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ABSTRACT 

Vapor compression refrigeration cycles (VCRC) control optimization is an effective method to increase its' reliability 

and energy efficiency. In modern VCRC systems, the introduction of inverter compressors, electronic expansion 

valves, fan speed, and pump speed control has significantly increased their controllability. These improvements led to 

the development of many multivariable and predictive control strategies that improved the system's temperature 

tracking performance and increased the coefficient of performance (COP) by up to 30% compared to conventional 

on/off and PID controls. However, a VCRC also has high nonlinearities and parameter couplings, making it difficult 

to apply these modern control laws. This problem incentivizes the application of reinforcement learning (RL) to 
optimize VCRC control as RL demonstrated an unprecedented ability to optimize complex control problems. This 

study explores this idea by using RL to train a direct optimal controller for a VCRC. To test the concept, a VCRC 

simulation model was developed in the MATLAB Simulink environment to train an RL VCRC controller using the 

MATLAB reinforcement learning toolbox. The controller's goal is to track the desired internal air temperature and a 

10˚C superheat setting. The controller used 17 observations containing the VCRC states, tracking errors, operating 

conditions, and previous actions to determine the optimal compressor speed and expansion valve opening percentage. 

The VCRC operating conditions were limited to ambient and internal air temperature ranges of 28-32˚C and 16-20˚C, 
respectively. This study used the twin delayed deep deterministic policy gradient (TD3) RL algorithm to train the 

controller. The TD3 training hyperparameters such as the noise model and deep neural network parameters were tuned 

to balance the exploration and exploitation of the solution space. The training converged to a suboptimal solution after 

completing 6500 episodes in 5 days using an Intel Core i7-8700 CPU 3.2GHz with 32 GB RAM. The developed RL 

controller was tested using custom ambient and internal air temperature profiles. The controller tracked both the 

internal air and superheat temperature settings well with low error and fast response time. However, when the ambient 

temperature fell below 29˚C, the actuators began to fluctuate, indicating that it did not learn a good policy for this 

region. This study showed that RL could optimize VCRC control, but more research is necessary to improve it. 

1. INTRODUCTION 

The vapor compression refrigeration cycle (VCRC) is widely used for various cooling and heating applications in 

many industries. It consumes approximately 15% of global electricity, contributes around 10% of global greenhouse 

gas emissions, and these numbers are projected to grow tenfold by 2050 (She et al., 2018). Therefore, there are 

significant incentives to improve the VCRC's temperature tracking performance and reduce its' energy consumption. 

This goal can be achieved by improving the VCRC controller to achieve better temperature tracking performance and 

higher energy efficiency. However, VCRC optimal control is challenging because the cycle has high nonlinearities 

and complexities (Goyal et al., 2019). A review on VCRC control showed that multivariable and predictive optimal 

controllers could improve VCRC control performance and energy efficiency by up to 30% compared to conventional 

controllers (Goyal et al., 2019). In the last decade, machine learning (ML) technology has shown the ability to improve 

VCRC controllers by enhancing the control design process with highly accurate data-driven models and better optimal 
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solution search algorithms (Wan et al., 2020). Besides, reinforcement learning (RL) algorithms also showed a high 

potential to improve VCRC optimal control. For instance, Google's Deepmind showed that a practical and safe 

supervisory RL controller could be deployed onto their data centers' cooling systems and achieved up to 40% in energy 

savings (Gasparik et al., 2018). Besides that, research on the application of Q learning RL controls for a CO2 

refrigeration system also showed that RL could find a suitable control strategy for demand-side energy management 

(Beghi et al., 2017). An RL controller was also developed for an Organic Rankine Cycle and showed great superheat 

tracking performance for a thermofluid system (Wang et al., 2020). These results demonstrated the potential for RL 

to optimize VCRC control effectively. 

