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ABSTRACT 

When the operating conditions are extremely cold and humid and the surface temperature of the heat exchanger well 

below the freezing point (lower than the dew point temperature of the air) moisture from the air stream will freeze 

on the surface after condensation and the frost will start growing. The frost growth degrades the performance of the 

system considerably. It hinders the airflow and increases the pressure drop through the coil which means more fan 

power is requires for to maintain the desired flow rate. With reduced flow rate due to the increase of pressure drop, 

system’s capacity drops rapidly. In the case of heat pump the capacity of the evaporator decreases due to the airflow 
drop, which reduces the overall heating capacity and coefficient of performance of the heat pump. Additionally, the 

frost layer increases the thermal resistance to the heat transfer between the air and refrigerant. The reduction in 

airflow and increased thermal resistance reduces the heat energy extracted by the evaporator and decreases the heat 

pump capacity and efficiency. Similar process is observed for the cooling coils of commercial refrigeration system 

where the frost growth can dramatically reduce the system capacity. Once the performance reaches its minimum 

acceptable stage, a defrost process is introduced to remove the frost layer and to achieve the performance at the start 

of the cycle. The frost defrost process is repeated continuously. Overall the frost growth is highly undesired 

phenomena which can cause considerable reduction in performance of the system. This study overviews different 

procedures to counteract the frost growth. Various frost mitigation procedures have been reviewed and compared to 

access their feasibility. The methods such as air treatment before entering the heat exchanger are used to effectively 

eliminate or at least minimize the frost growth rate. Such procedures are discussed under two major categories, air 

treatment processes to mitigate the frost and appropriate system modification to minimize or eliminate the frost 

growth. 

1. INTRODUCTION 

Air source heat pump (ASHP) units have found applications worldwide due to their advantages of high efficiency, 

environmental protection, low cost and easily modification. Studies on ASHPs has become a critical research and 

development subject mainly due to improved energy efficiency compared to conventional technologies. However, 

when an ASHP unit operates for space heating and the ambient air temperature extremely low (-7 to 5oC) and the 

relative humidity is relative high (greater than 65%), frost will form and accumulate on the outdoor coil of the 

ASHP, which becomes a major obstacle to achieving sustained performance. Over time, the frost accumulation on 

the coil becomes sufficient to both impede heat transfer and to dramatically increase the air-pressure drop, leading to 

a decrease in system performance. To counter the effect, a defrost process is mandatory to remove the frost from the 
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surface. Similarly, retail food stores and supermarkets operate their refrigeration systems continuously to maintain 

proper food storage conditions within their refrigerated display cases and storage areas. For obvious reasons, moist 

air becomes entrained within the refrigerated display cases and storage areas. Since the temperatures of the 

evaporators within the display cases and storage areas are well below the freezing temperature (lower than the dew 

point of the entrained air), water vapor within the air will condense and freeze on the evaporator surfaces, forming 

frost. Thus, in order to maintain system performance and proper storage temperatures within the display cases and 

storage areas, evaporators require periodic heating to melt and remove the frost (Tassou, Datta and Marriott 2001). 

Defrosting of outdoor coils for heat pumps and the display case evaporators for refrigeration systems can be 

achieved by several methods. Often times, the operation is stopped, and the frost then melts naturally as the 

evaporator fans blow air over the evaporator surfaces. To facilitate faster defrost, electrical resistance heaters are 

commonly deployed to heat the evaporator surfaces. In another defrost technique known as hot gas defrost, high 

temperature refrigerant vapor from the compressor discharge is routed through the frosted coil via a series of valves 

and piping. The high temperature vapor provides the required heating to melt the frost which has accumulated on the 

evaporator coils. Defrosting of supermarket display case evaporators is commonly controlled by a preset time cycle. 

Defrosts are typically scheduled to occur every six or eight hours, with a duration of 20 to 30 minutes. This method 

has the advantage of simplicity, reliability and low cost. However, a time-based defrosting strategy is determined 

from worst case conditions to ensure complete defrosting under extreme conditions. Thus, unnecessary defrost 

cycles will likely occur, thereby reducing the energy efficiency of the refrigeration system (Tassou, Datta and 

Marriott 2001). A significant amount of energy is required to defrost the evaporators in refrigerated display cases. 

