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A gray-box dynamic modeling method for variable speed 

direct-expansion systems 

Haopeng Liu1, Jie Cai1 

1School of Aerospace and Mechanical Engineering, University of Oklahoma, 

Norman, OK, US 
Haopeng.Liu-1@ou.edu, jcai@ou.edu 

ABSTRACT 

In this paper, a gray-box dynamic modeling approach for variable-speed direct-expansion systems is presented. The 

overall approach incorporates a multi-stage training procedure that consists of 1) identification of component sub-

models from quasi-steady-state performance data, 2) system model integration with estimation of refrigerant charge 

and 3) fine tuning of thermal capacitances of the evaporator and condenser to capture the system dynamic responses. 

Compared to traditional physics-based models, the proposed modeling approach has advantages including reduced 

engineering efforts in the model development phase, improved computational efficiency and reduced uncertainties. 

The modeling method was applied to a 3-ton variable-speed heat pump and proved to be capable of accurately 

capturing the system transient behaviors over a wide range of operating conditions.  

1. INTRODUCTION 

Vapor compression cycles are predominantly used for air conditioning and refrigeration systems. According to EIA 

reports (2020), buildings account for nearly 70% of electricity use and more than 35% of the building electrical energy 

consumption is associated with vapor compressor cycle-based equipment. Therefore, reliable models of vapor 

compression systems (VCS) with moderate computational requirements is crucial to achieve maximum energy 

performance through optimized system design and control synthesis. 

A good number of papers can be found in the literature on steady-state modeling of VCS. For example, Navarro et al. 

(2010) presented a steady-state model of variable speed VCS for predicting system coefficients of performance (COP) 

under variable compressor speed and boundary conditions. The single phase regions (e.g. superheat phase) were not 

considered during the modeling of heat exchangers, which may deteriorate the accuracy of the proposed model. In 

contrast, Belman et al. (2006) proposed a new model form that considers superheat temperature as an influential input 

and models the different fluid regions (two phase and single phase) separately, in order to improve the prediction 

accuracy. Although steady-state models are useful for system performance evaluation and design, they are not directly 

usable for control system design, which is a challenging task for variable-speed VCS. 

Dynamic models of direct-expansion (DX) systems, on the other hand, capture system transient behaviors and thus, 

are suitable for system dynamic analysis and controller design. Given that the thermal dynamics associated with the 

heat transfer processes in evaporators and condensers are dominant in the overall system transience, the primary focus 

of relevant efforts was on dynamic performance characterization of heat exchangers. Furthermore, previous survey 

studies (Bendapudi and Braun, 2002, Rasmussen, 2012) indicated that most of the research interests were focused on 

capturing two phase flow dynamics of heat exchangers which to a large extent determine the evolution of system 

pressures. Since the dynamics of compressors and expansion valves are much faster, their transient behaviors are 

usually not considered and quasi-steady-state models are adopted for development of dynamic DX system models. 

Catano et al. (2013) proposed a lumped-parameter dynamic model of DX systems to facilitate development of gain 

scheduling control. The heat exchangers were assumed to be two phase and quasi-steady-state models were adopted 

for the compressor and electronic expansion valve (EXV). The resulting model is computationally efficient with only 

a few governing equations and model parameters. However, the lumped approach can’t provide accurate predictions 

of system performance (e.g. cooling capacity, refrigerant charge) due to the averaging effect of state variables, e.g. 

refrigerant density and enthalpy. In contrast to the lumped method that models the whole heat exchanger with a single 

control volume, the moving boundary (MB) method seeks to capture the major dynamics of multi-phase heat 

exchangers while preserving the simplicity of the lumped approach. Chen and Deng (2006) developed a dynamic 
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model of variable air volume (VAV) DX systems for control analysis, where the MB approach with empirical heat 

transfer correlations was applied for modeling of heat exchangers. The nonlinear dynamic features such as hysteresis 

and dead band were also all taken into consideration. The major drawback of the MB method lies on the numerical 

instability when a single phase region disappears or reappears; to this end, an improved version of the MB approach, 

termed switched MB (SMB), was proposed and various switching strategies were studied. For instance, Li and Alleyne 

