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1') Check for updates 

OPEN Repurposing approach identifies 
pitavastatin as a potent azole 
chemosensitizing agent effective 
against azole-resistant Candida 
species 
Hassan E. Eldesouky1, Ehab A. Salama1, Xiaoyan Li1, Tony R. Hazbun2,3, 
Abdelrahman S. Mayhoub4 ✉ & Mohamed N. Seleem1,5 ✉ 

The limited number of antifungals and the rising frequency of azole-resistant Candida species are 
growing challenges to human medicine. Drug repurposing signifies an appealing approach to enhance 
the activity of current antifungal drugs. Here, we evaluated the ability of Pharmakon 1600 drug library 
to sensitize an azole-resistant Candida albicans to the effect of fluconazole. The primary screen revealed 
44 non-antifungal hits were able to act synergistically with fluconazole against the test strain. Of note, 
21 compounds, showed aptness for systemic administration and limited toxic effects, were considered 
as potential fluconazole adjuvants and thus were termed as “repositionable hits”. A follow-up analysis 
revealed pitavastatin displaying the most potent fluconazole chemosensitizing activity against the test 
strain (ΣFICI 0.05) and thus was further evaluated against 18 isolates of C. albicans (n = 9), C. glabrata 
(n = 4), and C. auris (n = 5). Pitavastatin displayed broad-spectrum synergistic interactions with both 
fluconazole and voriconazole against ~89% of the tested strains (ΣFICI 0.05–0.5). Additionally, the 
pitavastatin-fluconazole combination significantly reduced the biofilm-forming abilities of the tested 
Candida species by up to 73%, and successfully reduced the fungal burdens in a Caenorhabditis elegans 
infection model by up to 96%. This study presents pitavastatin as a potent azole chemosensitizing 
agent that warrant further investigation. 

Candida species are the most common nosocomial fungal pathogens and are a major cause of
healthcare-associated bloodstream infections1–3. In the USA, Candida species are the fourth-leading cause of 
bloodstream infections4,5. Diseases caused by Candida species can range from self-limited uncomplicated super-
fcial lesions to a deadly form of disseminated invasive infection that is ofen associated with a high mortality 
rate (42–65%)6. Available epidemiological data derived from several independent surveillance studies portray C. 
albicans and C. glabrata as the two major causes of Candida-related infections in North America and Europe7–9. 
However, the recent emergence of C. auris has become a global health concern, considering its unique multidrug 
resistance nature, the efcient ability to colonize human tissues and to provoke several global outbreaks10,11. Tus, 
C. auris was recently categorized by the US Centers for Disease Control and Prevention (CDC) as an urgent
health threat12. 

Treatment of systemic Candida infections is currently limited to only three major drug classes; azoles, pol-
yenes, and echinocandins13,14. Te limited toxicity, oral bioavailability, and broad-spectrum of antifungal activi-
ties made azoles the most commonly prescribed drugs for treating and controlling Candida infections14,15. Azoles 
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exert their antifungal activity through the inhibition of lanosterol 14-alpha-demethylase, Erg11, an essential step 
in the ergosterol biosynthesis pathway. Interference with the ergosterol biosynthesis pathway signifcantly com-
promises the functions of fungal cell membranes16. Unfortunately, excessive use of azole antifungal agents has 
been associated with the emergence of azole-resistant Candida strains17,18. 

Given the clinical importance of azole antifungals, there is a pressing need for potent co-drugs that would aug-
ment the antifungal efect of azole drugs, particularly against Candida bioflms and azole-resistant strains. Drug 
repurposing is a promising approach that can be utilized to improve the activity of current antifungal, reduce their
toxicity, and even to overcome the rising antifungal resistance. In this study, we explored the fuconazole chem-
osensitizing activity of ~1600 approved drugs and clinical molecules from the Pharmakon drug library. Te pri-
mary screen identifed 44 non-antifungal hit compounds that were able to sensitize an azole-resistant C. albicans 
strain to the efect of fuconazole. A follow-up analysis of identifed hits revealed pitavastatin as the most potent
fuconazole chemosensitizing agent and thus was further investigated in combination with diferent azole drugs 
against 18 strains of C. albicans, C. glabrata, and the multidrug-resistant C. auris. Te pitavastatin-fuconazole 
combination was also evaluated for the ability to inhibit Candida bioflm formation and was assessed for the abil-
ity to reduce Candida burdens in infected Caenorhabditis elegans. Furthermore, the efect of pitavastatin on the 
efux activities of Candida strains with known efux mechanisms was evaluated. 