While RL is used to optimize heating, ventilation, and air conditioning systems (Mehmood et al., 2019), research into 

its application on VCRC control is scarce despite its potential. Hence, this paper intends to demonstrate RL's 

application for VCRC optimal control and encourage more research in this area. This paper focuses on applying the 

twin-delayed deep deterministic policy gradient (TD3) RL algorithm to develop a direct optimal RLVCRC controller. 

The RL controller was trained for a single-stage air-cooled VCRC to track the desired internal air temperature and 

superheat temperature. The controller was trained using a VCRC model with changing ambient temperature and 

internal air temperature settings. The RL controller manipulated the compressor speed and electronic expansion valve 

opening percentage to achieve the control goals. This paper starts by discussing some background knowledge for 

VCRC, VCRC control, and RL. The paper then discusses the RL controller's application on VCRC, including the 

training setup and RL controller development. Next, the novel RL controller's temperature tracking performance and 

results are analyzed and discussed. Lastly, potential future work and conclusions are presented. 

2. VAPOR COMPRESSION REFRIGERATION CYCLE (VCRC) 

Figure 1: Vapor compression refrigeration cycle 

Figure 1 shows the Vapor Compression Refrigeration Cycle (VCRC), where the refrigerant is circulated to exchange 

heat with external fluids. It has four main components, which are the compressor, expansion valve, evaporator, and 

condenser. The evaporator and the condenser are heat exchangers that enable heat transfer between the refrigerant and 

the external fluids. The compressor and expansion valves are actuators that dictate the refrigerant mass flow rate and 

the pressure difference between the evaporator and the condenser. From points 1 to 2, the compressor does work on 

the refrigerant and increases its pressure. From points 2 to 3, the refrigerant passes through the condenser that expels 

heat from the refrigerant to the hot reservoir by condensing the refrigerant at high pressure and temperature. From 

points 3 to 4, the refrigerant is expanded through an expansion device to reduce its pressure and saturation temperature. 

From points 4 to 1, the refrigerant passes through the evaporator that absorbs heat from the cooled fluid by evaporating 

the refrigerant at low pressure and temperature. The refrigerant then flows back into the compressor and completes 

the cycle. Both heat exchangers also have an actuator that controls the external fluid flow rate that alters the amount 

of heat transferred. Throughout the cycle, the thermophysical and heat transfer properties of the refrigerant change 

constantly. Hence, the VCRC has high nonlinearities, complexities, and parameter couplings that make it challenging 

to model and control optimally. 
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2.1. VCRC Modelling 

An air-cooled VCRC simulation model was developed for this research. It consisted of the compressor, expansion 

valve, evaporator, condenser, receiver, accumulator, connecting pipes, and the external environment. In this project, 

only the compressor speed and expansion valve opening were manipulated. Both fan speeds were kept constant. In a 

VCRC, the two heat exchangers' dynamics are much slower than the actuators' dynamics. Hence, the two actuators 

were modeled as quasi-steady components using empirical maps and steady-state conservation equations (Rasmussen 

& Alleyne, 2006). The heat exchangers were modeled using the Moving Boundary (MB) method that treated every 

refrigerant fluid phase as a single control volume with variable length. The average fluid properties in every control 

volume were used to determine its state and heat transfer properties. The refrigerant fluid thermal-physical properties 

were modeled using a lookup table populated using the CoolProp library (Bell et al., 2014). Lastly, the condenser's 

ambient side was modeled as an infinite air reservoir, and the cooled space on the evaporator side was modeled as a 

constant volume air system. 

Figure 2: MATLAB Simulink VCRC simulation model 

In this project, the MATLAB Simulink environment was used to develop the simulation model shown in Figure 2. 

