to meet an increas-
ing demand for agricultural products, coupled 
with high crop prices, provided incentives for 
farmers to expand crop production. Some produc-
ers responded by increasing supply on the exten-
sive margin by increasing the area planted (Brown 
et al., 2014). However, when land resources are 
scarce, supply growth must also come from pro-
ductivity growth (Alston et al., 2009; Rajagopal et 
al., 2007). Given farmers’ allocations of crop land, 
farmers can increase their production on the inten-
sive margin by altering crop patterns and intensi-
fying input use (Hausman et al., 2012). 

An important policy implication is how market 
conditions and other external factors affect pro-
ductivity growth in the agricultural sector. While 
farms respond to shocks in the market, little is 

known about its relationship to productivity 
change. The main objective of this study is to eval-
uate the changes in total factor productivity and its 
components (efficiency and technical change) for a 
sample of Kansas farms using an input-oriented 
nonparametric approach with a Malmquist pro-
ductivity index, and to study potential factors 
associated with farm efficiency and productiv-
ity change. This study seeks to understand the 
relationship between the increase in commodity 
prices observed from 2008 to 2011 and changes 
in productivity. This period was characterized by 
significant increases in crop prices (Figure 1). We 
also evaluate how farmers’ demographics and 
farm management characteristics are associated 
with changes in farm productivity. A secondary 
objective is to analyze the factors associated with 
technical efficiency, and whether farm efficiency 
is maintained over time or if farm performance 
changes from year to year (i.e., performance is 
year-specific). The results in this study will provide 
information on how farmers might adjust pro-
duction due to changing commodity markets and 
about other potential farm-level factors associated 
with productivity change. This information could 
be used by extension and policy makers to iden-
tify farms lagging behind and to develop outreach 
programs aimed at addressing the factors limiting 
farms’ growth.

ABSTRACT
Crop prices can affect farm productivity through input-output decisions. This study 
assesses the relationship between crop prices and productivity changes among a sample 
of Kansas farms. The changes in total factor productivity are evaluated using a nonpara-
metric approach with a Malmquist productivity index and potential drivers of technical 
efficiency and productivity change are analyzed. Farms with higher leverage and greater 
diversification are likely to be more efficient and experience productivity change. Lower 
productivity occurred during years with higher crop prices, suggesting that innovation is 
more likely to occur when margins are tight.
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(2011) used regression analysis to study the effect 
of input ratios and income shares on Kansas farm-
ers’ factor productivity and its components. Has-
sanpour et al. (2011) used a pooled logit model 
to examine the impact of socioeconomic and bio-
technical factors on the probability of productivity 
chance for trout farms in Iran. Odeck (2007) used 
both DEA and stochastic frontier analysis to esti-
mate efficiency and productivity change in Nor-
wegian grain production, using a tobit model to 
investigate the effect of farm size on productivity 
change. The effect of capital structure on the pro-
ductivity growth of Dutch farms was examined by 
Zhengfei and Lansink (2006) using a Malmquist 
productivity index in a dynamic panel data model. 

For the state of Kansas, productivity change has 
been evaluated by Yeager and Langemeier (2011), 
Mugera et al. (2012a), and Mugera et al. (2012b). 
Results of the study by Yeager and Langemeier 
(2011), using data for 135 farms from 1979 to 
2008, suggested that farms did not catch up to the 
growth rate of the more efficient farms (i.e., evi-
dence of divergence) during the period examined. 
Their findings also indicate that productivity grew 

LITERATURE REVIEW
Various studies have estimated productivity 
change for U.S. agriculture using state-level panel 
data for food and feed crops, fruits, vegetables, 
nuts, animal products, and other farm-related 
outputs from the U.S. Department of Agriculture 
Economic Research Service (USDA ERS) (O’Don-
nell, 2012; Tauer & Lordkipanidze, 2000; Wang et 
al., 2015). Some of these studies have found that 
productivity change is driven primarily by techni-
cal change (O’Donnell, 2012). Ball, Hallahan, and 
Nehring (2004) studied the convergence of pro-
ductivity growth in U.S. agriculture and found evi-
dence suggesting catching-up of states that were 
initially not efficient. Other studies conducted at 
the country and state level have focused on inves-
tigating the effect and importance of agricultural 
research and development on productivity growth 
(Alston et al., 2011; Jin & Huffman, 2016).

Other studies have estimated productivity 
change at the farm level and have examined the 
effect of exogenous factors on productivity change 
using different approaches. Yeager and Langemeier 
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Figure 1. Crop and livestock index normalized by 2011 prices, 2000–2011.
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parametric techniques such as stochastic fron-
tiers or nonparametric approaches such as data 
envelopment analysis (DEA). It is also possible 
to examine changes in productivity over time 
using a Malmquist productivity index that mea-
sures productivity changes of a farm between two 
adjacent periods. Malmquist productivity indexes 
have been widely used to study productivity in 
the agricultural sector. Both parametric (Atsbeha 
et al., 2012; Ferjani, 2011; Lissitsa & Odening, 
2005; Vassdal & Holst, 2011) and nonparamet-
ric approaches (Ball et al., 2004; Mugera et al., 
2012a, 2012b; Newman & Matthews, 2007; 
Tamini et al., 2012; Xiao et al., 2012; Yeager & 
Langemeier, 2011) have been used. DEA has been 
a widely used method to examine efficiency and 
productivity in agriculture and for public policy 
(Emrouznejad & Yang, 2018).