Mei et al. (2002) report that electric defrost heaters can account for up to 25% of the total electrical energy 

consumption of refrigerated display cases. A review of manufacturers’ data indicates that electric defrost energy 
consumption can range from 10% to 30% of the total display case energy consumption, with an average of 

approximately 20%. Furthermore, defrosting adds heat to the refrigerated display cases, which must be removed by 

the refrigeration system after termination of the defrost cycle, thereby increasing compressor operation and energy 

use. 

2. FROST GROWTH MITIGATION MEASURES 
Frosting duration accounts more than 80% of operation time in a frosting-defrosting cycle, and thus exploration of 

frost retarding measures plays an important role in designing ASHP and commercial refrigeration units. To improve 

their operating performance, frost retarding measures attract more and more attention. Previous studies on 

developing frost retarding measures are broadly classified into three major types: upstream treatment of air, coil 

design adjustments and system adjustment. 

2.1. Upstream Air Treatment 
Frost formation and growth on the cold surface is depends on the ambient air conditions. Parameters such air 

temperature, RH, and airflow rate directly impact the frost density, growth rate on the heat exchanger surface. 

Following section briefly describes the various parameters which can influence the frost growth rate and proposes 

techniques which can potentially considerably reduce the phenomena. 

2.1.1. Reducing inlet air humidity 
Since frost forms due to solidification of water vapors, any measures of reducing inlet air humidity (such as using 

solid/liquid desiccants) can assist to mitigate the frost growth. Such techniques seem more applicable for a closed 

environment (display cases for a refrigeration system) rather for an open environment (outdoor coil of an ASHP) 

(Tassou et al., 2001). Several investigators have evaluated procedures to dehumidify the air-stream and methods 

such as applications of desiccants have been implemented. Wang et al. (2005) proposed the deployment of an 

adsorbent bed to dehumidify the air to effectively reduce the frost formation on heat exchangers. Wang et al. (2015) 

conducted an experimental study for a novel heat pump water heater and observed that the evaporator remained 

frost-free for 32, 34, 36 min during heating mode at the ambient temperatures of -3°C, 0°C and 3°C, respectively, 

for 85% RH. Su and Zhang (2017) evaluated the performance of a novel frost-free ASHP system combined with 

membrane-based liquid desiccant dehumidification. In another study, Jiang et al. (2014) introduced a novel non-

frosting ASHP system, in which a glycerol solution spray system was employed to the outdoor heat exchanger to 

avoid frosting. The ambient relative humidity greatly affects the amount of frost formation (Tassou, Datta and 

Marriott 2001). Thus, relative humidity is directly related to the required defrosting frequency and associated energy 

use. Several studies have reported on the energy use associated with defrost heaters as a function of relative 

humidity. Other factors which influence the rate of frost formation on evaporator coils include ambient air 

temperature, heat exchanger’s fin spacing, and air flow rate (Bullard and Chandrasekharan 2004). Fig. 1 shows the 
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relationship between frost accumulation, air velocity and air pressure drop across an evaporator coil. The data shown 

in Fig. 1 is for a heat exchanger with a fin spacing of 4 fins per inch (1.6 fins per cm) and entering air conditions of 

32°F (0°C) and 72% relative humidity. It can be seen that the pressure drop across the heat exchanger increases 

with increasing frost accumulation and with increasing air velocity. As frost accumulates, the size of the air 

passages through the coil are reduced, resulting in an increase in the pressure drop through the coil and an increase 

in the air velocity through coil. Thus, it has been suggested that defrost initiation can be based either on the increase 

in pressure drop across the evaporator or on the increase in air velocity through the evaporator, both of which 

accompany an increase in frost accumulation. 

Fig. 1: Effect of frost accumulation and air velocity on air pressure drop across an evaporator coil (Stoecker 1998) 

Regardless of the potential benefits of the above described processes, it important to account for the increase in 

capital and operational costs. Additionally, the desiccant regeneration process requires energy, and thus, makes the 

process more energy intensive. However, since during the dehumidification process, air temperature is increased due 

to the heat of adsorption, the process provides a secondary benefit which helps to minimize the frost growth as 

described in the following section. 