The two-phase fluid Simscape Toolbox was used to model the VCRC components, and the model was tuned using 

data presented in a thesis (Rasmussen & Alleyne, 2006). The compressor speed and valve opening percentage were 

between 500-3500 RPM and 17-25%. Besides that, the internal air and ambient temperatures were between 16-20˚C 

and 28-32˚C, respectively. A constant 800W heating source was also added to represent the product load. The 

Simscape 2P-MA heat exchanger component model was used to develop the MB heat exchanger models. The heat 

transfer between the refrigerant and air was modeled using the effectiveness-NTU method. Next, the variable-speed 

compressor and electronic expansion valve were modeled using empirical relationships provided in the thesis. The 

refrigerant states, its' pressure and specific internal energy, and other refrigerant properties such as its' density and 

temperature were treated as perfectly measurable values. Although the model could not be adequately validated due 

to the lack of experimental data, the model trends, dynamics, and state values seemed realistic. Therefore, this model 

is sufficient to demonstrate the application of a reinforcement learning (RL) controller for VCRC control. The final 

model was compiled into a system of nonlinear differential equations that were solved using Simulink's ode15s solver. 

2.2. VCRC Control 

The objective of VCRC control is to track the room temperature and the desired superheat while consuming minimal 

energy. The common VCRC actuators are the compressor, expansion valve, and the pump or fan for the external 

fluids. These actuators control the VCRC mass flow rate, evaporating pressure, and condensing pressure to meet the 

cooling load requirement and maintain the desired internal air temperature. Conventionally, the superheat and internal 

air temperature are tracked individually using the expansion valve and compressor, respectively. The conventional 

VCRC controllers are the on-off, PID, and LQR controllers. On-off controls are easy to apply, but it is known to be 

inefficient, and it can also reduce the compressors' shelf-life due to the constant fluctuations. PID and LQR feedback 

control laws perform better than on-off control, but they only work on the linear time-invariant (LTI) systems. A 

VCRC is not an LTI system; hence linearizing the model about a single operating point affects its' accuracy 
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significantly because of the wide range of operating conditions. Therefore, these linear control laws are insufficient 

for accurate optimal control of VCRC. In literature, cascaded control loops with higher-level supervisory controllers 

and lower-level reference tracking controllers are used to mimic nonlinear VCRC control (Goyal et al., 2019). The 

standard supervisory controllers are the gain scheduling algorithms, adaptive algorithms, model predictive control 

(MPC) optimizers, and real-time optimizers (RTO). These supervisory controllers either change the lower-level 

controller gains to approximate a nonlinear controller or outputs precomputed optimal references. These control 

strategies work better with the nonlinearities and parameter couplings in VCRC and produce better temperature 

tracking performance that results in energy saving (Goyal et al., 2019). These facts suggest that RL has the potential 

to improve VCRC control because it can work with nonlinear, complex, and multi-objective optimization problems. 

3. REINFORCEMENT LEARNING (RL) CONTROLLER DESIGN 

3.1. RL control 

(a) Markov Decision Process 

(b) Actor-Critic structure 

Figure 3: Reinforcement learning structures (Sutton, 2018) 

This section aims to provide an intuitive and brief overview of Reinforcement Learning (RL) based control. The RL 

controller design goal is to find an optimal control policy by training an agent. The "policy" is the optimal control law, 

and the "agent" is the optimal controller. RL is a class of machine learning algorithms that learn optimal actions that 

maximize the reward using observations from the environment. RL controllers showed great potential for direct 

optimal control when performing complex tasks such as controlling walking robots (Sutton, 2018). In RL control 

design, the controller is named the agent, and everything else is called the environment. The environment is formulated 

as a Markov Decision Process (MDP), which is a discrete-time stochastic control process (Lillicrap et al., 2015). 

Figure 3(b) shows the MDP process, where it views the environment as a set of states (S). Using the states as inputs, 

the agent then takes an action (A), that causes a state to transition into a new state and returns a reward (R). RL 

algorithms use this MDP structure to learn the best actions that produce the best rewards. Prior to the training process, 

three components are required. The first component is the controlled environment, including the simulation model, 
disturbances, sensors, and more. Next, a policy representation is required to relate the observations to the optimal state 

in the agent. A typical policy representation is a deep neural network (DNN) that approximates the relationship 

between the observations and the optimal actions. The third component is the reward function that is a scalar function 

that aims to reward "good" behavior and "penalize" bad behavior. For the training process, an RL algorithm needs to 

be selected based on the application and complexity. The algorithm's training hyperparameters must then be tuned to 

balance the exploration and exploitation of the solution space. Lastly, the training episodes need to be designed to 

ensure that the agent is exposed to all operating conditions. This step is crucial because RL control policies are black-

boxed; hence, they are only guaranteed to work with conditions that they were trained in. 