Technical Efficiency and Malmquist 
Productivity Index

This study analyzed the change in productivity of 
a set of i farms (i = 1,  , N) for a set of periods  
(t = 1,  , T). Farm j has vectors of inputs and outputs 
denoted respectively by ( , ... , )x xt

K
t

1  and ( , ... , )y yt
M
t

1  
where , Rx yt t ! +. The production possibility set St 
containing the feasible set of inputs transformed into 
a set of outputs for each time period t is defined as 

, :  S x y x can produce y  t t t t t= ^ h" , (Shephard, 1970).  
The production possibility set expressed in terms 
of the input distance function is represented by 

, : | , ,supD x y x y S 0 >i
t

i
t

i
t t t t!i i i=^ ^h h" , (Shephard, 

1970). In an input-oriented approach, the dis-
tance function represents the factor by which the 
input vector must be scaled down to be on the effi-
cient frontier. If the input and output sets belong 
to the production possibility set ,x y St t t!^ h , then 

,D x y 1≤i
t t t^ h , and ,D x y 1i

t t t =^ h  if and only if ,x y  t t^ h  
is on the frontier. 

The Malmquist productivity index developed 
by Caves et al. (1982) is defined in terms of the dis-
tance function of two adjacent periods and can be 
represented as the geometric mean of the indexes 
between two periods as follows (Färe et al., 1992):
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for the first 20 years of the sample but decreased for 
the last 10 years. Mugera et al. (2012a) studied the 
convergence of productivity growth of labor for 
Kansas farms using data from 1993 to 2007. They 
found evidence of convergence in labor productiv-
ity, indicating that farms that were less efficient at 
the beginning of the sample period displayed rapid 
growth rates due to catch-up in efficiency. Another 
study by Mugera et al. (2012b) found declining 
efficiency change and increasing labor productiv-
ity driven mainly by technical change and factor 
intensity in a sample of Kansas farms. 

The studies discussed above have examined 
total factor productivity, how productivity is 
affected by farm characteristics, and the conver-
gence of productivity growth. These studies have 
consistently found heterogeneity in farm efficiency 
stemming from farmer and farm characteristics. 
For example, larger and more diversified farms 
have generally been associated with higher tech-
nical efficiency scores (Alvarez & Arias, 2004; 
Featherstone et al., 1997; Mugera & Langemeier, 
2012). Productivity has also been found to have a 
gradual relationship with the age of the farm oper-
ator, where it increases and then decreases (Tauer 
& Lordkipanidze, 2000). Other factors, such as 
access to credit and agricultural subsidies, have 
also been found to affect productivity (Ciaian et 
al., 2012; Skevas & Lansink, 2014). Crop output 
prices also influence crop supply and could affect 
farm productivity through input-output decisions. 
While evidence in the literature suggests farmers 
alter land allocation and input use in response to 
price signals (Ciaian & Kancs, 2011; Haile et al., 
2014; Liang et al., 2011; Lywood et al., 2009), 
understanding how this impacts farmers’ produc-
tivity is also important. This study assesses the 
relationship between crop and livestock prices 
and changes in productivity for a sample of farms 
in Kansas. The association between other farmer 
and farm management characteristics and tech-
nical efficiency and productivity change is also 
explored. 

METHODS AND DATA 
The performance of farms can be analyzed using 
efficiency and productivity measures. In general, 
technical efficiency can be expressed as the ratio 
of aggregate outputs to aggregate inputs (Cooper 
et al., 2007). Efficiency can be measured using 



26  Canales, Bergtold, and Featherstone / Journal of Applied Farm Economics 4, no. 1 (Fall 2021)

( , )

: , ... ,

, ... ,

, ... ,

D x y min

x z x n K

y z y m M

z i N

1

1

0 1

subject to

 

 ≥

≤

≥  

, , ... ,

, ,

, ,

i
t

i
t

i
t

z z i

i n i
t

i n i
t

i

N

m i
t

i m i
t

i

N

i

1

1

1

i N1

i

i

=

=

=

=

i

−

=

=

6 @
/

/

	 (4)

( , )

: , ... ,

, ... ,

, ... ,

minD x y

x z x n K

y z y m M

z i N

1

1

0 1

subject to

 

 ≥

≤

≥  

, , ... ,

, ,

, ,

i
t

i
t

i
t

z z i

i n i
t

i n i
t

i

N

m i
t

i m i
t

i

N

i

1 1 1

1

1

1

1

i N1

i

i

=

=

=

=

i

+ + −

+

=

+

=

7 A
/

/
	 (5)

where zi is an input scaling factor. The distance 
function ( , )D x yi

t
i
t

i
t1 1 1+ + +  can be computed by 

replacing t with t 1+  in the linear problem in 
Equation 4. The intertemporal distance function of 
time t 1+  evaluated with respect to the technology 
frontier of time t can be computed by solving the 
linear program in Equation 5, while the distance 
function of time t 1+  evaluated at the technology 
frontier of time t can be computed by replacing t 
for t 1+  and t 1+  for t in that same linear problem.