2.1.2. Preheating inlet air 
Another obvious choice to mitigate the frost is preheating inlet air which is a simple and effective technique. 

However, it is not easy to implement and requires high energy, particularly in relatively cold regions. Using waste 

heat in preheating inlet air is a feasible option where for example, heat recovered from exhausted indoor air, can be 

effectively utilized. Conventionally heating elements are placed in the inlet air duct so that when outdoor air 

temperature drops below the frosting point, the heating elements can preheat the air to avoid frost growth. Rafati et 

al. (2014) reported that to prevent frost formation, the inlet air temperature upstream of an outdoor coil must always 

be higher than the frosting point. 

Figure 2 and 3 present the frost formation conditions for a heat exchanger and for an energy exchanger. Kwak and 

Bai (2010) conducted an experimental study to increase the heating capacity and COP of a small capacity heat pump 

using the air as a heat source under frosting conditions, deploying an electric heater at the entrance of outdoor unit of 

heat pump. They concluded that when the outdoor temperature was 2°C/1°C (DB/WB), the heating capacity and 

COP were increased by 38.0% and 57.0%, respectively, compared to the performance of a conventional heat pump. 

Several studies have focused on the heat recovery process as a frost retarding measure (Rafati et al., 2014; Kragh 

et al., 2005). The process relies on the heat transfer between the exhausted indoor air and ambient air to reduce the 

frost growth rate. Song (2014) compared different frost mitigation measures and showed that preheating inlet air is 

not feasible in regions with long periods of very low outdoor air temperatures, from −54 to 10°C. Thus, for such 

situations the source for preheating inlet air should be waste heat, such as heat recovered from exhausted indoor air 

or waste water. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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Fig. 2: Psychometric chart showing the processes in the 

exhaust and supply air streams in heat exchangers 

Fig. 3: Psychometric chart showing the processes in the 

exhaust and supply air streams in energy exchangers 

2.1.3. Increasing inlet airflow rate 
Increasing inlet airflow rate is another potential technique to minimize the frost growth, but this results in 

increased fan power and noise level, both of which are major disadvantages. Da Silva et al. (2011) conducted an 

experimental study to investigate the effect of frost accumulation on the thermo-hydraulic performance of tube-fin 

evaporator coils. They observed that the frost accumulation rate increased with the air flow rate, supercooling value 

and fin density. They concluded that airflow rate reduction was a dominant factor for the drop in the capacity of 

evaporator. To predict the performance of an outdoor coil considering airflow reduction due to frost growth, a 

numerical model was developed and validated by Ye and Lee (2013). They concluded that convective thermal 

resistance between the frost surface and air results in 90% of the total thermal resistance; the conductive thermal 

resistance from the tube wall to the frost surface is only 2–5% of the total resistance. In addition, the increase in the 

convective thermal resistance from the air to the frost surface varies the most as a function of the blockage ratio due 

to the growth of the frost layer. Moallem et al. (2013) studied the frost formation on louvered folded fins in outdoor 

microchannel heat exchangers used in air source heat pump systems. They found that for louver fin variation of the 

fin width did not improve the frosting performance of the fins significantly, but increasing the fin depth seemed to 

increase the fin capacity (39%) with some penalization of the frosting time (6%). Additionally, increasing air 

velocity from 0.8 m/s (157 fpm) to 1.6 m/s (315 fpm) improved the capacity of the fins up to 53%. 

Fig. 4: Visualization of the fin surfaces before (a) and after (b) the frost formation process 

2.2. Heat Exchanger Modifications 
Passive procedures rely on the modification of the equipment to reduce the frost growth on the heat exchanger 

surface. Such methods include adjusting the fin design, coil circuiting and system design. 