The actor-critic structure in Figure 3(b) and the learning process will be discussed here (Sutton, 2018) to provide an 

intuitive view of the RL algorithm and training. Some common RL terms and their definitions are listed in Table 1 to 

supplement this discussion. In an actor-critic reinforcement learning agent structure, there are 2 Deep Neural Networks 

(DNN), which represents the actor (μ) and critic (Q). The DNN is used to model the relationship between inputs and 

outputs. The actor is the controller that takes in the state observations and outputs the optimal action. A critic is an 

evaluation tool that measures the value of state-action pairs by determining their Q values. A vital advantage of this 

structure is that it combines both the value-based and policy-based RL algorithms to improve the search for the 
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optimum solution. The actor and critic DNNs learn the optimal parameters by minimizing their respective loss 

functions. The goal of the critic is to predict the correct Q values for all state-action pairs. Therefore, the critic's loss 

function is the Q value prediction error. This error can be measured by calculating the error between the observed Q 

value and the "current" Q value. Therefore, the critic uses a value-based RL algorithm to update itself. For the actor, 

the objective is to correlate the observed states to the best action that maximizes the expected return. The expected 

return is defined as the discounted sum of the Q values for the states. Hence, the actor's loss function is determined 

using the derivative of its' objective function with respect to the network parameters (Yoon, 2019). The derivatives 

tell the RL algorithm how much to change and in which direction to achieve the goal. The actor updating process is 

also referred to as the gradient ascent, a policy-based RL algorithm. 

Table 1: Common reinforcement learning terms 

Term Definition 

Q value 

The Q value defines the expected discounted cumulative reward given the observed state-

action pair. In layman's terms, the Q value shows how good it is to take an action when a 

state is observed. 

Neural Network 

parameters, θ 

The neural network parameters are the weights and biases for all the connections between 

every layer and every node in the deep neural network. They are the terms adjusted during 

the learning process to output the optimal output from the inputs. 

Value-based 

algorithm 

Value-based algorithms determine the best action based on the learned Q values. Hence, the 

algorithm updates the Q value predictions for every state-action pairs. 

Policy-based 

algorithm 

Policy-based algorithm directly updates the policies' parameters to increase the likelihood of 

taking actions that return the most reward. This is typically done using gradient ascent. 

Mini-batch 

training 

Mini-batch training refers to training the DNN using small batches of randomly sampled 

experiences instead of collecting all the experiences then updating the network. This method 

increases training efficiency significantly. 

Experience tuples 
The experience tuple is based on the MDP and consists of the current states, actions, reward, 

and the next states (𝑆, 𝐴, 𝑅, 𝑆 ′ ). 

Experience buffer 
The experience buffer stores the collected experience tuples to be used when training the RL 

agent. The algorithm will sample mini-batches of experiences from this buffer.  

Many RL  algorithms  are  available, but  this  paper  will  only discuss  the  twin-delayed deep deterministic  policy gradient  

(TD3)  algorithm   (Fujimoto  et al., 2018). The  TD3 algorithm  was  developed to  improve  the  popular  deep deterministic  

policy gradient (DDPG)  algorithm developed by researchers  at Deepmind (Lillicrap et al., 2015). While DDPG is the  

most used  algorithm  for  continuous  control  problems, it tends  to  overestimate  the  value  functions  and cause  undesired  

convergence  towards  suboptimal solutions. The  value  overestimations  also cause  training instabilities  and high 

sensitivity towards  the  training hyperparameters. This  issue  limits  the  application of  DDPG  to  complex control  