Second Stage Regressions

The technical efficiency and productivity change 
estimates were used in a second stage regression to 
study the relationship between exogenous factors 
and farm performance. 

Farm Technical Efficiency

A dynamic probit model was used to estimate 
the relationship between farms’ characteristics 
and their likelihood of lying on the efficient fron-
tier. The model used controls for the dynamics of 
farmers’ past history, that is, the effect that being 
efficient in one period exerts on the likelihood 
that a farm is subsequently able to be among the 
most efficient farms in future periods (state depen-
dence). The effect of state dependence can be 
tested by including the lag of the dependent vari-
able as a covariate. There are two issues that, if 
not addressed, could result in the overestimation 
of the effect of state dependence: the correlation 
of the unobserved individual effects over time and 

where ( , )D x yi
t

i
t

i
t1 1+ +  represents the distance func-

tion for time t 1+  measured with respect to the 
frontier in time t and ( , )D x yi

t
i
t

i
t1+  represents the 

distance function for time t measured with respect 
to the frontier in time t 1+ . The Malmquist index 
measures the change in productivity between two 
time periods and can be decomposed into two pri-
mary components, efficiency change and technical 
change.
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The efficiency change is the ratio of the efficiencies 
in time t 1+  and time t, and measures whether a 
farm is moving away from or closer to the effi-
cient frontier (Equation 2). When the efficiency 
change index is greater than one, it indicates effi-
ciency progress from period t to period t 1+ , while 
an index equal to one indicates stagnation, and an 
index less than one indicates movement away from 
the frontier. The second term corresponds to the 
technical change or frontier shift (Equation 3). A 
technical change value greater than one indicates 
progress in the technology used by the farm unit, 
while values equal to or less than one represent no 
change or technical regression, respectively. 

The distance functions within the Malmquist 
index were estimated using DEA, a nonparametric 
approach (Färe et al., 1989). The advantage of this 
method is that it does not require a specification of 
the functional form of the distance function or the 
distribution of the errors. The estimation of the 
Malmquist index requires the estimation of four 
linear programming problems. Following evidence 
for farms in Kansas, we assume a constant returns 
to scale (CRS) technology. Guesmi et al. (2015) 
concluded that farms in Kansas, on average, oper-
ate under constant returns to scale, based on esti-
mated input and output elasticities. The distance 
functions were computed using the following lin-
ear programs (Färe et al., 1989):
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may be dynamic effects that should be considered. In 
this study, the effect of previous productivity perfor-
mance on current productive change was controlled 
for by including prior measures of productivity 
change from period t 1  and t 2 . The specification 
of the estimated regression is as follows:

	 xy y y a u, ,
'
itit i t i t i it1 1 2 2 bc c= + + + +− − 	 (8)

where yit is the farm’s productivity change (MI); 
xit is the vector of explanatory variables; ai are 
time-invariant farm-specific effects such that 

~ ( , )IID 0i
2a va ; and uit is an idiosyncratic error term 

such that ~ ( , )u IID 0it u
2v . 

A problem encountered when using the lagged 
dependent variable as an explanatory variable is 
the dynamic panel bias caused by the correlation 
between yit – 1 and the individual effects in the error 
term. The Arellano and Bover (1995) and Blun-
dell and Bond (1998) approach based on a system 
generalized method of moments (GMM) was used 
to correct for this potential bias. This approach 
deals with the dynamic panel data bias and allows 
for the inclusion of covariates that are potentially 
endogenous. In the system GMM, equations in dif-
ferences that are instrumented with lagged values 
of the variables (as in Arellano & Bond, 1991) are 
combined with level equations instrumented with 
lagged differences of the variables. If an explana-
tory variable is thought to be endogenous, GMM-
style instruments can be used. Following Zhengfei 
and Lansink (2006), both short-term and long-
term debt to asset ratios were treated as endoge-
nous in this study. Endogeneity arises because as 
farmers’ productivity improves, their creditwor-
thiness and ability to obtain loans also increases. A 
set of year dummy variables were included to con-
trol for time effects (Roodman, 2009). To avoid 
proliferation of instruments, only lags of two years 
were used as instruments for each time period. 
Asymptotic standard errors are bootstrapped.