Results and Discussion 
Screening of Pharmakon drug library and identification of fluconazole adjuvants hit com-
pounds. We performed an initial screen of the Pharmakon 1600 drug library, at a 16 µM fxed concentration, 
to identify potential fuconazole adjuvants, for which we used a standard broth microdilution method follow-
ing the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Te screen was performed twice 
against the azole-resistant C. albicans NR-29448, in the presence or absence of 8 µg/ml fuconazole. Tis high
fuconazole concentration was opted to maximize the initial pool of positive hits. Positive hits were identifed
as hit compounds that caused signifcant growth inhibition (by >50%) of the test strain only in the presence 
of fuconazole. Positive hits were initially determined by visual inspection then further confrmed spectropho-
tometrically by measuring the absorbance of Candida culture at OD 490 nM. Te primary screen identifed a
list of 44 positive hits (2.75% initial hit rate) that exhibited synergistic interactions with fuconazole against the 
azole-resistant strain C. albicans NR-29448. Tese initial hits were sub-grouped into seven antineoplastic agents, 
eight antiparasitics, eight topical agents and 21 drugs that were considered potential fuconazole adjuvants for
treating systemic infections and thus were termed “repositionable drugs” (Fig. 1). Notably, several hit compounds 
that were classifed as topical agents and antiparasitics (Supplementary Table ST1) could hold promising clinical 
potential for treating topical Candida infections. For example, bufexamac, a topical anti-infammatory drug, may
worth further investigation as part of a future study to treat mucosal and skin infections, especially those caused 
by azole-resistant Candida species. 

However, since the main focus of this study was to identify potent systemic fuconazole adjuvants, we directed
our attention to study the fuconazole chemosensitizing activities of the repositionable drugs for their aptness
for systemic administration and for their relatively low toxicity profles. Next, we determined the minimum 
fuconazole-chemosensitizing concentrations of these drugs against C. albicans NR-29448, in the presence or 
absence of fuconazole (at 8 µg/ml). Interestingly, the antihyperlipidemic agent simvastatin demonstrated a sig-
nifcant fuconazole chemosensitizing activity at 8 µM while all other hit compounds showed activities only at16 
µM (Table 1).

To the best of our knowledge, the primary screen revealed novel fuconazole chemosensitizing agents that have
never been reported before, such as aripiprazole, perhexiline, phenelzine, quinestrol, dienestrol, hexestrol, norg-
estimate, meclocycline, tolfenamic acid, and sulfaquinoxaline. In addition and as expected, the primary screen
identifed several drugs with known fuconazole chemosensitizing activities, such as the cholesterol-lowering
agents; simvastatin, atorvastatin, and lovastatin, artemisinin, amiodarone, sulfamethoxazole, doxycycline, and 
the calcineurin inhibitors nisoldipine and tamoxifen19–25. 

Synergistic interactions between fluconazole and the antihyperlipidemic statin drugs against 
C. albicans NR-29448. Te observation that simvastatin demonstrated a signifcant fuconazole chemosen-
sitizing activity was encouraging to assess the activity of other pharmacologically related antihyperlipidemic sta-
tin drugs. Microdilution checkerboard assays were used to assess the interactions between eight statin derivatives
and fuconazole against C. albicans NR-29448 strain. Interestingly pitavastatin, whose activity as a fuconazole 
chemosensitizing agent has not been previously reported, displayed the most potent fuconazole chemosensitiz-
ing activity (ΣFICI = 0.05) and was superior to all other tested statin drugs (Table 2). Te pitavastatin’s fucona-
zole chemosensitizing activity was even more superior than the other pharmacologically-related statin drugs, 
which were reported to have fuconazole-chemosensitizing activities26,27. Pitavastatin, at 0.25 µg/ml, was able to 
reduce the MIC of fuconazole by 64-fold against C. albicans NR-29448. Except for pravastatin, all other sta-
tin drugs demonstrated synergistic interactions with fuconazole against the tested strain (ΣFICI = 0.13–0.26), 
Table 2. Of note, pitavastatin was shown to reach a peak blood concentration of 0.23 µg/ml following a single oral 
dose of 4 mg, suggesting that its indication as a fuconazole adjuvant is rationally conceivable28. Due to its potent 
fuconazole chemosensitizing activity and its potential clinical importance, pitavastatin was selected for subse-
quent experimental investigation. 