problems  with large  solution spaces. TD3 introduced  three  critical improvements  to  the  DDPG  algorithm  to  address  

these issues  (Fujimoto et al., 2018). They  are the introduction of a second critic network, delayed update of the target  

network, and target policy smoothing noise. These  mechanisms  reduce  overestimations and high variance in Q value  

predictions  and produce  more  regular  training.  The  TD3 algorithm  also has  several key features  that are  explained  
 ' here. The  TD3  algorithm  uses  a  target  actor  (μ')  and critic  (Q )  to  stabilize  the  RL  training process. The  target 

networks  are  a  copy  of  the  real actor-critic  and are  updated periodically to  avoid  sudden  and abrupt  parameter  updates.  

Another  key TD3 component  is  the  actor  noise  model,  𝑁, which is  usually an Ornstein  Uhlenbeck noise  model.  The  

noise  is  added  to  the  actions  to  observe  more  state-action pairs  and their  rewards.  The  degree  of  exploration can be  

tuned by changing the  noise  model  mean, variance, and decay rate. A  discount  factor, γ, between 0  and 1,  is  also used 

in  TD3 to  indicate  how  important  future  rewards  are  for  every time  step. Finally, the  TD3 algorithm  is  described  

below. Refer to the  referenced paper for  a more in-depth explanation  (Fujimoto et al., 2018):  

1.  Initialize  2 critics  DNN parameters, θQ ,  and 1 actor  DNN parameters, θμ, randomly and independently.   
1,2 

2.  Copy the initialized parameters over to the target actor,  θ '  and target critics,  𝜃 ′ 𝑄 .  μ 1,2

3.  Initialize the experience replay buffer to the specified size.  

4.  For each training step:   

1)  For the current state observations  S, select an action,  𝐴 =  𝜇(𝑆) + 𝑁.  
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' 2) Observe reward R and next state observation S . 
' 3) Save the experience tuple (S, A, R, S ) from this time step in the experience replay buffer. 

' 4) Sample a random mini-batch of experiences (Si,Ai,Ri, Si ) from the experience replay buffer. 

5) If the current state, Si , is at the end of an episode, set the value function target to 𝑦𝑖 = 𝑅𝑖 + 
′ ′ ′ 𝛾 × 𝑚𝑖𝑛 (𝑄1,2 (𝑆𝑖 , 𝑐𝑙𝑖𝑝(𝜇 ′ (𝑆𝑖 |𝜃𝜇) + 𝜀)|𝜃𝑄1,2 

′)) . The value function target is the sum of the 

experience reward and the discounted future reward. 

6) Update each critic network's parameters by minimizing the mean squared loss L between the updated Q 

value and the original Q value, as shown in the equation below. 
1 2 

𝐿1,2 = (𝑦𝑖 − 𝑄1,2(𝑆𝑖 , 𝐴𝑖 |𝜃𝑄1,2 ))
𝑀 

7) Update the actor policy parameters using the sampled policy gradient to maximize the expected future 

return, 𝔼. To do so, the gradient of the objective, or the expected reward function J(θ), is taken with 

respect to the policy network parameters using the chain rule, as shown below. This is gradient ascent. 

𝐽(𝜃) = 𝔼[𝑄(𝑠, 𝑎)] 
𝑀 

1 
𝛻𝜃𝜇 𝐽 ≈ ∑ 𝛻𝑄 𝛻𝐴 𝑀 

𝑖=1 

𝛻𝑄 = 𝛻𝐴𝑄(𝑆𝑖 , 𝐴𝑖 |𝜃𝑄) 𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝜇(𝑆𝑖 |𝜃𝜇) 
𝛻𝐴 = 𝛻𝜃𝜇𝜇(𝑆𝑖 |𝜃𝜇 ) 

8) Update the target actor and critic parameters every second training step. 