Data

The data used in this study correspond to a bal-
anced panel consisting of 331 Kansas farms for 
the period 2000–2011. The data were obtained 
from farmers enrolled in the Kansas Farm Man-
agement Association. Detailed information on 
the data can be found in Langemeier (2010). 

the endogeneity of the initial condition (the first 
observation in the dataset does not coincide with 
the start of the stochastic process). Wooldridge 
(2005) proposed a conditional maximum likeli-
hood estimator for the dynamic random effects 
model that deals with the initial condition prob-
lem and unobserved heterogeneity. This formula-
tion considers the distribution of the dependent 
variable conditional on the initial value of the 
dependent variable and exogenous variables. The 
latent dependent variable can be written as:

	
;

, ... , ; , ... ,

xy y u

i N t T1 2

 *
,

'
itit i t t i it1 bc h a= + + + +

= =
− 	 (6)

where i indexes farms (i = 1,  , N) and t indexes time 
(t = 1,  , T). The observed outcome yit, is a binary 
response where farms that were efficient in a particu-
lar year were assigned a value of 11; xit is vector of 
explanatory variables; th  are year intercepts; ia  rep-
resent individual specific time invariant heterogene-
ity; and uit is the error term such that ~ ( , )u N 0it u

2v . 
Following Wooldridge’s approach, the density for ia  
can be specified as | , ~ ( , )x xy N y '

i ii i i a0 0 1 0
2da d d v+ + ,  

where ( , , ... , )x x x x ,i i i i T1 2=  contains a set of period 
specific indicators of the time-variant explanatory 
variables included to allow ia  and xit to correlate 
in all time periods. If ia  is xy a'

ii i i0 1 0 da d d= + + +  
with | ( , )~ ( , )xa y N 0ii i a0

2v , and considering the dis-
tribution of the dependent variable conditional on 
the initial value yi0 and xit, the latent variable can be 
rewritten as

x xy y y a u*
,

' '
it itit i t t i i it1 0 1 0b dc h d d= + + + + + + +− 	 (7)

The resulting likelihood function is the same as 
the standard random effects probit model with the 
initial value of the dependent variable and yearly 
indicators of the time-variant variables used as 
covariates. Asymptotic standard errors are boot-
strapped and average partial effects across the 
distribution of ia  were estimated following Wool-
dridge (2005). 

Productivity Change

We examined the factors that affect farm productiv-
ity change in a dynamic panel data model. Due to the 
panel structure nature of the data arising from the 
estimation of productivity change over time, there 
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The long-term debt to asset ratio was included 
to investigate the effect of financial leverage and 
is expected to have a positive effect on farms’ effi-
ciency and productivity growth if debt is used to 
finance investment in technological improvements 
and cover operational costs. A short-term debt to 
asset ratio is expected to negatively affect farm per-
formance as short-term debt is costly, and if farm-
ers experience low liquidity their ability to cover 
immediate operational needs can be limited (Lam-
bert & Bayda, 2005). Investment in farm equip-
ment is expected to have a positive effect. Regional 
dummies were included to control for unobserved 
factors like weather, soil characteristics, and man-
agerial differences that result in heterogeneity in 
production. Eastern Kansas was used as the base-
line region. Year dummies were included to cap-
ture productivity differences across years due to 
unobserved factors like year to year variations in 
weather (i.e., drought years). 

Crop and livestock price indexes were included 
as additional covariates in the productivity change 
regression to study the association between chang-
ing commodity prices and productivity change. 
Crop and livestock output price indexes are the 
weighted average of the prices received by farmers 
for their crops and livestock normalized by 2011 
prices. Crop and livestock prices in the sample have 
been increasing for the period examined, with the 
crop price index climbing steeply after 2006 (Fig-
ure 1). The livestock price index shows a steadier 
and smaller increase than crop prices during this 
same period. Although external factors may affect 
output prices, at the farm level prices are assumed to 
be exogenous as an individual farmer’s output can-
not affect prices. Under profit maximization, output 
prices affect input use decisions and ultimately the 
firm’s output. If farmers’ response to higher prices 
has resulted in improvements in their performance, 
a positive sign for these variables is expected. How-
ever, suboptimal production could also arise as 
incentives to boost production could drive farmers 
to apply inputs in excess of the optimal levels. 

RESULTS

Farm Efficiency

Summary statistics of the results of technical effi-
ciency, Malmquist productivity index, and effi-
ciency and technical change averaged across farms 

Aggregate observation for two outputs (crops 
and livestock) and five inputs (crop inputs, live-
stock inputs, labor, fuel, and other inputs) were 
used for estimation of farms’ technical efficiency 
and productivity change. Crop output comprises 
feed grain, hay, forage and small grains produc-
tion. Livestock output corresponds to beef, dairy 
and swine. Labor input corresponds to the num-
ber of workers including hired and unpaid labor. 
The estimate for crop input is an aggregate of 
seed, fertilizer, herbicide, insecticide, crop mar-
keting and storage, and crop insurance inputs 
used in production. The fuel input comprises fuel 
used for activities related to vehicles, machinery 
and equipment, and irrigation energy. Inputs cor-
responding to the livestock input include dairy 
inputs, feed, veterinarian services, marketing, and 
breeding. Aggregated into the other input cate-
gory are mainly capital inputs. 