(2010) presented a SMB method for DX systems, to facilitate analysis of the transient behaviors of heat exchangers 

during system shut-down and start-up. The normalized length of the single-phase region was compared to a pre-

determined threshold to switch between the two-region and one-region model forms for the evaporator. A natural 

extension of the MB approach, i.e., the finite control volume method, considers multiple control volumes to capture 

system responses at a higher granularity. Kapadia et al. (2009) presented a finite control volume model of DX air 

conditioning system to predict system transient characteristics (refrigerant pressure) during start-up. Beghi and 

Cecchinato (2010) used a similar finite control volume model to assist design of an auto-tuned PID controller for EXV, 

where constraints imposed by the actuation system such as upper bound and hysteresis were accounted for explicitly. 

The delay in system response was handled via Pade-approximation so that linear system theory could be applied. 

The modeling methods described above would require geometric details of the heat exchangers, the acquisition of 

which could be time consuming. Pure data-driven models require large training data set to achieve satisfactory 

extrapolating performance and acquisition of the training data could be cost prohibitive for engineering practices. To 

address the above challenges, a reliable gray-box dynamic modeling method for variable-speed DX systems is 

presented in this paper. Employing a finite control volume approach, the established model can capture the system 

dynamics with adequate accuracy. Training of the model is carried out in multiple stages: 1) the key parameters (e.g. 

heat transfer correlations) for the component models are estimated separately based on steady-state performance data 

to reduce computational requirements; 2) a system model is then established by integrating the component models 

together through continuity equations where the total refrigerant charge is estimated; 3) the steady-state system model 

is finally transformed into a dynamic system model through state-space governing equations, where the heat exchanger 

thermal capacitances are estimated from transient operation data. The proposed method has advantages including low 

training data requirement and high computational efficiency. Experimental validation was conducted for a 3-ton 

variable-speed heat pump to demonstrate the effectiveness of our methodology. 

2. METHODOLGY 

The overall modeling methodology consists of a hierarchical training procedure as shown in Figure 1. The bottom 

layer involves identification of steady-state component models associated with the heat exchangers, compressor and 

EXV. In the middle layer, the established component models are integrated through continuity equations to obtain a 

system model in which the charge level is estimated by matching the predicted steady-state cooling capacity and the 

measurements. The top layer transforms the steady-state model into a dynamic one described by state-space governing 

equations and the optimal wall thermal capacitances of the heat exchangers are identified to best reproduce the system 

transient responses. The bottom and middle layers are designed to identify the steady-state models and these processes 

consume minimum computational resources. The top layer implements iterations of dynamic simulations for 

parameter estimation, which is a computationally demanding task; however, it only involves two estimation 

parameters, resulting in much reduced iterations. This hierarchical training methodology is able to establish a data-

driven dynamic model for VCS in a very efficient manner. More importantly, decoupled estimation of the various 

groups of model parameters reduces the risk of potential over-parameterization issues and generates a more reliable 

model with minimum correlations between parameters. 

The following assumptions are made for modeling of the system 

 Refrigerant-side pressure drops are neglected for both the evaporator and condenser. 

 Counter-flow heat transfer is assumed for both heat exchangers. 

 The EXV model is not explicitly used when estimating the refrigerant charge; instead, the superheat is 

assumed to always match the measured value, which is represented by an equality constraint in the steady-

state model integration step (middle layer). 

 Dynamics for the air-side of the heat exchangers, compressor and EXV are neglected. 
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Figure 1:Overall schematic diagram of methodology 

This section firstly describes the steady-state component models that can be estimated separately (bottom layer). Then 

they are integrated through continuity constraints to establish a complete steady-state system model (middle layer). 

Lastly, training of the dynamic system model is presented, in which only two estimation parameters, i.e., thermal 

capacitances of heat exchanger tube walls, are involved. 

Figure 2: Schematic diagram for the finite control volume model of the evaporator 

2.1 Steady-state model identification 

Gray box models for the various components of a DX system are firstly presented. The component models capture the 

respective physics through heat and mass balances together with empirical correlations whose parameters are 

estimated based on experimental test data. The identified component models are then integrated into a system model 

to estimate the refrigerant charge level. Both the component and system models presented in this section capture the 

steady-state behaviors. 