2.2.1. Adjusting fin and tube geometry 
Fin density, often measured in fins per inch (FPI), is a critical parameter for heat exchanger design. Due to the 

requirements of compact design and reduction in manufacturing cost, there has been a trend of increasing the fin 

density which has led to a reduction in space between two adjacent fins. Yang (2003) conducted a detailed study to 

investigate the effects of the staging fin on the frost/defrost performance of heat pump outdoor coils under different 

operating conditions. A series of frosting tests was conducted on an off-the-shelf heat pump system with five (three 

two-row and two three-row) evaporators over a range of outdoor temperatures and relative humidity and a range of 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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airflow rates typical of those found in residential sized heat pumps. Yan et al. (2003) reported that the rate of 

pressure drop increases rapidly as the relative humidity increases when a heat exchanger is operating under frosting 

conditions and the performance of the heat exchanger is not impacted significantly by the fin pitch provided the fin 

spacing is large. Yang et al. (2006) proposed optimal values of design parameters for a fin-tube heat exchanger of a 

household refrigerator under frosting conditions to improve its thermal performance (5.5% increment) and to extend 

its operating time (12.9% improvement). Lee et al. (2010) measured and analyzed the air-side heat transfer 

characteristics of flat finned-tube heat exchangers at different fin pitches, numbers of tube rows and tube alignment 

under frosting conditions, and found that the air flow rate of the heat exchangers decreased with time because of 

frost growth. However, the effect of the number of tube rows on the reduction in the air flow rate was relatively 

smaller than that of the fin pitch. The staggered tube alignment showed more rapid air flow reduction with time than 

the inline tube alignment due to the higher flow restriction in the staggered tube alignment. The heat transfer rate 

increased with the decrease of the fin pitch and increase of the number of tube rows. Equation (1) and (2) present the 

Colburn j factor for inline and staggered tube arrangement. 

0.4513

0.0526 0.02100.0066 Re
h

h
inline D

p

D
j Fo

F

−
 

=     
 

(1) 

0.2134

0.3734 0.0777 0.05450.0006 Re
h

h
staggered D

p

D
j Fo N

F

−
 

=      
 

(2) 

Park et al. (2016), recently demonstrated that the frost blocking of the spaces between louvers at the front side of an 

evaporator can be delayed and the thermal performance can be improved by 21% when unequal louver pitch design 

was used compared to the equal louver pitch case. Sommers and Jacobi (2005) investigated the performance of a 

vortex generator deployed on plain fin and tube heat exchangers and concluded that vortex generation exhibits 

reasonable tolerance to frost, incurs only a small penalty in pressure drop, and significantly reduces the air-side 

thermal resistance. 

Fig. 5: Frost behavior according to the types of louvered fin used on the front side of the evaporator: (a) equal louver 

pitch, (b) Type 1, and (c) Type 2 designs 

2.2.2. Fin type selection 
Fin type can considerably impact the heat transfer and pressure drop of heat exchangers and, for obvious reasons, 

the heat exchanger performance is highly impacted by the type of fin design deployed. Yan et al. (2005) 

experimentally investigated the operating performance of frosted finned-tube heat exchangers with flat plate fins, 

one-sided louver fins and re-direction louver fins. For comparable conditions, the heat exchanger with re-direction 

louver fins performed worst compared to the other two types of heat exchangers. Huang et al. (2014) experimentally 

compared the effects of periodic frosting-defrosting performance by using three fin types in an outdoor coil of a 

residential ASHP unit. The outdoor coil with flat fins demonstrated the best thermal performance in the periodic 

frosting/defrosting cycles of the ASHP unit, followed by the outdoor coils with wavy and louver fins, respectively. 

Zhang and Hrnjak (2009) experimentally studied three types of heat exchangers with louver fin geometry under dry, 

wet and frost conditions. The configurations included: (1) parallel flow serpentine fins with extruded flat tubes, 

(2) parallel flow parallel fins with extruded flat tubes, and (3) round tube wave plate fins. Under frosting conditions, 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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the heat exchanger with round tube wave plate fin showed the longest refrigeration time due to its largest surface 

area. The increase in air-side pressure drop for the parallel flow parallel fins with extruded flat tubes heat exchanger 

was the lowest. 

Fig. 6: Structures of three heat exchanger types 

2.2.3. Coating treatment on fin surface 
Frost growth rate and density highly depend on the surface characteristics. Parameters such as liquid-solid contact 

angle is perhaps mostly widely used to describe the surface morphology. Several researchers have investigated the 

impact of surface type and associated frost growth rate. Often times, the surface morphology has been modified and 

the influence has been evaluated. Such studies include mostly small-scale studies where a relatively small metal 

piece represented the fin surface. However, recently several researchers have tested full heat exchangers with 

modified surfaces and the appropriateness of such procedures have been discussed for ASHP and refrigeration 

systems. 