Pitavastatin displays a potent, broad-spectrum azole chemosensitizing activity against differ-
ent Candida species. Afer identifying pitavastatin as the most potent azole-chemosensitizing agent against 
C. albicans NR-29448, we examined whether such activity would extend to other strains and species of Candida. 
As shown in Table 3, pitavastatin exhibited a broad-spectrum synergistic relationship with fuconazole against 16 
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Figure 1. Primary screening of the Pharmakon 1600 drug library. (a) Graphical representation of results 
of primary screening. Initial hits were classifed into four classes: antineoplastic, topical, antiparasitic, and 
repositionable agents (b). Percent growth inhibition according to OD 490 spectrophotometric readings. 
Experiments were performed in duplicates and bars indicate standard error. 

out of 18 tested Candida strains (~89%), resulting in signifcant reductions in the fuconazole’s MIC values (4–64 
folds). Notably, the pitavastatin-fuconazole combination displayed variable activities against strains displaying
diferent azole resistance mechanisms. Pitavastatin interacted synergistically with fuconazole against C. albicans 
TWO7243 strain, which is known to exhibit increased mRNA levels of ERG11, CDR1 (an ABC-type transporter) 
and MDR1 (an MFS-type transporter). Similarly, pitavastatin interacted synergistically with fuconazole against 
C. albicans SC-TAC1G980E strain, which has a gain of function mutation in TAC1, a positive transcription regulator 
for the ABC (ATP Binding Cassette) membrane transporters29–31. However, the pitavastatin-fuconazole combi-
nation failed to display similar interactions against strain TWO7241, which exhibits increased mRNA levels of
both ERG11 and MDR1, and strain SC-MRR1P683S which has a gain of function mutation in MRR1, a positive 
transcription regulator for the MFS (Major Facilitator Superfamily) membrane transporters29–31. Tese results 
indicate that the azole chemosensitizing activity of pitavastatin is dictated by the underlying azole resistance 
mechanisms and suggest a possible role for the membrane efux transporters.

Pitavastatin was also evaluated in combination with other azole antifungals including voriconazole and itra-
conazole. Similar to its efect with fuconazole, pitavastatin possessed broad-spectrum synergistic interactions
with voriconazole against 16 strains of C. albicans, C. glabrata, and C. auris (ΣFICI ranged from 0.15 to 0.50,
Supplementary Table 2). However, pitavastatin displayed a more narrow-spectrum synergistic relationship with 
itraconazole, as only 9 out of 18 of the tested Candida strains (50%) responded to the pitavastatin-itraconazole 
combination (Supplementary Table 3).

Of note, although pitavastatin was able to demonstrate broad-spectrum synergistic interactions with fu-
conazole, these interactions were not sufficient to restore the antifungal activity of fluconazole in several
fuconazole-resistant isolates. Considering the current resistance breakpoints for azole drugs, two C. albicans and 
four C. auris isolates maintained their resistance profles to fuconazole32–37. However, combining pitavastatin 
with either voriconazole or itraconazole displayed better outcomes against isolates displaying a lower susceptibil-
ity to either agent, suggesting a potential clinical signifcance for treating invasive infections caused by voricona-
zole (or itraconazole) resistant isolates. 

The pitavastatin-fluconazole combination significantly reduces the biofilm-forming abilities of 
Candida species. Candida species are known for their remarkable capabilities of forming robust adherent 

https://doi.org/10.1038/s41598-020-64571-7
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Identifed Hit Compounds 

MIC (µM) 

Without 
fuconazole 

Plus fuconazole 
8 µg/ml 

Amiodarone >16 16 

Aripiprazole >16 16 

Artemisinin >16 16 

Atorvastatin >16 16 

Dienestrol >16 16 

Diethylstilbestrol >16 16 

Doxycycline >16 16 

Hexestrol >16 16 

Lobeline >16 16 

Lovastatin >16 16 

Meclocycline >16 16 

Nisoldipine >16 16 

Norgestimate >16 16 

Perhexiline >16 16 

Phenelzine >16 16 

Quinestrol >16 16 

Simvastatin >16 8 

Sulfamonomethoxine >16 16 

Sulfaquinoxaline >16 16 

Tamoxifen >16 16 

Tolfenamic acid >16 16 

Table 1. Minimum inhibitory concentrations (MICs) of repositionable hit compounds in the presence or 
absence of fuconazole. 

Test Agent 

MIC (µM) 

ΣFICIa Interaction 

Fluconazole Test Agent 

Alone Combined Alone Combined 

Atorvastatin 256 4 128 16 0.14 SYN 

Fluvastatin 256 4 64 8 0.14 SYN 

Lovastatin 256 2 128 16 0.13 SYN 

Mevastatin 256 4 256 32 0.14 SYN 

Pitavastatin 256 4 8 0.25 0.05 SYN 

Pravastatin 256 2 256 256 1.01 IND 

Rosuvastatin 256 2 128 32 0.26 SYN 

Simvastatin 256 4 64 8 0.14 SYN 

Table 2. Efect of diferent statin drugs on the antifungal activity of fuconazole against C. albicans NR-29448. 
aΣFICI (fractional inhibitory concentration index) is used to measure the interaction between the tested 
combinations. ΣFICI interpretation corresponded to the following defnitions: synergism (SYN), ΣFICI ≤ 0.5; 
additivity (ADD), ΣFICI > 0.5 and ≤1; and indiference (IND), ΣFICI > 1 and ≤4. 

