
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

International Refrigeration and Air Conditioning 
Conference School of Mechanical Engineering 

2021 

Fatigue Analysis of a High-Performance Heat Exchanger Fatigue Analysis of a High-Performance Heat Exchanger 

Mingkan Zhang 
Oak Ridge National Laboratory, United States of America, zhangm1@ornl.gov 

Patrick Geoghegan 
Oak Ridge National Laboratory 

Yoram Shabtay 
Heat Transfer Technologies LLC 

James Tancabel 
The University of Maryland 

Jiazhen Ling 
The University of Maryland 

See next page for additional authors 

Follow this and additional works at: https://docs.lib.purdue.edu/iracc 

Zhang, Mingkan; Geoghegan, Patrick; Shabtay, Yoram; Tancabel, James; Ling, Jiazhen; and Aute, Vikrant, 
"Fatigue Analysis of a High-Performance Heat Exchanger" (2021). International Refrigeration and Air 
Conditioning Conference. Paper 2270. 
https://docs.lib.purdue.edu/iracc/2270 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at 
https://engineering.purdue.edu/Herrick/Events/orderlit.html 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/me
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F2270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html


Authors Authors 
Mingkan Zhang, Patrick Geoghegan, Yoram Shabtay, James Tancabel, Jiazhen Ling, and Vikrant Aute 

This conference paper is available at Purdue e-Pubs: https://docs.lib.purdue.edu/iracc/2270 

https://docs.lib.purdue.edu/iracc/2270


           

                

        

               

             

  

 

       

           

         

    
 

   

    

 
           

    

 
 

   

 

 

 

 

             

           

        

                

                

               

           

    

   

   

 

  

    

     

      

  

  

  

  

    

      

    

    

      

 

Fatigue Analysis of a High-Performance Heat Exchanger 

Mingkan Zhang1*, Patrick Geoghegan1, Yoram Shabtay2, James Tancabel3, Jiazhen Ling3, Vikrant Aute3 

1Oak Ridge National Laboratory, Energy Science and Technology Directorate, 

Oak Ridge, TN, USA 

2Heat Transfer Technologies LLC, 

Prospect Heights, IL, USA 

3The University of Maryland, College Park, Center for Environmental Energy Engineering 

College Park, MD, USA 

* Corresponding Author 

Zhangm1@ornl.gov 

ABSTRACT 

Air-to-refrigerant heat exchangers (HX) are key components in Heating, Ventilation, Air Conditioning, and 

Refrigeration (HVAC&R) systems. For such HXs, the air-side convective resistance is the dominant factor which 

limits the heat transfer performance. Using non-round shape-optimized tubes and headers can successfully solve the 

problem leading to high performance HXs. However, the non-round shape tubes and headers may cause some 

fatigue issues in practices causing the failure during use. Therefore, it is desired to conduct fatigue analysis of such 

HXs designs to seek designs which can provide both high performance and high strength simultaneously. In present 

work, a framework of fatigue analysis of high-performance HXs has been developed and implemented. In the 

framework, the HXs were modeled using commercial Finite Element Analysis (FEA) software, SIMULIATM Abaqus 

FEA. Based on the stress analysis results, a fatigue analysis was conducted using fe-safe software for multiple metal 

materials to estimate the HX lifetime before failure occurs. 

1. INTRODUCTION 

Serving as the main heat transfer component, air-to-refrigerant heat exchangers (HXs) are implemented in many 

vapor compression-based HVAC&R systems. The performance of HXs highly influences the overall performance of 

the HVAC&R system. Previous studies have revealed that the air-side heat transfer resistance is the dominant factor 

which limits the performance of such HXs (Sommers & Jacobi, 2005). Studies have been conducted to seek 

approaches that minimize the resistance of the air-side heat transfer. From aerodynamics, it has been discovered that 

an airfoil is perfectly streamlined and creates little airflow resistance comparing to the round shape (Lutz & Wagner, 

1998), which inspires the methodology to use non-round shape-optimized to lower the resistance of the air-side heat 

transfer. Different tube shapes and headers have been studied to seek the shape-optimized tube (Hilbert et al., 2006; 

Huang et al., 2016; Zeeshan et al., 2017). Shapes optimization for design of air-to-refrigerant HXs has been 

reviewed by Tancabel et al. (Tancabel et al., 2018). Consequently, it has been concluded that small diameter non-

round shape- optimized tubes can significantly reduce the air-side resistance and improve the performance of such 

HXs (Bacellar et al., 2016, 2017; Huang et al., 2016). 