2.1.1 Evaporator 

A finite control volume approach is adopted for modeling of the evaporator. A schematic diagram is given in Figure 

2. This method divides a heat exchanger into multiple control volumes and analyzes the heat exchange characteristics 

of each control volume according to the local refrigerant thermal status. For the jth control volume, the following 

energy balance equation characterizes the heat exchange between the air and refrigerant: 

       , , , , , , , , 1 , , 1 ,        j r j i j w j r j a j o j a j w j r j j p a a a j a jq A T T A T T m h h C m T T  (1) 

where qj is the heat transfer rate, αr,j and αa,j represent the refrigerant- and air-side HTCs, respectively, Ai,j and Ao,j 

denote the inner and outer heat transfer areas of the tube, respectively. Tw,j, Tr,j and Ta,j are the tube wall, refrigerant 

and air temperatures, respectively. Ta,j+1 and Ta,j are the air inlet and outlet temperatures. mr and ma are the mass flow 

rates of the refrigerant and airflow, Cp,a is the air specific heat and hj is the enthalpy of the jth control volume. The 

refrigerant enthalpy is assumed to be uniform across each control volume. Therefore, hj can also be regarded as the 

outlet enthalpy of the jth control volume. 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 
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The main unknowns in Equation (1) are the refrigerant- and air-side HTCs. The gray box component models are to 

estimate the HTCs based on local operating conditions and the thermal properties. The simplified exponential form 

derived from Wang et al. (1997) correlation is used to estimate the air side HTC αa,e from mass flow rate ma 

2

, , 1

a

a e o e aA = a m (2) 

where the subscript e stands for evaporator, a1 and a2 are parameters that need to be estimated in the training process. 

For estimation of the refrigerant side evaporation HTC, a simplified form based on the Chen (1966) correlation is 

proposed as shown in Equation (3) 

3 72

5
, 1 6 ,

4

1

1

 
   

  
tp e e sat tt l e

tp

T T
Re

 


    


(3) 

where θ1 to θ7 are parameters to be estimated in the training procedure, Te is the saturated evaporating temperature, 

∆Tsat is the temperature difference between of the tube wall (Twall) and Te, Retp is the two phase Reynolds number. αl,e 

is the liquid phase convective HTC obtained using the turbulent flow correlation of Dittus-Boelter (Bergman et al., 

2011). χtt is the Martinelli parameter which is a function of refrigerant quality q. 

The two phase heat transfer dominates the total cooling effect of the evaporator while the superheat region only 

accounts for a small fraction of the heat exchange. Therefore, to improve model identifiability, the gray-box model 

adopts the Gnielinski correlation (Admiraal et al., 1993) for the superheated phase directly, without any training. 

The refrigerant inventory strongly affects the overall system behavior. Estimation of the refrigerant mass inside heat 

exchangers often relies on void fraction correlations for two-phase flow. Assuming the heat flux is constant and no 

liquid is entrained in the central vapor core, this study utilizes the void fraction correlation given in Tandon et al. 

(1985) to estimate the refrigerant charge. 

2.1.2 Condenser 

The air-side HTC of the condenser can be estimated using a similar correlation proposed for the evaporator. However, 

the test unit has a fixed condenser fan speed and therefore, the air-side HTC αa,c is a constant parameter that can be 

estimated in the training process. 

For estimation of the refrigerant side HTC αtp,c, the following simplified form that closely resembles the Shah 

correlation (Shah, 1979) is used 

  2 54

, , 1 31  
 

c cc

tp c l c c= c q c q T  (4) 

where c1 to c5 are parameters to be estimated in the training procedure, Tc is the saturated condensing temperature, αl,c 

is the liquid phase convective HTC. It is noteworthy that when the quality q approaches zero in Equation (4) the 

condensation HTC converges to αl,c. Therefore Equation (4) guarantees a smooth transition of the HTC at the interface 

between the two-phase and subcooled regions and can capture the heat transfer characteristics for these two regions. 