Variables Used in Second Stage Regressions

Exogenous variables included in the regression 
analysis of technical efficiency and productiv-
ity change are crop income share of gross farm 
income, farm size measured in acres, land tenure 
measured as the percentage of rented land, short- 
and long-term debt to assets ratio, investment in 
crop machinery as a percentage of fixed assets, 
age of the farm operator, crop and livestock price 
indexes, and regional dummies. Descriptive statis-
tics of the data across farms and years are pre-
sented in Table 1. 

Age was used as a proxy measure for farmers’ 
experience, and it is expected to positively affect 
productivity. However, if older farmers are more 
conservative regarding technological innovation 
decisions, age could also exert a negative effect. 
Farm size was measured as total acreage operated. 
Larger farms may have better access to resources 
(e.g., credit and technology) and can take advan-
tage of technologies of scale. Previous studies have 
found evidence that larger farmers have better 
financial performance (Hoppe et al., 2010) and 
deviate less from production efficiency when eval-
uated in terms of profit maximization (Foster & 
Rausser, 1991). The share of crop income in total 
gross farm income was used as a proxy for farm 
diversification. While there are benefits associated 
with farm diversification (Chavas, 2008), gains 
from specialization could also exist. 
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The likelihood that a farm produced on the 
efficient frontier was examined using a dynamic 
probit model where the dependent variable indi-
cates whether a farm lies on the efficient frontier 
or has efficiencies greater than or equal to 0.95. 
Parameter estimates and average partial effects for 
the dynamic probit model are reported in Table 3. 
Given that regional dummies are time-invariant, it 
is not possible to separately estimate their partial 
effect from their correlation with time-invariant 
individual heterogeneity. It is only possible to 

are reported in Table 2. Results of the efficiency 
scores provide evidence of the existence of ineffi-
ciency in farm production for the sample of farms 
examined. The average yearly technical efficiency 
for farms was 0.74, with a maximum of 0.77 and 
a minimum of 0.69 over the period examined. 
About 9.1% to 16.6% of the farms were on the 
efficient frontier in any year. The years with the 
highest percentage of farmers on the production 
efficient frontier were 2007 and 2008 with 16.6% 
and 16.0% of the farms in the sample, respectively. 

Table 1. Summary Statistics for a Sample of Kansas Farms, Averages for 2000–2011 

Variables Mean
Standard 
Deviation

Percentiles

25th 50th 75th

Outputs

  Crop index 487,131 470,649 187,876 361,495 627,575

  Livestock index 94,277 170,773 0 41,439 106,518

Inputs

  Labor index 1.375 0.856 1 1.1 1.6

  Crop input index 131,914 128,894 51,026 95,761 169,381

  Fuel index 42,188 38,015 20,245 32,357 49,955

  Livestock input index 42,157 108,135 945 10,293 32,884

  Other inputs (mainly capital) 211,804 151,074 113,779 167,396 264,893

Price Indexesa

  Crop price index 0.576 0.210 0.412 0.485 0.697

  Livestock price index 0.830 0.139 0.734 0.824 1

Farm Characteristics

  Age 58 10 51 58 66

  Crop income share 0.770 0.265 0.642 0.861 1.000

  Livestock income share 0.230 0.265 0.000 0.139 0.358

  Average total assets 1,230,341 1,036,815 569,492 936,335 1,537,083

  Average total debt 258,967 320,259 41,000 150,695 356,942

  Debt to asset ratio 0.243 0.232 0.052 0.180 0.374

  Noncurrent assets 898,258 805,276 388,108 676,296 1,088,425

  Investment 199,573 180,417 84,580 150,821 256,118

  Invest to asset ratio 0.278 0.196 0.140 0.227 0.370

  Total acres 2,057 1,467 1,125 1,739 2,518

  Percentage of rented acres 0.616 0.281 0.442 0.673 0.831

  Western Kansas 0.085 0.278 — — —

  Central Kansas 0.353 0.478 — — —

  Eastern Kansas 0.562 0.496 — — —

a Crop and livestock price indexes were normalized with respect to the year 2011.
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Table 2. Input-Oriented Technical Efficiency Scores and Productivity Indexes for Sample of Kansas 
Farms, 2000–2011

Year
Technical 
Efficiency

% of  
Farms on  

the Frontier
Efficiency  

Change  (a)
Technical  

Change  (b)

Malmquist 
Productivity Indexa 

(a) X (b)

2000 0.691  (0.178) 9.06 — — —
2001 0.757  (0.159) 14.8 1.156  (0.358) 0.816  (0.128) 0.926  (0.255)