Okoroafor and Newborough (2000) found that frost growth on cold surfaces exposed to warm humid air streams 

could be reduced significantly by the presence of cross linked hydrophilic polymeric coatings. The frost thickness 

was decreased in the range of 10–30% when compared to using an uncoated metallic surface. In another study, Wu 

and Webb (2001) investigated both frosting and defrosting processes on hydrophilic and hydrophobic surfaces, 

showing a hydrophilic coating was preferable for operation under frosting conditions. Cai et al. (2011) 

experimentally studied the frosting conditions on a normal copper surface, a hydrophobic coating (car wax coating) 

surface and a hygroscopic coating (glycerol coating) surface. Based on the distribution of ice crystals and time of 

frost appearance, the hygroscopic coating performed better than the hydrophobic coating; however, based on 

parameters such as coating thickness, thermal resistance and expansion defect of the hygroscopic coating, the 

hydrophobic coating was found to be superior to the hygroscopic coating. 

Jhee et al. (2002) conducted an experimental study on hydrophilic and hydrophobic treated heat exchangers and 

reported that a relatively higher density formed on a hydrophilic surface during frosting, and the water draining rate 

during defrosting was higher. On the other hand, for a hydrophobic surface the frost density was lower and the 

draining water rate during the frost melting process was increased mainly due to large chunks of incompletely 

melted frost. They concluded that the hydrophilic treatment influences the behavior of frosting while the 

hydrophobic treatment becomes more important during defrosting. 

Liu et al. (2006) deployed a novel anti-frost paint on a cold metal surface and observed that the onset of frost 

formation was delayed by at least 15 min. The thickness and the mass of the deposited frost layer was reduced by at 

least 40% compared with that on the uncoated copper surface. While evaluating the long-term performance, they 

found that the growth of frost crystals on the surface of the paint coating was similar to that of a hydrophobic 

surface. The frost growth exhibited strong dendritical characteristics, and the frost layer formed had a very loose, 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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weak, and fragile structure that could be easily removed by external force. It is important to note that the deployment 

of a polymer layer introduced a thermal resistance due to its lower thermal conductivity. 

Several researchers have investigated the influence of surface morphology at micro or nano-scale to understand 

the processes such as nucleation of droplets and merging of droplets which dramatically impacts the frost density 

and adhesion to the surface. Chen et al. (2013) reported a hierarchical surface which allows for inter droplet 

freezing wave propagation suppression and efficient frost removal. It was demonstrated that the enhanced 

performance is mainly due to the activation of the microscale edge effect in the hierarchical surface, which increases 

the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. 

Zuo (2017) prepared a superhydrophobic surface where ZnO (Zinc Oxide) nanorods were deployed through radio 

frequency magneton sputtering method. They found that the frost formation on the as-prepared SHP ZnO surface 

was effectively delayed for over 140 min even at -10°C. The superhydrophobic surface exhibited an excellent 

durability against repetitive frosting/defrosting. Wu (2017) conducted a study to investigate the condensation, frost 

crystal growth, frost melting and meltwater drainage characteristics on aluminum surfaces with parallel and crossed 

grooves. They found the parallel grooved surface had better drainage than the flat surface with a smaller meltwater 

retention ratio, while the surface with crossed grooves had worse drainage. 

Sommer et al., (2016) noted that existing frost density correlations found do not include surface wettability (i.e. 

contact angle) as a parameter in the model. However, surface wettability is important in accurately determining the 

properties of the frost layer and thus should be included in future frost correlation development efforts. They 

evaluated the effect of surface energy on the frost thickness and density for both a hydrophobic substrate and a 

hydrophilic substrate and found that the frost layer on the hydrophobic surface was ‘‘thicker and fluffier” resulting 
in a less dense frost than the frost on the baseline surface. Liang et al., (2015) designed a frosting/defrosting 

experiment to study the effects of surface characteristics on defrosting behaviors of a fin. The characteristics of frost 

melting and molten water retention were analyzed and compared. It was concluded that effects of the surface 

characteristics on the melting time and melting process were significant. 