Similar to the evaporator case, the gray-box model assumes the Gnielinski correlation (Admiraal et al., 1993) for the 

desuperheated region and no training is involved. Besides, the void fraction of condenser assumes the same correlation 

for the evaporator. 

2.1.3 Compressor 

As mentioned in the previous sections, a quasi-steady-state model is used to model the compressor characteristics 

considering its fast dynamics relative to those of the evaporator and condenser. The refrigerant mass flow rate mr 

pumped by a scroll compressor is calculated as (Winandy et al., 2002) 

60

s

r

suc

V RPM
m =


(5) 
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where υsuc is the specific volume of refrigerant at the suction port, RPM denotes the compressor speed, Vs represents 

the swept volume of the compressor, which is the only estimation parameter for the refrigerant mass flow sub-model. 

The electrical power input to the compressor is modeled based on estimating the work necessary for a polytropic 

compression process corrected by a combined isentropic efficiency and a heat loss ratio associated with the heat 

exchange between the compressor shell and the environment. Equation (6) shows the power calculation model (Reindl 

et al., 2000): 

     
1

ideal isentropic enthalpy gain

1 / 1
1

hl comb r dis suc comb r e suc c ePower f = m h h m P P P
  

         






  
 (6) 

where ηcomb is the combined isentropic efficiency, fhl is the heat loss ratio, hdis and hsuc are discharge and suction 

enthalpy, respectively, λ is the specific heat ratio, Pc and Pe denote condensing and evaporating pressures, respectively. 

The term of the right-hand side inside the curly brackets gives the refrigerant enthalpy gain for ideal compression. 

Chen (et al., 2000) has shown that the isentropic efficiency has strong dependence on the pressure ratio Pc/Pe and 

RPM. The polynomial correlation given in Equation (7) is proposed for estimation of the combined efficiency, based 

on the experimental data collected in the present study. A linear correlation is used for predicting the heat loss ratio fhl 

for given compressor speed and ambient temperature, as shown in Equation (8). 

   1 2 3 4In / In / comb c e c e= d +d P P +d RPM +d P P RPM

1 2 3hl sf = e +e RPM +e T

(7) 

(8) 

where d1 to d4 and e1 to e3 are estimation parameters, and Ts is the outdoor air temperature. 

2.1.4 EXV 

EXV is increasingly used in modern VCS because of its fast and accurate response to superheat changes as well as 

robust adaptability to time varying operation conditions. The refrigerant flow through the EXV is calculated with (Li, 

2013) 

 2 r d f c em = C AY P P (9) 

where A is the throat area of the EXV when it’s fully open, ρf is the saturated liquid phase refrigerant density on the 

condenser side. Y is the expansion factor accounting for the increase of refrigerant specific volume, which is only used 

when two-phase refrigerant enters the EXV and is dependent on the pressure ratio and thermal properties (e.g. specific 

heat) of refrigerant (Davies and TC, 1973). When sub-cooled refrigerant enters the EXV (i.e., subcooling is nonzero), 

the expansion factor assumes unity. The mass flow coefficient Cd is a dimensionless variable that varies with the valve 

opening z and subcooling Tsb. The following polynomial was found appropriate to capture the EXV behavior from the 

experimental data: 

 2

1 2 3 4 /d sub cC = f + f z+ f z f z T T (10) 

where Tc is the critical temperature of the refrigerant, and f1 to f4 are estimation parameters. 

The component models described in sections 2.1.1 to 2.1.4 can be trained separately using quasi-steady-state 

performance data. A robust training methodology proposed by the authors (Liu and Cai, 2021), which includes 

sensitivity analysis and de-correlating steps to avoid over-parameterization issues, is used in estimating the steady-

state component models. The training process aims to identify the optimal parameter values to minimize the root mean 

square relative error (RMSRE) between the predicted output and experimental data: 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 
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2

1

1
RMSRE 100%



 
 

 


i iK
mea est

i
i mea

y y
=

K y
(11) 

where K represents the number of data points, y
i 

and y
i 

are the measured and the predicted output for the ith data mea est 

point, respectively. 