3.2. RL controller for VCRC 

Figure 4: Reinforcement learning controller structure 

Figure 4 shows the RL controller structure developed for this project. The controller manipulates the compressor 

speed and the valve opening percentage, ranging between 500-3500 rpm and 17-25%. The RL controller's goal was 

to track the desired room temperature and track a 10˚C superheat degree. The controller was fed 17 observations to 

approximate a fully observable VCRC. These observations included the internal temperature tracking error, the 

superheat tracking error, the ambient temperature, the desired internal air temperature, the current internal air 

temperature, the average refrigerant pressure and specific internal energy at the evaporator and condenser, the 

compressor and valve mass flow rates, the power consumed, and the previous controller action. All observations were 

normalized to prevent biases by subtracting their means. For the learning and simulation process's stability, all 

observations were also delayed by one sample time to avoid algebraic loops in the model. 

Next, the RL training hyperparameters were tuned to ensure that the agent can find and model the optimal control 

policy. The critic and actor both had a conventional DNN structure with two hidden layers for every path. Each layer 

had 400 nodes with ReLU activation functions, which was sufficient for this problem. The TD3 training 

hyperparameters were set to a critic learning rate of 5×10-4 , an actor learning rate of 1×10-4 , a target smooth factor of 
61×10-3 , an experience buffer length of 2×10 , a mini-batch size of 512, and a discount factor of 0.99. The critics' 

learning rate was twice the actor's learning rate to ensure that the critic converged first. This setting allows the actor 

to learn from the correct Q network value predictions. The noise model was also tuned to encourage more exploration 

of the solution space. The initial action noise model variance was defined as 10% of the respective actuator ranges 

and decayed to a minimum of 1% with a variance decay rate of 1×10-6 . 
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An RL training reward function (r) was developed to encourage the desired VCRC control behavior. The reward 

function was inspired by the cost and objectives functions from VCRC model predictive control (MPC), Linear 

Quadratic Gaussian (LQG), and supervisory setpoint optimization controllers. Firstly, the reward function rewarded 

low internal and superheat temperature tracking errors. The function also penalized high energy consumption, 

fluctuations, and safety constraints breaches. The final reward function is described in Equation 1 and its' terms are 

listed below. The error reward terms had a progressive reward structure to encourage the RL agent to aim for lower 

tracking errors. Next, both the power and fluctuation terms punished the undesired high-power consumption and 

actuator fluctuations. The fluctuations are punished to encourage stable and smooth actuator commands. Lastly, to 

promote faster learning, the training episode was terminated and punished if the cooled temperature limits are 

breached. The superheat was not treated as such to allow more opportunity for the RL agent to optimize the superheat 

behavior. 

𝑟 = 0.1(𝑟𝑡𝑒 + 𝑟𝑠ℎ𝑒 + 𝑟𝑓𝑙𝑢𝑐 + 𝑟𝑙𝑐 + 𝑟𝑝𝑜𝑤𝑒𝑟 + 𝑟𝑙𝑖𝑚) Equation (1) 

• Temperature tracking error reward: 𝑟𝑡𝑒 = −2(𝑒𝑡 > 3) + 2(2 < 𝑒𝑡 ≤ 3) + 4(1 < 𝑒𝑡 ≤ 2) + 6(0.5 < 𝑒𝑡 ≤ 
1) + 7(0.1 < 𝑒𝑡 ≤ 0.5) + 10(𝑒𝑡 ≤ 0.1), where 𝑒𝑡 is the temperature tracking error. 

• Superheat tracking error reward: 𝑟𝑠ℎ𝑒 = −2(𝑒𝑠ℎ > 5) + 2(3 < 𝑒𝑠ℎ ≤ 5) + 4(2 < 𝑒𝑠ℎ ≤ 3) + 6(1 < 
𝑒𝑠ℎ ≤ 2) + 7(0.5 < 𝑒𝑠ℎ ≤ 1) + 10(𝑒𝑠ℎ ≤ 1), where 𝑒𝑠ℎ is the superheat temperature tracking error. 