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. 

Department of Energy. The United States Government retains and the publisher, by accepting the article for 

publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States 

Government purposes. The Department of Energy will provide public access to these results of federally sponsored 

research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan). 
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Preview studies about the shape-optimized tubes only focused on the resistance and heat transfer performance of the 

HXs. However, to manufacture the HXs with non-round shape tubes and implement them in the HVAC&R system, 

the strength and robustness of the HXs also need to be considered. For example, whether the non-round shape tubes 

and headers are strong enough to bear the saturation pressure of refrigerants. 

Therefore, it is desired to conduct fatigue analysis on the non-round shape tubes and headers under high refrigerant 

pressure. Such analysis could provide the answers to the questions about stress concentration as well as the lifetime 

of the HXs. 

Table 1: Properties of materials. 

Name Density (kg/m3) Young's Modulus (GPa) 

Al6061-T6 2700 68.9 

Copper 8960 117 

Welding material 2600 71 

In this paper, a framework of fatigue analysis of high-performance HXs has been developed and implemented. There 

are several steps of the framework. The HXs with different non-round shapes are first modeled based on the designs 

from which the high-performance at the airside achieves. Then the HX geometry models are imported into SIMULIA 

Abaqus FEA (SIMULIA, 2017a), a commercial FEA software, in which the stress analysis models are developed, 

including boundary conditions assignment, mesh creation, and simulation. Finally, the stress analysis results are read 

by fe-safe (SIMULIA, 2017b), a fatigue analysis code, to conduct fatigue analysis. Based on the loads and materials, 

it returns the lifetime of the design before failure occurs. This paper studies high- performance HXs from the point of 

view of fatigue analysis, bridging the gap between designs based on heat transfer and mechanical performance while 

also providing a guidance to seek designs of a high-performance HX which can provide both high performance and 

high strength simultaneously. 

2. FRAMEWORK OF FATIGUE ANALYSIS 

Previous studies have revealed that a HX with non-round shape tubes showing in Figure 1 can offer a low air-side 

heat transfer resistance and high heat transfer performance (Bacellar et al., 2016, 2017; Huang et al., 2016). The 

FEA modeling in present work was developed based on a 1 kW HX, which was additively manufactured in 

Titanium from Bacellar et al (Bacellar et al., 2017). Four different tube designs were studied in this paper as 

depicted in Figure 1., including two single-hole tubes and two double-hole tubes. Those designs are patent 

pending. Note that the external geometriesof all four tubes are same shape. Two materials, Al6061-T6 and Copper, 

were tested to reveal the materials strength.Tubes connected to the header through a layer of Welding material as the 

joining material. The properties of the two materials as well as Welding material are provided in Table 1. 

The designs were digitalized by using CAD software SOLIDWORKS (SOLIDWORKS, 2019), where the geometry 

files were created. Then the files were imported by SIMULIA Abaqus FEA, in which the simulation domain was 

defined (single tube simulation or entire HX simulation), the constrains were assigned (Tie between header and 

Welding material, and between Welding material and tube), the boundary conditions and loads were set (6 MPa 

baseline at the inner tube wall and header), and the mesh was created. After the model setup was completed, the 

stress analysis simulations began. Finally, the stress analysis results were read by fe-safe and used to run the fatigue 

analysis. The fatigue analysis relies on fatigue properties which are usually collected by experimental tests. To 

analyze the materials whose test data are not available, fatigue properties can be approximated using the 

Approximate Material Function (SIMULIA, 2017a). This function uses Bäumel-Seeger’s method (Bäumel et al., 

1990) to generate approximate fatigue parameters based on the UTS (ultimate tensile strength) and elastic modulus 

of the material. 