Fig. 8: Frost melting on the surface with parallel grooves 

after frosting for 30 min (Tw = 16°C, Tin = 2°C, 

RH = 75%, u = 1.16 m/s 

Fig. 7: Comparison of frost growth on the coated (left, 

thickness = 0.3 mm) and the uncoated (right) surfaces 

2.3. System Modification 
There are also some outside of system type frost retarding measures for ASHP units, which have been undertaken 

through adjusting and optimizing the structure of the system. In these measures, all the energy consumed on frost 

retarding comes from heat transferred from the refrigerant inside the system to the tube and fins. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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2.3.1. Vapor-injection technique 
The vapor-injection technique has been used mainly for room air conditioner applications since the 1980s, but its 

applications to heat pump units received more attention recently, since the process can mitigate frosting in cold 

climates. Zhnder et al. (2002) conducted an experimental study for an air-water vapor-injection heat pump unit at an 

inlet air temperature of −7°C. They observed an increase in heat output of 28% and a COP improvement of 15%, 

respectively, when compared to the performance without injection. Similarly, Nguyen et al. (2007) evaluated the 

thermal performances of a flash tank vapor injection cycle and a sub-cooler vapor injection cycle using R407C, 

reporting their heating COPs 24% and 10% higher compared to a single-stage cycle, respectively. Shao et al. (2002) 

concluded that a vapor-injection heat pump unit could provide enough heating capacity even when the outdoor 

temperature is in range of −20 to −15°C. In another study, Ma and Zhao (2008) experimentally investigated the 

operating performance of an ASHP unit with a flash-tank coupled using scroll compressor with an ambient 

temperature of −25°C. They found that the ASHP unit was more efficient than the system with a sub-cooler at −25 

to −7°C. 

2.3.2. Two-stage technique 
Similar to the vapor-injection technique, the two-stage technique can result in considerably improved 

performance for a heat pump. Wang et al. (2005) experimentally investigated a double-stage heat pump heating 

system, which coupled an ASHP unit and a water source heat pump unit. They showed that the proposed system 

offered an average energy efficiency ratio up to 3.2 and the average indoor temperature exceeded 19.5°C, minimum 

at 18°C in test period. In another study, Li et al. (2011) proposed and experimentally tested a new frost-free ASHP 

system, indicating the novel system could operate more efficiently than a conventional ASHP unit in winter. Heo et 

al. (2010) reported that that the COP and heating capacity of a two-stage vapor injection cycle were enhanced by 

10% and 25%, respectively, when the ambient temperature was −15°C. Similarly, Wang et al. (2009) demonstrated 

that a COP improvement of 23% for a two-stage heat pump system can be achieved when the ambient temperature 

was −17.8°C. Bertsch and Groll (2008) tested a specially designed R410A two-stage ASHP unit with a heating COP 

of 2.1 at an ambient temperature of −30°C. 

2.3.3. Adding outside heating source 
Adding an outside heat source could improve the system operating performance under frosting conditions. Mei et 

al. (2002) reported that the heating capacity of an ASHP unit could be increased, and the frost accumulation on its 

outdoor coil can be reduced by heating up the liquid refrigerant in its accumulator. By heating liquid refrigerant, the 

frequency of defrosting cycles was reduced by a factor of 5 and indoor supply air temperature raised by 2 to 3°C 

because of the increased compressor suction pressure. It is important to distinguish that this is different from heating 

the inlet air of the outdoor coil (discussed in Section 0) since the heat is add directly to the refrigerant loop. 

Regardless, both processes are energy intensive and to improve the economy of the ASHP units. The heating source 

should be waste heat, such as heat recovered from exhausted indoor air or waste water. This type of frost retarding 

measure is limited in application, due to its disadvantages of high operating cost and additional infrastructure. 

2.3.4. Adjusting refrigerant distribution 
For an outdoor coil used in an ASHP unit, multiple refrigerant circuits are deployed to minimize the refrigerant 

pressure drop and to achieve an enhanced heat transfer rate. Interestingly, the frost accumulation is mostly uneven 

on the surface of a multi-circuit heat exchanger, a phenomenon known as mal-defrost. 