structures (i.e., bioflms) on surfaces of diferent abiotic surfaces, such as catheters, and medical implants38–40. 
Bioflms limit the penetration of antifungal drugs and can contribute to treatment failure and chronic infections41. 
Fungal cells residing in bioflms have been reported to have increased expression of efux genes42,43. Bioflms 
were also reported to trigger the formation of Candida persisters, which can tolerate very high doses of the anti-
fungal agents44. Collectively, these factors contribute signifcantly to the remarkable ability of Candida’s bioflms 
to resist the efect of antifungal drugs, especially azoles45,46. Tus, there is a pressing necessity for novel antifun-
gal adjuvants with activity against Candida bioflms. Here, we investigated whether the synergistic relationship 
between azole drugs and pitavastatin could interfere with the bioflm-forming ability of Candida. Compared to 
single treatments with either fuconazole or pitavastatin, incubating the tested Candida species with pitavastatin 
(at 0.5 × MIC) in the presence of a subinhibitory concentration of fuconazole (2 µg/ml) resulted in a signifcant 
reduction in the bioflm-forming abilities of C. albicans NR-29448 (by ~92%, Fig. 2a), C. glabrata HM-1123 
(by ~70%, Fig. 2b), and C. auris 385 (by ~41%, Fig. 2c). Tese fndings indicate potent inhibitory activities of
the pitavastatin-fuconazole combination against diferent Candida bioflms. However, when tested against pre-
formed bioflms, the pitavastatin-fuconazole combination failed to disrupt mature bioflms suggesting poor pen-
etrating abilities of the tested combination (data not shown). 

https://doi.org/10.1038/s41598-020-64571-7


5 SCIENTIFIC REPORTS |         (2020) 10:7525  | https://doi.org/10.1038/s41598-020-64571-7 

www.nature.com/scientificreportswww.nature.com/scientificreports/

 

   
 
 

 
 
 
 

 
  

  
 
 
 
 

  
 
 

               
 

 
 
 
 

 

 
 

 
  

 

  
    

Candida Strains 

MIC (µg/ml) 

ΣFICIa Interaction 

FLC Pitavastatin 

Alone Combined Alone Combined 

C. albicans SC5314 0.125 0.0312 4 1 0.50 SYN 

C. albicans NR-29448 256 4 8 0.25 0.05 SYN 

C. albicans NR-29437 128 4 8 0.5 0.09 SYN 

C. albicans ATCC 26790 128 4 8 0.5 0.09 SYN 

C. albicans ATCC MYA-573 128 4 16 4 0.28 SYN 

C. albicans TWO7241 32 16 8 4 1.00 IND 

C. albicans TWO7243 64 16 64 4 0.31 SYN 

C. albicans SC-TAC1G980E 2 0.25 32 4 0.25 SYN 

C. albicans SC-MRR1P683S 2 1 8 2 0.75 ADD 

C. glabrata ATCC 66032 4 1 64 16 0.50 SYN 

C. glabrata
ATCC MYA-2950 8 1 64 16 0.38 SYN 

C. glabrata ATCC 2001 4 0.5 64 16 0.38 SYN 

C. glabrata HM-1123 4 1 64 16 0.50 SYN 

C. auris 385 256 32 128 32 0.38 SYN 

C. auris 386 256 64 128 16 0.38 SYN 

C. auris 388 256 64 64 16 0.50 SYN 

C. auris 389 256 32 64 8 0.25 SYN 

C. auris 390 256 16 64 16 0.31 SYN 

Table 3. Efect of the pitavastatin-fuconazole (FLC) combination against diferent Candida strains. aΣFICI 
(fractional inhibitory concentration index) is used to measure the interaction between the tested combinations. 
ΣFICI interpretation corresponded to the following defnitions: synergism (SYN), ΣFICI ≤ 0.5; additivity 
(ADD), ΣFICI > 0.5 and ≤1; and indiference (IND), ΣFICI > 1 and ≤4. 