𝑑𝑎𝑡 𝑑𝑎𝑡+1• Fluctuations penalty: 𝑟𝑓𝑙𝑢𝑐 = −15 ( ∙ < 0), where 𝑎 is the controller's actions 
𝑑𝑡 𝑑𝑡 

• Large change penalty: 𝑟𝑙𝑐 = −15[(𝑎𝑡+1 − 𝑎𝑡) > (0.25 × 𝑎𝑟𝑎𝑛𝑔𝑒 )], where arange are the actuator ranges. 
2𝑝𝑜𝑤𝑒𝑟 

• Power reward: 𝑟𝑝𝑜𝑤𝑒𝑟 = −1 ( 
350 

) 

• Constraints breach penalty: 𝑟𝑙𝑖𝑚 = −3000(𝑇𝑐 < 𝑇𝑐,𝑚𝑖𝑛 ∥ 𝑇𝑐 > 𝑇𝑐,𝑚𝑎𝑥 ) 

The training episodes were designed to be simple, efficient, and cover the entire operating conditions range. The 

ambient temperature, internal air temperature setting, and initial cooled space temperature were randomly selected 

within the operating range. Every episode was designed to run for 500 seconds, which results in a maximum of 500 

experiences per episode. No predefined temperature profiles were used for this problem as the training would take a 

much longer time to complete. The episodes were terminated if the internal air temperature exceeds 22˚C and 14˚C. 

It was not terminated when the superheat degree hits 0˚C because it would significantly hinder the learning process. 

Instead, a punishment was introduced when the superheat degree was 0˚C. 

4. RESULTS 

4.1. VCRC RL Controller results 

The RL training completed 6500 episodes in 5 days and converged to a suboptimal solution using an Intel Core i7-

8700 CPU 3.2GHz with 32 GB RAM. The VCRC RL controller was tested using a set of ambient and internal air 

temperature profiles, as shown in Figure 5. The results showed that the RL controller tracked the internal air 

temperature and superheat temperature settings closely for all regions except when the ambient temperature fell below 

29˚C. In this region, the internal air and superheat temperatures fluctuated significantly, indicating that the RL 

controller failed to learn the region's optimal controller actions. This behavior could because the valve opening 

percentage lower limit was too high. The valve opening percentage plot showed that the opening had a pulsing 

behavior at the 17% minimum value, which suggested that this inference could be correct. This problem can also be 

caused by other reasons, including insufficient training time, imperfect training setup, imperfect DNN structures, 

inaccuracy of the VCRC simulation model, and more. For the internal air temperature tracking, the steady-state error 

was within 0.1˚C, and the response time was fast. For the superheat tracking performance, the steady-state error was 

within 0.5˚C as the reward function in section 3.2 did not incentivize it to lower the error any further. Looking at the 

actuator plots, the agent showed that it learned how to control both actuators simultaneously to achieve the control 

objectives. The RL agent also showed that it was aware of changes in the model's disturbances and references and 

reacted accordingly. The power consumption plot showed that power consumption was generally kept low. However, 

as the superheat degree setting was fixed, the power consumption might not be optimized. Therefore, an alternative 

control strategy that tackles VCRC energy consumption needs to be developed to reduce energy usage. In summary, 

these results showed the ability of the RL controller to optimize VCRC controls. 
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Figure 5: RL controller results 

4.2. VCRC RL Controller Implementation Discussion 

The VCRC RL controller development process also showed several significant findings that are discussed here. The 

first issue was the initialization of the VCRC simulation model for every training episode. A fixed set of initial values 

such as the initial pressure and initial compressor speed must be predefined and used at the start of every episode. This 

factor leads to a problem where the observations close to the initialization values will produce some false rewards, 

which affects the RL training process. However, over an extensive range of sampled steps and experiences, this 

problem could become insignificant. It is also important to note that RL agents cannot be configured to always take a 

fixed initial action; therefore, an external component is necessary. In this project, a switch was used to pass the initial 

actuator commands at the start of the simulation. Another important issue is the noisy actuator fluctuations that were 

produced when the ambient temperature was below 29˚C. This problem leads to instabilities when training and 