2002 0.763  (0.172) 12.99 1.031  (0.240) 0.898  (0.122) 0.924  (0.241)
2003 0.692  (0.177) 9.67 0.941  (0.302) 1.198  (0.182) 1.111  (0.333)
2004 0.769  (0.156) 13.29 1.177  (0.364) 0.934  (0.215) 1.077  (0.361)
2005 0.749  (0.175) 14.8 1.003  (0.276) 1.188  (0.441) 1.180  (0.599)
2006 0.756  (0.172) 14.5 1.050  (0.309) 0.929  (0.179) 0.955  (0.262)
2007 0.772  (0.174) 16.61 1.055  (0.281) 0.969  (0.173) 1.015  (0.301)
2008 0.773  (0.171) 16.01 1.040  (0.286) 0.924  (0.115) 0.961  (0.295)
2009 0.758  (0.170) 13.6 1.027  (0.405) 1.156  (0.150) 1.191  (0.524)
2010 0.707  (0.181) 11.78 0.974  (0.334) 1.115  (0.140) 1.083  (0.399)
2011 0.740  (0.184) 15.11 1.093  (0.342) 0.778  (0.271) 0.855  (0.453)

Mean 0.744 13.52 1.049 0.991 1.025
Maximum 0.773 16.61 1.177 1.198 1.191
Minimum 0.691 9.06 0.941 0.778 0.855

Numbers in parentheses are standard errors. 
a The Malmquist productivity index is the product of columns (a) and (b).

Table 3. Results of Dynamic Probit Model—Probability of Farmers Being on the Efficient Frontier

Dynamic Model Estimates Average Partial Effects

Coefficient Std. Error Estimate Std. Error

Intercept –0.2988 (0.3632)

Efficientt = 0 0.6263*** (0.1151)
Efficientt –1 0.1112* (0.0666) 0.0282 (0.0182)
Crop share –1.4499*** (0.3135) –0.3234*** (0.0772)
Acres 0.0001*** (0.0000) 0.0000** (0.0000)

Percentage of rented land  0.0782 (0.2888) 0.0174 (0.0638)
Short-term debt to asset ratio –0.7036 (0.5082) –0.1569 (0.1439)
Long-term debt to asset ratio 0.8180** (0.3826) 0.1824** (0.0877)
Investment 0.3185 (0.4005) 0.0710 (0.0971)
Age –0.0045 (0.0043) –0.0010 (0.0012)
Central region –0.1023 (0.0998)
Western region 0.3224* (0.1697)
Sigma 0.5125 (0.0461)
Rho 0.2079 (0.0296)

No. observations 3,641

Notes: ***, ** and * indicate the estimated coefficients are significantly different from zero at the 1%, 5%, and 10% level of 
significance, respectively. 
The model includes year dummies. 
a Standard errors calculated using bootstrapping.
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frontier. A study by Chavas and Aliber (1993) 
found that the intermediate and long-term debt 
to asset ratio had a positive effect on the techni-
cal and allocative efficiency of a group of farm-
ers in Wisconsin. Similarly, a study by Lambert 
and Bayda (2005) found a positive relationship 
between intermediate-term debt to asset ratio and 
technical efficiency for a sample of North Dakota 
farmers. Both studies attributed this finding to 
an increase in investment in capital equipment 
financed through debt. In addition, this result 
could be explained by the free-cash theory, which 
stipulates that the burden of debt creates an incen-
tive for managers to operate more efficiently (see 
Mugera & Nyambane, 2014).

Productivity Change

Productivity change was measured using the 
Malmquist productivity index (Table 2). Produc-
tivity indexes greater than one indicate progress 
(i.e., productivity growth), values of one indicate 
stagnation, and values less than one indicate regres-
sion between two adjacent years. The average pro-
ductivity index across farms and years was 1.025, 
indicating a productivity growth of 2.5% per year 
for the sample of farms examined. Estimates from 
USDA ERS for aggregate agricultural output for the 
period 1948–2011 indicate an annual productivity 
growth of 1.49% in the United States during this 
period (Wang et al., 2015). Variations in the produc-
tivity index are observed from year to year in our 
study, but greater variation can be observed across 
individuals. The maximum average yearly growth 
was 19% (observed in 2009), while the minimum 
observed value is -14% (observed in 2011). This 
result could reflect the negative effect of the 2011 
drought on yields in Kansas. Looking into the effi-
ciency component of the productivity index, farms 
exhibited an average efficiency growth of 4.9%. 
Generally, farms exhibited efficiency growth in all 
but two years (2003 and 2010). This result indi-
cates that farms are moving closer to the efficient 
frontier (i.e., catching up). The average annual pro-
ductivity change index was 0.991, indicating tech-
nical stagnation during the period examined. We 
observe a drop in the technical change (frontier 
shift) from 2010 to 2011, after observing a growth 
of 12–16% during the previous two years. Produc-
tivity growth during the period examined is mainly 
attributable to efficiency growth. 

examine the direction of its effect. The estimated 
value of 0.51 for sigma2 implies that unobserved 
heterogeneity accounts for approximately 21% of 
the error variance. 