Pitavastatin significantly interferes with the ABC-mediated efflux activity of Candida. Notably, 
the azole chemosensitizing activity of statins has been attributed to their ability to interfere with the fungal 
ergosterol biosynthesis26,47. However, this mechanism does not explain their inconsistent efects against the
efux-activated strains. As shown in Table 3, pitavastatin demonstrated signifcant fuconazole chemosensi-
tizing activity against strains whose efux mechanisms involve a signifcant role of the ABC-type transporters 
(SC-TAC1G980E and TWO7243) but failed to do so against strains whose efux mechanisms are solely mediated
by the MFS-type transporters (SC-MRR1P683S and TWO7241). Additionally, we noticed a signifcant reduction in
the intrinsic antifungal activity of pitavastatin (by 4–8 fold) against C. albicans strains exhibiting increased mRNA 
levels of ABC-type efux transporters (Table 3). Moreover, Candida species that are known for their hyperactive 
ABC-transporters such as C. glabrata and C. auris displayed signifcantly reduced susceptibility to pitavastatin 
as compared to the wild type C. albicans strain48–50. Tese observations suggest a high afnity of pitavastatin 
towards the fungal ABC efux pumps. Terefore, we postulated that pitavastatin may enhance the antifungal
activity of fuconazole through a competitive interference with Candida’s ABC-type membrane transporters.
To investigate this premise, we frst used nile red efux assay. Nile red is a known substrate for the two major 
membrane transporters (ABC and MFS) which have been reported as major contributors to azole resistance in
Candida51–53. Terefore, nile red can be used efciently as a non-specifc reporter dye to measure drug efects on 
the efux activities of C. albicans strains, regardless of their efux mechanisms. As shown in Fig. 3a, pitavastatin 
(at 0.25 × MIC) signifcantly maintained a high level of nile red fuorescence intensity in the ABC efux-activated
strain (SC-TAC1G980E), compared to the non-treated control. However, the nile red fuorescence intensity was
greatly diminished in the MFS efux-activated strain (SC-MRR1P683S), and the signal was comparable to the 
non-treated control (Fig. 3b). Tese results suggest a signifcant ability of pitavastatin to interfere specifcally with
the ABC efux-mediated activities in Candida. Tese efects were confrmed using fow cytometry analysis. C. 
albicans SC-TAC1G980E exhibited a signifcant increase in the nile red fuorescence intensity following exposure 
to pitavastatin at 0.25 × MIC. However, C. albicans SC-MRR1P683S was indiferent to the pitavastatin efect, and
the nile red fuorescence intensity was comparable to the non-treated control (Fig. 4a). Pitavastatin treatment
resulted in a signifcant increase (65%) in the mean fuorescent intensity only in the ABC-efux activated strain 
(SC-TAC1G980E), as compared to the non-treated control (Fig. 4b), which supports our previous observation.

Tese fndings were further confrmed using rhodamine 6G efux assay. Rhodamine 6G has been shown to
display a substrate specifcity to the ABC membrane transporters54. Similarly, pitavastatin at a subinhibitory con-
centration (0.25 × MIC) signifcantly reduced the percentage of efuxed rhodamine in the ABC- efux activated 
strain C. albicans SC-TAC1G980E, as compared to the non-treated control (Supplementary Fig. 1). Once again, this
result indicates that the azole chemosensitization activities displayed by pitavastatin can be attributed, at least in 
part, to their ability to interfere with the function of Candida’s ABC transporters. 

Efficacy of the pitavastatin-fluconazole combination in Caenorhabditis elegans infection 
model. In the field of antimicrobial drug discovery, it is quite frequent to notice that several promising 

https://doi.org/10.1038/s41598-020-64571-7
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Figure 2. Anti-bioflm activity of the pitavastatin-fuconazole combination. Te efect of the pitavastatin-
fuconazole (FLC) combination was tested on the bioflm-forming ability of (a) C. albicans NR-29448, (b) C. 
glabrata HM-1123, and (c) C. auris 385, respectively. Fresh overnight cultures of the tested Candida strains were 
diluted 1:100 in RPMI 1640 medium. Cells were treated with pitavastatin (at 0.5 × MIC), fuconazole (FLC) 
at 2 µg/ml, or a combination of the two drugs, at the indicated concentration. Candida strains were incubated 
at 35 °C for 24 hours before discarding the non-adherent cells and staining the formed bioflms with 0.01% 
crystal violet. Te absorbance of crystal violet-stained bioflms was measured at OD595. *Indicates a signifcant 
diference between each treatment compared to the non-treated control. Whereas # indicates a signifcant 
diference between the tested pitavastatin-fuconazole combination relative to the single treatment with either 
fuconazole or pitavastatin. Te statistical signifcance was considered for P < 0.05 as determined by one-way 
ANOVA with posthoc Dunnet’s test for multiple comparisons. 