To validate the stress analysis modeling, a comparison between the numerical model results to the experimental data 

was performed. The experimental setup is shown in Figure 2 (a). A single tube was tested by injecting pressurized 

gas from one end of the tube, while the other end is sealed. This was repeated for both copper and aluminum tubes. 

The distance between the highest and lowest points of the tube was measured before and after pressurization, 

indicating the deformation of the tube. The highest pressure applied was up to 20 MPa. A significant deformation 

was observed after the highest pressure was applied. To mimic the experimental setup, a numerical model for a 

pressurized single tube was developed as shown in Figure 2 (b). After pressures was applied to the tube, 

deformations in the model were measured and compared to the experimental data. Figure 3 depicts the comparison 
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results by using aluminum. The results show a very good agreement between the numerical model results and the 

experimental data. After the stress analysis modeling has been successfully validated, the framework of fatigue 

analysis was implemented the HX. 

Figure 1: The non-round shape tube and four designs (patent pending). 

Figure 2: The experimental (a) and numeral (b) setups of the deformation test. 
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Figure 3: Experimental vs numerical Al tube deformation results. 
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Figure 4: Failure cycles VS loading scale for different designs with different materials. 
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3. RESULTS AND DISCUSSIONS 

3.1 Fatigue Analysis of Single Tubes 
The framework was firstly utilized to conduct fatigue analysis of single tubes. As described above, the four kinds of 

tubes, which have different cross-section designs with either one hole or two separate holes of the tube, are made of 

two materials. The baseline loading is 6 MPa pressure applied to the inner surfaces of the tubes to mimic the 

hydraulic pressure caused by the static and dynamic pressures from the refrigerants. Since saturation pressure varies 

with different types of refrigerants, in the fatigue analysis, the loading was scaled up to 10 times. Note that the 

loading scale-up is the operation of fatigue analysis only, so in stress analysis only baseline loading needs to be 

simulated, which significantly reduces the total simulation time of the framework. The loading was periodically 

applied to the tube. For example, in one loading cycle, the applied pressure is from the scaled loading (12 MPa if 

scaled up to 2) to zero, then back to the scaled loading starts the next loading cycle. After the fatigue analysis is 

accomplished, the returned result is called “failure cycles”, which is the number of loading cycles the tube 

experiences until the first failure occurs, indicating the lifetime of the part. 

Figure 5: Contours for log value of the failure cycle using Copper. 

Design Original, (A) (B) and (C) are from Figure 1. 

Figure 4 shows that the number of failure cycles change with loading scale. Note that the maximum loading cycles 

in the fatigue analysis are 108, so data are not shown if the failure cycles are greater than 108. Figure 4 indicates that 

all the tubes are able to bear more than 108 loading cycles without failure under the baseline loading. The dashed and 

solid lines indicate the curves from tubes made of Al6061-T6, and Copper, respectively. It shows that curves from 

Copper tubes have gentler slopes than Aluminum tubes. As a result, the lifetime of Copper tubes is lower than 

Al6061-T6 when the loading scale is low. However, when the loading scale increases, Copper tubes can last more 

cycles than Al6061-T6. 

In Figure 4, the black, red, blue, and green colors represent the results for original design, design A, design B, and 

design C tubes, respectively. Figure 5 and 6 depicts contours for log value of the failure cycles when the loading 

scale equals 10 for Al6061-T6 and Copper, respectively. By comparing the original design and design C, it can be 

found that design C improves the original design by expanding the hole and changing the oval shape to a polygon. 