2.1.5 Integrated model 

In the middle layer, the identified component models are integrated to establish a system model through continuity 

constraints between the various components, e.g., the compressor discharge enthalpy is equal to the condenser inlet 

refrigerant enthalpy. The EXV model is not involved in the steady-state model integration; instead, an equality 

constraint is imposed to enforce the predicted superheat to match the measured value. The model integration stage 

only involves the identification of the total refrigerant charge and a simple line search is implemented to find the 

optimal parameter value. 

2.2 Dynamic model identification 
The system dynamic model is an extension of the steady-state model established in the bottom and middle layers, by 

incorporating governing differential equations for dynamic variations of the tube wall temperatures of the evaporator 

and condenser and refrigerant thermal properties. The only tunable parameter of the dynamic model is the tube wall 

thermal capacitance that characterizes the thermal inertial of the heat exchangers. Since the inherent dynamics of 

compressor and EXV evolve on much faster time scales than those of the heat exchangers, their steady-state models 

described in the previous section directly carry over to the dynamic system model. Mass balance is always preserved 

in the governing differential equations, to be introduced next. Therefore, the initial state variables need to be identified 

through trial and error so that the system refrigerant charge matches that estimated in the steady-state model (middle 

layer). 

The evaporator dynamic model extends the steady-state one by explicitly considering the conservation differential 

equations for the refrigerant energy, mass and tube wall energy of the jth control volume given in Equation (12) to 

Equation (14). 

 1 1 , , , ,    j j j j j r j i j w j r jU m h m h A T T (12) 

, 1 e j j jm m m (13) 

     , , , , , , , , , ,    j th w w j a j o j a j w j r j i j w j r jj
E C T A T T A T T  (14) 

where Uj is the refrigerant internal energy. mj-1 and mj represent the inlet and outlet mass flow rates of refrigerant, 

respectively. me,j is the time derivative of refrigerant mass held in the jth control volume. Ej is the tube wall energy. 

Cth,w denotes the thermal capacitance of the heat exchanger tube wall for the corresponding control volume, which is 

estimated in the training process. The HTCs and areas assume the values identified in the bottom and middle layers. 

Since the airflow involves very low thermal inertia, a quasi-steady-state energy conservation equation is used 

   , , 1 , , , , ,   p a a a j a j a j o j a j w jC m T T A T T (15) 

The conservation equations from (12) to (15) can be established for all the control volumes of the heat exchanger. 

Based on the relationship between the refrigerant internal energy and enthalpy 

 
P

u h


(16) 

where u is the refrigerant specific internal energy and ρ is the refrigerant density, the time derivative of the refrigerant 

internal energy jU in Equation (12) can be decomposed into terms of time derivatives of the pressure and enthalpy 

using the chain rule: 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 



  

          

 

   

 

             

          

  

 

   

 

             

       

 

   

 

            

             

            

           

             

               

           

           

 

         

              

               

           

         

            

             

         

     

 

  
 

                 

         

            

               

   

 

- -I 
. . . . 

- -I 
. . 

210061, Page 7 

(17) 

          
     
     j e

j j

j j e j j j e j j j
e jh P

U V P h h V P V h
P h

 


where Vj represents the tube internal volume for the jth control volume and the evaporating pressure Pe is assumed to 

be identical across all control volumes (no pressure drops). Similarly, the mass balance equation of (13) can be re-

written as 

,

         
     
     j e

j j

e j j j j e j
e jh P

m V V P h
P h

 
 (18) 

It may be noted that Equations (17) to (18) allows the reformulation of the governing equations using the evaporation 

pressure and enthalpy as the state variables. The resultant state-space governing equations are 

   

   

   

   

1 1 1 ,1 ,1

1

-1

,1 ,1 1 ,1 ,1 1 1 ,1 ,1

  
  
  
  
  
 
 
 
 
 
   

Z

in in r, i, w r
e

in N out r,N i,N w,N r,N

N in out

w a o, a w r, i, w r

w,N
a,N o,N a,N w,N r,N i,N w,N r,N

m h - h + A T -TP

h

m h - h + A T -T

h m - m

T A T -T - A T -T

T A T -T - A T -T





 

 








(19) 

where Z is the transformation matrix that is dependent on the evaporation pressure and refrigerant enthalpy of each 

control volume. The detailed structure of the matrix can be found in Gupta (2007). N denotes the total number of 

control volumes. min and mout are the inlet and outlet refrigerant mass flow rates for the evaporator, respectively. 