antimicrobial compounds fail when assessed in vivo in animal models, despite potent in vitro activities. Given 
the in-vitro promising activity of the pitavastatin-fuconazole combination, together with its potent antibioflm
activity against diferent Candida species, it was necessary to assess its activity in vivo. C. elegans is a satisfactory 
animal model for the initial assessment of promising antimicrobial agents prior to their evaluation in mammalian
models. In order to validate our in vitro results, C. elegans was utilized as an animal model to investigate the fu-
conazole chemosensitizing activity of pitavastatin. As shown in Fig. 5, treating C. elegans infected nematodes with 
pitavastatin (at 0.5 x MIC) combined with three diferent concentrations of fuconazole (2, 8, and 32 µg/ml) dis-
played variable outcomes depending on the fuconazole concentration and the infectious strain. Compared to the
untreated control which accumulated 233 ± 21 CFU/worm, pitavastatin-fuconazole combinations signifcantly 
reduced the mean fungal CFU burdens of C. albicans NR-29448 in the infected nematodes by ~82–96% (Fig. 5a).
Likewise, pitavastatin-fuconazole combinations reduced the fungal burdens of C. glabrata ATCC MYA-2950 
by ~84–93% compared to the untreated control which accumulated 344 ± 19 CFU/worm (Fig. 5b). Against C. 
auris 390, pitavastatin-fuconazole combinations reduced the CFU burdens in the infected nematodes by 14–92%
compared to the untreated control which accumulated 250 ± 25 CFU/ml (Fig. 5c). As expected, single fucona-
zole treatments failed to reduce the CFU burdens in nematodes infected with the fuconazole-resistant isolates 
(C. albicans NR-29448 or C. auris 390). However, single treatments with fuconazole at 8 or 32 µg/ml were able 
to reduce CFU burdens of C. glabrata ATCC MYA-2950 by only 26 and 57% respectively, though more potent
activities were attained with combination treatments as shown earlier. Altogether, these results are encouraging 
for future evaluation of the pitavastatin-fuconazole combination in higher animal models. 
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Figure 3. Efect of pitavastatin on Nile red efux by diferent efux hyperactive Candida strains. Te efect 
of pitavastatin on nile red efux in (a) the ABC efux-activated strain SC-TAC1G980E, and (b) the MFS efux-
activated strain SC-MRR1P683S. Starved Candida cells were loaded with the fuorescent dye, nile red (7.5 µM).
Pitavastatin (0.25 × MIC) and the positive control clorgyline (5 µg/ml) were added to the stained cells. Nile 
red efux was initiated by adding glucose (fnal concentration 10 mM). Te nile red fuorescence intensity was 
monitored over 10 minutes and is expressed as the percentage of change in the fuorescence intensity. *Indicates 
a statistically signifcant diference from the non-treated control (P < 0.05, as determined by multiple t-tests 
using Holm-Sidak statistical method for multiple comparisons). 

Figure 4. Flow cytometry analysis of nile red efux from two C. albicans strains treated with pitavastatin. (a)
Histograms represent overlaid fow cytometry data as a percentage of unstained or nile red-stained C. albicans 
strains (SC-TAC1G980E and SC-MRR1P683S), following treatment with either PBS or pitavastatin. Starved 
Candida cells were stained with nile red, treated with pitavastatin (0.25 × MIC), exposed to glucose (10 mM) 
for 10 minutes to initiate the efux, and then analyzed with fow cytometry. Te shif in the mean fuorescence 
following pitavastatin treatment indicates increased nile red staining and hence interference with the nile 
red efux capacity of the test strain. (b) Graphs of mean fuorescence intensities normalized to the average 
mean fuorescence intensity of non-treated samples (Candida cells + Nile Red). Te means ± S.D. from two 
independent replicates are shown. Asterisks indicate statistically signifcant (P < 0.05) pairwise comparisons 
between the pitavastatin treated and non-treated samples. 
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Figure 5. Efcacy of the pitavastatin-fuconazole combination in a Caenorhabditis elegans infection model. C. 
elegans strain AU37 genotype [glp-4(bn2) I; sek-1(km4) X], was co-incubated with cell suspensions of (a) C. 
albicans NR-29448, (b) C. glabrata ATCC MYA-2950, or (c) C. auris 390 using an inoculum size of ~5 × 107 

CFU/ml for 3 hours at room temperature. Infected nematodes were washed with PBS and then treated with the 
pitavastatin-fuconazole combination at the respective concentration. Treatment with PBS, pitavastatin alone, 
or fuconazole alone served as controls. Afer 24 hours of treatment, worms were lysed to determine the fungal 
burden (CFU/worm) afer treatment. *Indicates a signifcant diference between each treatment compared to 
the non-treated control. Whereas # indicates signifcant diferences between the tested pitavastatin-fuconazole 
combinations relative to the single treatment with the respective fuconazole concentration. Te statistical 
signifcance was considered for P < 0.05 as determined by one-way ANOVA with posthoc Dunnet’s test for 
multiple comparisons. 