After controlling for individual heterogeneity, 
the average partial effect of the variable measuring 
state dependence was not statistically significant, 
suggesting that it is the farmers’ characteristics and 
not their prior efficiency that determines a farm’s 
current ability to remain efficient. While it would 
be expected that farmers learn from their previous 
experience, it may be that the process of learning 
and know-how that allows them to perform better 
than their peers is related to both observable and 
unobservable farmer characteristics. In addition, 
factors beyond the control of the farmer also play 
a role in farming efficiency.

This study found a statistically significant differ-
ence in farm performance across farm types. Farms 
with a higher share of income from crops were less 
likely to be on the efficient frontier. This could indi-
cate that farms with higher income from livestock 
enterprises tend to be more efficient. In addition, 
it could reflect the effect of farm diversity. As an 
enterprise becomes more specialized on crops with 
a lower share of income coming from livestock, the 
diversification of the operation decreases and so 
does its likelihood of remaining efficient. In a study 
of the efficiency of beef cow farms, Featherstone, 
Langemeier, and Ismet (1997) found that diversi-
fied farms were more technically efficient than spe-
cialized farms. 

Total acres operated was found to be a positive 
and statistically significant factor in armers’ like-
lihood to be efficient (Table 3). Larger farms may 
have better access to resources (e.g., credit and 
technology) and can take advantage of technolo-
gies of scale. For example, Briggeman, Towe, and 
Morehart (2009) found that the majority of farms 
suffering credit constraints are small farms. How-
ever, results with respect to farm size and techni-
cal efficiency are mixed; both negative (Townsend 
et al., 1998) and positive effects have been found 
(Alvarez & Arias, 2004). Mugera and Langemeier 
(2012) and Featherstone, Langemeier, and Ismet 
(1997) found larger technical efficiencies for larger 
farms in Kansas. 

Results indicate that farmers with higher long-
term debt to asset ratio are more likely to be 
efficient, suggesting that farmers with financial 
leverage are more likely to produce on the efficient 
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( , )D x yt t t
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1 1 1+ + +  in the numerator for the estimation 
of productivity change from time t to t 1+  (Equa-
tions 1–3) rotates to the denominator in the esti-
mation of the productivity growth from time t 1+  
to t 2+ . These results are related to the concept 
of convergence that postulates that farmers who 
lag behind operations on the frontier can exhibit 
larger increases in productivity as technologies dif-
fuse and farms catch up (Ball et al., 2004). Larger 
potential increases in productivity for farms that 
initially experience lower productivity could also 
be the result of a positive spillover effect of knowl-
edge and management strategies from the most 
productive farms.

It is important to note that while past produc-
tivity progress is negatively related to current 

Regression results for the model examining pro-
ductivity change via the MI using a dynamic panel 
data model are reported in Table 4. Results of the 
Sargan and Hansen test for overidentifying restric-
tions confirmed the validity of the instruments used 
(Table 4). The parameters on the lags of productiv-
ity change are negative and statistically significant. 
Farms with high productivity change are getting 
closer to the efficient frontier due to catch-up to the 
most efficient farms. More efficient farms appear 
to have less opportunity for improvement in sub-
sequent periods. Econometrically, this is a result 
of negative intertemporal serial correlation from 
the calculation of cross-period indexes (Zhengfei 
& Lansink, 2006). As pointed out by Zhengfei 
and Lansink (2006), the production possibility set 

Table 4. Productivity Change (Malmquist Index) Regression Analysis Results

Coefficient Std. Error

Intercept 2.1640*** (0.3550)

Mt – 1 –0.3700*** (0.1290)

Mt – 2 –0.0865* (0.0446)

Crop price index –0.8960*** (0.2600)

Livestock price index 0.1940* (0.1150)

Crop share –0.1260** (0.0520)

Acres 0.0000 (0.0000)

Percentage of rented land –0.0832 (0.0826)

Short-term debt to asset ratio 0.2280 (0.1790)

Long-term debt to asset ratio 0.1930* (0.1120)

Investment –0.0108 (0.8790)

Investmentt – 1 –0.0312 (1.0470)

Age 0.0003 (0.0008)

Central region –0.0062 (0.0137)

Western region 0.0361* (0.0190)

Year dummies  Yes

No. observations 2,979

AR(1) test (p-value) –2.930 (0.003)

AR(2) test (p-value) –0.750 (0.456)

Sargan test (d.f., p-value) 56.17 (45, 0.123)

Hansen test (d.f., p-value) 48.79 (45, 0.323)