Solving the nonlinear differential equation (19) requires inversion of the transformation matrix, the size of which 

depends on the number of dynamic states (2N+1) and the computational complexity of which increases cubically with 

N, i.e., O(N3). In the case study, to seek a trade-off between the model’s prediction accuracy and computational 
efficiency, the evaporator was divided into 20 control volumes, i.e., N=20. The differential equations were solved 

numerically using the fourth-order Runge-Kutta solver with a fixed time step of 0.05 s. 

The governing equations for the condenser dynamics share exactly the same form, although a different tube wall 

thermal capacitance is to be identified through training. The steady-state model parameters in Equation (19), such as 

the refrigerant- and air-side HTCs, assume values obtained in the bottom and layers as described in Section 2.1. For 

identification of the dynamic system model, thermal capacitances of the heat exchanger tube walls are estimated so 

that the predicted superheat matches the experimental data with the minimum RMSRE, considering that the superheat 

stability is a key requirement for controller design of variable-speed VCS. It should be noted that the thermal 

capacitance is closely related to the thermal mass of a VCS which enables it to store heat, providing ‘inertia’ against 

temperature fluctuations. The thermal capacitance is regarded as one of the most important parameters for system 

dynamics and control stability. 

3. Experimental setup 

Figure 3 shows the test variable-speed DX system with a rated cooling capacity of 3 tons, which was used to validate 

the effectiveness of proposed modeling approach. The unit is a split system. The outdoor unit houses a variable-speed 

scroll compressor, a condenser coil and a condenser fan, while the indoor unit packages an A-shaped evaporator coil, 

an ECM-driven supply fan and an EXV. The gas and liquid lines connecting the indoor and outdoor units are both 

approximately 20’ long. 
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\ ( 

Indoor 
Air hand 

unit 

Heater D 

Airflow 
damper 

+-­
+-­
+--

Psychrom etric 
chamber 

+-­
+--

Outdoor 
Air hand 

unit 

D 

210061, Page 8 

The indoor unit is connected to an indoor environment test loop, which can accommodate flexible load testing with 

control accuracies of ±0.2 °C for dry bulb temperature and ±0.5% for relative humidity. The outdoor unit, on the other 

hand, is located in a psychrometric chamber that can reproduce a wide range of outdoor environmental conditions 

with identical control accuracies to those of the indoor test loop. 

Figure 4 shows a schematic diagram of the DX testing platform. The test unit consists of a single vapor compression 

circuit with R410A as the working fluid. Sensors have been installed to measure key operation variables such as 

pressures, temperatures, etc. In Figure 4, letters ‘T’ and ‘P’ represent the temperature measurement via thermocouples 
and pressure transducers, respectively. Additional sensors that are not shown in Figure 4, include power meters for 

the compressor, indoor and outdoor fans, as well as the refrigerant mass flow meter and relative humidity sensors. 

Heat exchanger

EXV

(a) (b) 

Figure 3: Variable speed DX system (a) Outdoor unit, (b) Indoor unit 

Figure 4:Test rig and sensing instrumentations 

4. Test results 

The bottom-layer component model identification results are depicted in Figure 5, where different markers are used 

to distinguish the training and validation points. 56 steady-state data points were collected in the laboratory covering 

a range of operating and control conditions. Out of the 56 steady-state tests, 46 points were used to train the models 

and 10 points were utilized for model validation. For the evaporator and condenser models, the heat transfer rate was 

used as the regression variable and very high accuracy was achieved, with validation RMSRE (VRMSRE) lower than 

1.54%. Inconsistent behaviors of the OEM EXV were observed during the experiments with flow characteristics 

drifting over time. This resulted in reduced accuracy of the EXV model, which was still able to predict the refrigerant 

mass flow rate with a VRMSRE of less than 7%. The compressor model had a VRMSRE of 3.5%, which is larger 

than those of the heat exchangers; this is because the power prediction relies on the sub-models for mass flow, 

combined isentropic efficiency and heat loss and the corresponding sub-model inaccuracies added up to the total error 

of 3.5%. The modeling details can be found in Liu and Cai (2021). The results prove that the steady-state training 
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methodology (bottom and middle layers) can accurately capture the system steady-state behaviors and provide reliable 

heat transfer parameters such as HTC to be used in the dynamic model. 