Conclusion 
Te present study characterized pitavastatin as a promising agent for sensitizing azole-resistant Candida species
to the antifungal efect of azoles. Pitavastatin, exhibited broad-spectrum synergistic interactions with fuconazole 
against a variety of clinically-relevant Candida species, including emerging multi-drug resistant C. auris iso-
lates. Moreover, the pitavastatin-fuconazole combination signifcantly interfered with Candida’s bioflm-forming
abilities. Additionally, the pitavastatin-fuconazole combination signifcantly reduced Candida’s CFU burdens 
in infected C. elegans, suggesting potential clinical importance. Finally, the mechanism of synergy displayed by
pitavastatin and fuconazole embroils, at least in part, signifcant interference with Candida’s efux machinery. 
Further in vivo studies in higher animals are required to assess the potential of pitavastatin to be repurposed as a 
promising fuconazole adjuvant for controlling invasive Candida infections in humans. 
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Materials and Methods 
Fungal strains and culture reagents. Fungal strains used in this study are listed in Supplementary 
Table 4. C. albicans clinical isolates TWO7241 and TWO7243 were obtained from professor Teodor White 
(UMKC). SC5314 mutant derivatives SC-MRR1P683S and SC-TAC1G980E, containing gain-of-function alleles 
(MRR1P683S and TAC1G980E), were obtained from professor David Rogers (University of Tennessee Health Science
Center). RPMI 1640 powder with glutamine, but without NaHCO3, was purchased from Termo Fisher Scientifc 
(Waltham, MA). 3-(N-Morpholino) propanesulfonic acid (MOPS) was obtained from Sigma Aldrich (St. Louis,
MO). YPD broth medium and YPD agar were obtained from Becton, Dickinson Company (Franklin Lakes, NJ). 

Chemicals and drugs. Te Pharmakon 1600 drug library was purchased from MicroSource Discovery 
Systems, Inc. (Gaylordsville, CT). Compounds were delivered in microplates (10 mM, dissolved in DMSO) and 
stored at −80 °C until use. Nile red, voriconazole, and itraconazole were obtained from TCI America (Portland, 
OR). Pitavastatin was obtained from Ark Pharm (Arlington Heights, IL). Fluconazole was obtained from Fisher 
Scientifc (Pittsburgh, PA). Gentamicin sulfate was purchased from Chem-Impex International INC. (Wood Dale, 
IL). 

Screening of Pharmakon library and structurally-related compounds. Te Pharmakon 1600 drug 
library was screened against C. albicans NR-29448, a strain that displayed high-level resistance to several azole 
antifungal drugs. Briefy, C. albicans NR-29448 was diluted to approximately 0.5–2.5 × 103 cells/ml in RPMI 
1640 medium bufered with 0.165 M MOPS reagent. An aliquot (100 µl) of the fungal suspension was transferred 
to the wells of a round-bottomed 96-well microtitre plate containing 16 µM of each drug. Te plates were then 
incubated for 24 hours at 35 °C. Drugs that only inhibited the growth of C. albicans in the presence of fuconazole 
were identifed as “positive hits”. 

Microdilution checkerboard assays. Te interactions between the identifed hits and diferent azole anti-
fungal drugs were assessed using broth microdilution checkerboard assays, as previously reported55–57. ΣFICI 
(fractional inhibitory concentration index) is used to assess the potential interactions between the tested drug 
combinations. ΣFICI interpretation corresponded to the following defnitions: synergism (SYN), ΣFICI ≤ 0.5; 
additivity (ADD), ΣFICI > 0.5 and ≤ 1; and indiference, ΣFICI > 1 and ≤ 458. 

Biofilm inhibition assay. Tree Candida species, C. albicans NR-29448, C. glabrata HM-1123, and C. auris 
385 demonstrated a prominent ability to form robust adherent bioflms. As such, these strains were used to study 
the antibioflm activity of the pitavastatin-fuconazole combination. Te microtiter bioflm formation assay using
crystal violet was used, as previously described4,21. Briefy, overnight cultures of the tested Candida strains, grown 
in YPD broth, were diluted in RPMI 1640 medium to approximately 1 × 105 CFU/ml. Ten 100 µl aliquots of each 
suspension were transferred to wells of tissue-culture treated polystyrene 96-well plates. Pitavastatin (at 0.5 × 
MIC) was added either individually or in combination with fuconazole (2 µg/ml) and the plates were then incu-
bated for 24 h at 35 °C. Following incubations, adherent bioflms were then rinsed twice with phosphate-bufered 
saline (PBS) and lef to dry at room temperature. Air-dried bioflms were stained with crystal violet (0.01%).
Stained bioflms were rinsed thrice with PBS and then air-dried. Te resultant bioflm biomasses were quantifed 
by dissolving the crystal violet-stained bioflms in absolute ethanol before recording absorbance values (OD595). 