simulating the VCRC. Hence, a rate limiter was used to limit the actuators' dynamics to prevent excessive fluctuations. 
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In this project, the model used a rate limiter block to impose a 10 rpm/s maximum slew rate when the ambient 

temperature was below 29˚C. Next, the DDPG and TD3 algorithms were also compared in this project, and it was 

found that TD3 was significantly better. The shortcomings of DDPG in section 3.1 were present, and the learning 

process was not stable. The agent frequently converged to a poor suboptimal solution when using DDPG. However, 

it is also important to note that both DDPG and TD3 RL algorithms suffer from sensitivity towards hyper-parameters 

tuning as there is no exact method to tune them. 

5. FUTURE WORK 

The results showed that more research is required to develop a VCRC RL controller fully. Firstly, the training process 

needs to be further tuned and improved to produce a more comprehensive learning process for the VCRC control 

problem. This process would include testing various hyperparameters, reward functions, episode designs, and RL 

algorithms to find the best RL structure for VCRC control optimization. Besides that, to make it a viable solution, a 

principal component analysis must be conducted to identify the most critical inputs to reduce the number of sensors 

required. Next, state estimation models need to be developed to reduce the need for expensive sensors if necessary. 

Ultimately, a standardized economical method to develop optimal RL controllers for VCRC control problems should 

be developed. Another critical future work for this project is to improve the VCRC simulation model using an in-

house test rig. The test rig is currently in development, and it will be used to tune the model. Besides that, the RL 

controller should also be developed for a wider range of operating conditions. Ideally, the RL controller should be 

able to work under all weather conditions all year long. The air humidity should also be accounted for by the controller. 

Next, the controller's robustness should be addressed. As an RL controller is black-boxed, it is crucial to provide 

confidence that it is safe and reliable. Therefore, additional safety features such as fault protection systems and sensor 

measurement filters need to be developed for VCRC RL controllers. Alternatively, the RL agent could also be trained 

in a noisy environment to learn how to be more robust. It is also essential to test and compare the RL controller to 

current state-of-the-art VCRC controllers. In literature, complete verification of the RL controller on a real system is 

rare, but it is essential to prove that it genuinely works. Finally, a time-domain analysis of the controller's response 

should be performed and compared to existing controllers. 

6. CONCLUSION 

A reinforcement learning controller was developed for vapor compression refrigeration cycle control. The control 

objectives were to track an internal air temperature reference and a 10˚C superheat temperature. A VCRC simulation 

model was developed using MATLAB Simulink to train the RL controller. The RL agent was trained using the twin-

delayed deep deterministic policy gradient (TD3) algorithm and converged to a suboptimal control policy, or control 

law, after 6500 training episodes. The training took five days using an Intel Core i7-8700 3.2GHz CPU with 32 GB 

RAM. The VCRC ambient and internal air temperature ranges were between 28-32˚C and 16-20˚C, respectively. The 

RL controller learned to use 17 observations to output two optimized controller actions, the compressor speed and the 

expansion valve opening percentage. The observations included information on the temperature tracking error, 

superheat temperature tracking error, operating conditions, energy consumption, and previous controller actions. A 

reward function that rewarded low temperature tracking errors, robustness, and stability was used for training. The 

training hyperparameters, including the learning rates, noise model, and discount factor, were also tuned to balance 

exploration and exploitation of the solution space during training. The RL controller's actor and critic used deep neural 

networks with two hidden layers and 400 nodes in each layer to approximate the control policy and value function. 

Next, the completed RL controller was tested using custom ambient and internal air temperature profiles. Generally, 

the RL controller showed great temperature tracking performance with minor steady-state errors and high response 

time for internal air and superheat temperature tracking. However, the controller actions showed fluctuating behavior 

when the ambient temperature fell below 29˚C, indicating that the algorithm failed to generalize this region's controller 

action. In conclusion, this research showed that the RL could optimize VCRC control, and it should be explored 

further. 
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