(a) (b) 

(c) (d) 

Figure 5: Comparisons of component model predictions and experimental results 

(a) Evaporator, cooling capacity, VRMSRE=1.54%, (b) Condenser, heat transfer rate, VRMSRE=0.93%, 

(c) Compressor, power consumption, VRMSRE=3.49%, (d) EXV, mass flow rate, VRMSRE=6.95%. 

The top layer training only involves two estimation parameters, i.e., the tube wall thermal capacitances for the 

evaporator and condenser, and the superheat temperature is used as the regression output. The comparisons between 

the predicted superheat with different values of Cth,w and the measured superheat are shown in Figure 6, where ‘Cth,r ’ 

denotes the reference evaporator tube wall thermal capacitance calculated from detailed coil geometries provided by 

the manufacturer. Simulation results of different capacitance values are depicted in Figure 6. The estimated thermal 

capacitance was 40% higher than the reference capacitance estimated from the spec sheet, possibly because the 

estimated capacitance also captured the inertia of the superheat sensor (thermocouple installed in the suction line with 

grounded shell). The estimated thermal capacitance led to transient behaviors best matching the measurements. Small 

thermal capacitance (0.5Cth,r) led to a lower system thermal inertia and fast response, while a large thermal capacitance 

(2Cth,r) resulted in slow responses. 

The boundary conditions of a validation test are shown in Figure 7, where ‘CFM’ represents the supply air flow rate 

delivered by the indoor unit, and ‘CAI’ and ‘EAI’ stand for the condenser/evaporator air inlet temperatures, 

respectively. In the test, step changes were imposed for the compressor speed, indoor CFM, EXV opening, and 

evaporator and condenser air inlet temperatures to evaluate the system transient responses. The comparisons of the 

measured and predicted cooling capacity, power consumption, evaporator/condenser saturation temperatures and 
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superheat temperature are depicted in Figure 8. The results demonstrated that the identified dynamic model could 

accurately capture the system dynamics. For this specific validation test, the model prediction RMSREs are 1.1% for 

the cooling capacity, 4.4% for compressor power consumption, less than 0.8˚K for the saturated 

evaporation/condensation temperatures and 1.3˚K for the superheat temperature. 

Figure 6: Comparisons of superheat at different thermal capacitance 

Figure 7: Boundary conditions of experimental validation 
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(a) (b) 

(c) (d) 

Figure 8: Comparisons of system dynamic performance between simulation and experiment 

(a) Cooling capacity, RMSRE=1.14%, (b) Power consumption, RMSRE=4.39%, (c) Saturation temperature, for 

Te, RMSE=0.81 ˚K; for Tc, RMSE=0.68 ˚K, (d) Superheat temperature, RMSE=1.27 ˚K. 

5. Conclusions 

A multi-layer training methodology for gray-box dynamic modeling of variable-speed vapor compression systems is 

presented in this paper. The overall methodology decomposes the model estimation task into multiple layers, that can 

be implemented in parallel or in series, and consequently improves the model estimation efficiency and reliability. 

Employing a finite control volume approach for characterizing the thermal behaviors of heat exchangers, the proposed 

methodology has advantages including low training data requirement, high computational efficiency and superb model 

accuracy. To demonstrate the efficacy, the methodology was applied to modeling of a 3-ton variable-speed heat pump. 

The experimental validation verified that the established model can provide accurate predictions of both steady-state 

and dynamic behaviors under a range of operation conditions. The developed model will be used to facilitate optimized 

control algorithm design for variable-speed vapor compression systems and to evaluate the potentials for provision of 

fast ancillary services to the electric grid. 
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