Nile Red efflux assay and flow cytometry. Nile red efux assay was performed following a previously 
reported protocol59–61. Briefy, exponential phase Candida cells were harvested by centrifugation (3,000 × g, 
5 minutes), washed thrice with PBS, and incubated for an additional 2 hours at 35 °C with shaking (200 rpm). Cells
were incubated overnight on ice, then resuspended at a concentration of ~1 × 107 cells per ml in HEPES-NaOH 
(50 mM; pH 7.0) containing 7.5 mM nile red and incubated at 35 °C for 30 minutes. Stained cells were washed 
three times with cold HEPES-NaOH (50 mM; pH 7.0). Cell suspensions were transferred onto opaque 96-well
plates containing two-fold serial dilutions of the test agents. Glucose at fnal concentration 10 mM was used to 
initiate the nile red efux. Detection of nile red fuorescence intensity was commenced about 15 seconds afer glu-
cose addition (T0) and then in one-minute intervals for 10 minutes. Nile red fuorescence intensity was measured 
at an excitation wavelength of 485/9 and an emission wavelength of 528/15 using the SpectraMax i3x microplate 
reader (Molecular Devices, CA, USA). For fow cytometric analysis, pitavastatin (at 0.25 × MIC) was added to
nile red-loaded cells as previously described, then glucose (at fnal concentration 10 mM) was used to initiate the 
nile red efux. Afer 10 minutes of adding glucose, cells were fxed in 2% paraformaldehyde and were examined 
in a Canto II fow cytometer (BD Bioscience, San Jose, CA), following a previously reported protocol62. Data were 
analyzed using FlowJo sofware v10 (Tree Star, Ashland, OR). 

Rhodamine Rh6G efflux assay. Rhodamine 6G efux assay was conducted following a previously reported 
protocol63. Briefy, exponential growth phase Candida cells (SC-TAC1G980E) were harvested as described earlier, 
washed thrice with PBS, and incubated for additional 2 hours at 35 °C with shaking (200 rpm) to induce starva-
tion. Te cells were then resuspended at a concentration of ~1 × 107 cells per ml in HEPES-NaOH (50 mM; pH
7.0) bufer containing rhodamine 6G (10 mM) and 2-deoxyglucose (5 mM). Cells were incubated with shaking for 
90 minutes at 30 °C, to permit rhodamine accumulation under energy-depleting conditions. Rhodamine-stained 
cells were harvested and washed at least fve times with HEPES-NaOH to remove extracellular rhodamine. 
Pitavastatin at 0.25 × MIC, clorgyline (5 µg/ml), or the vehicle (1% DMSO) was added to the cells and incubated 
for 5 minutes at 30 °C. Rhodamine efux was induced by glucose addition at a fnal concentration of 10 mM. 
Afer 10 minutes of adding glucose, cells were harvested by centrifugation, and 100 µl aliquots of cell supernatants
were transferred to 96-well plates for detecting the amount of efuxed rhodamine. Te rhodamine fuorescence 
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intensity was measured by SpectraMax i3x microplate reader (Molecular Devices, CA, USA), using 529 nm and
553 nm as excitation and emission wavelengths, respectively. 

Caenorhabditis elegans fungal infection model. To examine the in vivo efcacy of pitavastatin in 
enhancing the activity of fuconazole against azole-resistant C. albicans, we used the C. elegans animal model 
following previously reported guidelines13,21 C. albicans NR-29448, C. glabrata ATCC MYA-2950, and C. auris 
390 displayed enhanced susceptibility to the efect of the pitavastatin-fuconazole combination and were selected 
for this experiment. Briefy, L4 stage worms [strain AU37 genotype glp-4(bn2) I; sek-1(km4) X] were infected by 
co-incubating them with approximately 5 × 107 CFU/ml of Candida suspensions for 3 h at room temperature. 
Afer infection, C. elegans nematodes were washed fve times with M9 bufer and transferred into microcentrifuge 
tubes (20 worms per tube). Infected nematodes were treated with combinations of pitavastatin (at 0.5 × MIC) plus 
fuconazole at three diferent concentrations (2, 8, or 32 µg/ml), and incubated for 24 hours at 25 °C. Treatment
with either PBS, pitavastatin or fuconazole at the same concentrations served as controls. Posttreatment, worms 
were examined microscopically to evaluate morphological changes and ensure viability. Worms were washed
with M9 bufer fve times and then disrupted by vigorous vortexing with silicon carbide particles. Te resulting
Candida suspensions were serially diluted and transferred to YPD agar plates containing gentamicin (100 g/ml). 
Plates were incubated for 48 hours at 35 °C before the viable CFU per worm was determined. 

Statistical analyses. All experiments were performed in triplicates and repeated at least three times.
Statistical analyses were performed using GraphPad Prism 6.0 (Graph Pad Sofware, La Jolla, CA, USA). P-values 
were calculated using multiple t-tests and one-way ANOVA, and P-values < 0.05 were considered signifcant. 
Data are presented as means ± standard deviation. 
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