From Figure 4, only a little improvement from the original design to design C can be observed. Figure 5 shows that 

for original design, the lowest failure cycles happen at the two ends of the oval-shaped hole. When design C changes 

the oval shape to a polygon, it absorbs some stress to the sides of the hole. However, the lowest lifetime still occurs 

at the two ends of the hole in design C. It explains why only little improvement from original design to design C has 

been observed. 
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Figure 6: Contours for log value of the failure cycle using Aluminum. 

Design Original, (A) (B) and (C) are from Figure 1. 

From Figure 4, one can identify that the lifetime of the tubes with double-hole cross-section (design A and B) are 

much greater than the ones with single-hole (original design and design C). It is because in the double-hole designs, 

an extra structure exists in the middle of the cross-section that provides support, leading to a stronger tube and 

longer lifetime. The contours of design C in Figure 5 and Figure 6 show that this extra structure shares the load 

which significantly increases the lifetimes at the two ends of the oval shape hole compared to the original design. 

Figure 4 also indicates that design A is much better than B from a lifetime point of view. Figure 5 and Figure 6 

reveal that low lifetime happens at the corners of the cross-section geometry in design B, implying stress 

concentration in the corners. On the other hand, because design A employs two round holes, the problem of stress 

concentration is overcome. As a result, design A has a much greater lifetime than design B. The locations where 

lowest lifetime of design A occurs can be identified by Figure 5, where the tube is thin at these locations. 

3.2 Fatigue Analysis of Heat Exchangers 
After Fatigue analysis of single tubes was completed, Fatigue analysis of the whole HX was conducted. To simplify 

the model, the model contains only one tube with original design. Between the tube and header, there exists a layer 

of welding material that joins the tube to the header. Figure 7 shows the contours of log value of the failure cycles 

when the loading scale equals 10 for Copper. It shows that the header has the longest lifetime, since the header has a 

considerable thicker wall comparing to the tube and the welding material. Figure 7 also enlarges the contours of log 

value of the failure cycles in the tube and the welding material. It can be found that the lowest lifetime occurs at the 

internal surface of the tube, which is in the same locations, as shown in Figure 5. Surprisingly, the lowest lifetime is 

not in the welding material. Figure 5 shows that the lowest lifetime of the welding material is located at its edges. 

This is because these areas bear the stress from the bending force when the tube is deformed. The stress at the outer 

surface of the tube is much weaker than the inner surface because most of the energy from the load is used to deform 

the tube. Therefore, the welding material, which connects to the outer surface of the tube, did not share much stress 

from the load. As a result, the welding material has a much longer lifetime than the tube. It can be concluded that the 

most fragile part of the single tube HX with original tube design is the tube itself. Therefore, the lifetime of the HX 

is as same as the lifetime of the tube. Since the HX with Al6061-T6 head and tube leads to the same conclusion, it is 

not necessary to investigate such HXs in the paper. 
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Figure 7: Contours of log value of the failure cycles of HX using Cooper. 

4. CONCLUSIONS 
The present work developed a framework for fatigue analysis of high-performance HXs using non-round shape 

tubes and headers. The framework contains several steps. The HXs with different non-round shapes are first 

modeled based on the designs from which the high-performance at the airside achieves. Then the stress analysis will 

be finished using Abaqus based on the model. In the last step, the stress analysis results are imported by fe-safe to 

conduct fatigue analysis. The framework for fatigue analysis was implemented to conduct fatigue analysis on the 

non- round shape tubes and headers of HX which may cause potential fatigue issues during manufacturing and 

failures during operation. Two materials, Al6061-T6 and Copper, together with four tube designs are compared. 

Below are the conclusions obtained: 

1. All the tubes can bare more than 108 loading cycles without failure under the baseline loading of 6 MPa. 

2. Al6061-T6 tubes have a longer lifetime than Copper when the load scale is low. 

3. Double-hole tube design have longer lifetime than single-hole design, in which round-shape hole design is 

the best design from the point of view of fatigue analysis. 

4. The tube is the weakest part of the entire HX when the original design tube is used. 
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