Wang et al., (2012) conducted a field test to quantify the performance drop of an air source heat pump (ASHP) 

system under a special kind of mal-defrost phenomenon appearing in moderate climate conditions. The mal-defrost 

was found with the more than 60% frosted area of the outdoor heat exchanger after the system running 5 days. 

Comparing the test data before and after frosting, it was found that the mal-defrost decreased the COP up to 40.4% 

and the heating capacity to 43.4%. Qu et al., (2012) conducted an experimental study to analyze the reverse cycle 

defrost performance for a four-circuit outdoor coil in an ASHP unit. It was observed that defrosting was quicker on 

the airside of upper circuits than that on the lower circuits. The effects of downward flowing melted frost along a 

multi-circuit outdoor coil surface had a significant impact on overall performance and the defrosting efficiency of 

34.5% was reported for system. 

In another study Song et al., (2016a,2016b) reported that when a vertically installed multi-circuit outdoor coil in 

an ASHP unit was changed to a horizontally installed coil, the defrosting efficiency increased from 43.5% to 53.3%, 

or an increase of 9.8%. Additionally, the negative effects of melted frost flowing downward due to gravity were 

eliminated. They defined the parameter frosting evenness value (FEV) as the ratio of the minimum frost 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 



  

  

            

          

                      

     

          

      

            

            

         

           

   

   

 
 

 

 

 

 

 
 

   

 

  

  

         

          

          

         

         

   
  

      

         

         

   

 
      

  
 

      

          

          

                

   

          

   

          

          

 

          

          

       

 
                

    

2696, Page 9 

accumulation among three circuits to the maximum value. In another study to investigate the relationship of FEV 

and frost retarding effect, Song et al., (2016c) found that as FEV increased from 75.7% to 90.5%, the average COP 

was increased from 4.10 to 4.26 for a 3600 s frosting process, and increased from 3.18 to 4.00 during the last 600 s. 

Fig. 9: Images of the frosting process 

In Table 1, a relative comparison of various frost mitigation processes is provided. It is important to note that 

nearly all the measures would increase the initial cost and/or the operational cost. System adjustment would increase 

the system complexity and decrease system stability. Additional thermal energy is required for the measures of 

preheating inlet air and adding an outside heat source. Among all the measures, reducing inlet air humidity and 

preheating inlet air have the best frost mitigation effect. Considering the comprehensive values of listed measures, 

preheating inlet air with waste heat and coating treatment on fin surface with new materials are highly recommended 

for further study. 

Table 1: Frost mitigation methods 

Method 
System 

complexity 

System 

stability 

Frost 

Mitigation 
Scalability 

Increase in capital 

cost 

Increase in 

operational cost 

Reducing air humidity High High High Moderate High High 

Preheating the air stream High High High Moderate High High 

Increasing air flow rate High High Moderate Moderate High High 

adjusting fin geometry Low High Moderate High Moderate Low 

Fin type selection Low High Low High Moderate Low 

Surface morphology for 
fin surface 

Moderate High Moderate Moderate Moderate Low 

Vapor injection technique High Low Moderate Low High Moderate 

Two stage technique High Low Moderate Low High Moderate 

Adding outside heat 

source 
Moderate Moderate Moderate Moderate Moderate High 

Adjusting refrigerant 
distribution 

Low High Moderate Moderate High Low 

3.CONCLUSIONS 
Frost growth on the heat exchanger surface can significantly alter the system performance. Various frost mitigation 

strategies have been reviewed and compared for the deployment of heat pump and commercial refrigeration 

systems. While this has been an active area of research for many years, there is no agreement on what technique is 

most effective to mitigate the frost. 

1- The air treatment approaches seem most promising for commercial refrigeration applications and not viable 

options for cold climate heat pump. 

2- Passive techniques such altering the fin geometry or modifying the surface morphology has been seen as 

major developments, however their application is limited by unacceptable durability, scalability and 

manufacturing challenges. 

3- System level modification techniques have been successfully deployed in a range of system with varying 

level of impact. Most of such modification are most appropriate for heat pump application, although several 

have been considered for commercial refrigeration systems as well. 
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