Notes: ***, ** and * indicate the estimated coefficients are significantly different from zero at the 1%, 
5%, and 10% level of significance, respectively. MI = Malmquist productivity index. The model was 
estimated using the xtabond2 module in Stata11 (Roodman, 2009) using the Windmeijer (2005) finite-
sample correction. The model includes year dummies.
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The livestock price index was positively cor-
related with productivity during the period of 
time examined, indicating possible efficiency 
growth due to better livestock prices during the 
period examined. Examination of the association 
between crop prices and productivity change indi-
cates that productivity growth was negatively 
related to increases in crop prices for the period 
examined, as reflected by the negative sign on the 
crop price index (Table 4). While increases in com-
modity prices could provide incentives for farmers 
to increase efficiency, it could also provide incen-
tive for farmers to increase input allocation at a 
suboptimal level. Higher commodity prices could 
incentivize farmers to move away from their origi-
nal rotations to a more specialized rotation con-
sisting of high-value crops, and could also cause 
farmers to use less productive marginal lands for 
production and to increase input use (Choi & 
Helmberger, 1993; Ciaian & Kancs, 2011; Mal-
colm et al., 2009). 

In the short-term, farmers could use their inputs 
mix in a less efficient way as they seek to increase 
yields and to maximize returns. O’Donnell (2010) 
suggests that factors that increase profitability, like 
output price, can result in lower productivity. He 
suggests that increases in output prices relative to 
input prices could represent an incentive for farm-
ers to expand their operation to take advantage of 
profit opportunities. This could result in farmers 
moving into a region of decreasing returns to scale, 
reducing their productivity (O’Donnell, 2010). For 
example, a farmer that reacts to high corn prices 
may attempt to boost yields by adding fertilizer 
above the optimal level. In our data, we observe 
a decline in technical efficiency change from 2006 
to 2010 (Figure 2), the same period for which we 
observed higher crop prices (Figure 1). Statistics 
by the ERS-USDA (2013) suggest that a productiv-
ity decline was observed in 2007 when, motivated 
by high corn prices and the demand for corn for 
ethanol production, farmers increased their use of 
fertilizer and expanded the land under corn pro-
duction, abandoning their common crop rotation. 

CONCLUSIONS
This study estimated farm technical efficiency and 
changes in productivity using the Malmquist pro-
ductivity index and its components for a sample 

changes in productivity, this does not imply lack 
of efficiency; rather, it informs us that a farm’s 
opportunity for growth is reduced compared to 
their peers as the farm grows closer to the produc-
tion frontier. For example, a farm that caught up 
to the efficient frontier in the previous year (exhib-
ited growth) is not able to experience additional 
growth as it has already attained the maximum 
level of efficiency given the technological frontier 
available. Given that innovation in the agricultural 
sector results in shifts in the production frontier, 
efficient farmers can attain productivity growth 
through frontier shifts when they adopt new tech-
nologies. For this reason, investment in research 
and technological development is important for 
achieving long-term productivity growth in the 
agricultural sector (Fuglie & Wang, 2012). 

The long-term debt to asset ratio was found to 
be positively and significantly correlated with pro-
ductivity change. This result is consistent with pre-
vious research in the literature that found evidence 
suggesting a positive relationship between finan-
cial leverage and productivity growth (Ciaian et 
al., 2012; Zhengfei & Lansink, 2006). Credit con-
straints could affect resource allocation decisions 
and input usage and could limit farmers’ ability to 
undertake investment in technological innovation. 
Credit limitations could result in lower efficiency 
levels (Briggeman et al., 2009; Lambert & Bayda, 
2005; Petrick, 2004). Contrary to expectations, 
however, investment in crop machinery as a per-
centage of total assets was not statistically signifi-
cant. A possible explanation is that investments in 
other type of capital or technological innovations 
(e.g., improved seed varieties, facilities, etc.) not 
included could have a large effect on efficiency.

An increase in the share of income from crops 
was associated with a lower growth. This result 
suggests that farms that were more specialized in 
crop production attained a lower increase in pro-
ductivity than farms that include livestock pro-
duction. The results in this study also suggest that 
farms located in western Kansas had a larger pro-
ductivity change than farms located in the east-
ern region of the state. A good portion of the land 
under production in western Kansas is irrigated. 
Irrigated crops have generally larger crop yields 
than dryland crops (Rogers & Lamm, 2012), 
which could explain why farmers in this region 
exhibit higher productivity.
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higher crop prices experienced during the ethanol 
boom. This can inform policy makers about how 
policies that could result in higher farm output 
prices could potentially affect input allocation and 
farm productivity in the short-term. Education 
and outreach efforts could focus on efficient input 
allocation tools and strategies, particularly when 
market conditions create incentives for producers 
to maximize output. Future research could exam-
ine the impact of changes in efficiency over time 
due to commodity prices changes and how they 
relate to agricultural commodity policies. 
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NOTES
1. While efficient farms have efficiency scores equal to 

one, to consider farms with low deviations from the effi-
cient frontier and for the purpose of this model we included 
farms whose scores are equal or greater than 0.95.

2. ( ) . ( . ) . .1 0 51 1 0 51 0 21a av v+ = + =
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