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ABSTRACT 

Awareness about the climate impact of air conditioning systems has given impetus in developing environment-friendly 

solutions. The transcritical CO2 cycle with an ejector as a work recovery device has been reported as one of the green 

solutions in the literature. However, commercial applicability of these systems is limited so far despite their offered 

potential. One of the major impediments for limited commercial usage is unavailability of a systematic approach for 

system design that can help system designers in finding the optimum component combination for their application. 

For materializing system design approach, it is imperative to develop a system model that can accurately predict 

performance for wide range of operating conditions while considering different possible component combinations. In 

this paper, an ejector system model is developed using individual component models of ejector, evaporator, and 

compressor. The ejector is being modeled using the ejector performance maps, a recently developed methodology for 

representing ejector performance of a fixed-geometry ejector. The ejector performance maps are accurate, yet they 

can predict ejector performance for wide range of operation. The evaporator is modeled using geometric parameters, 

and the refrigerant and the air-side operating conditions, whereas other heat exchangers are modeled using 

thermodynamic state analysis. The compressor is modeled using semi-empirical correlations by curve-fitting ten-

coefficient polynomial using compressor speed and pressure ratio as characterizing variables. The system analysis 

considers a total of eight component combinations for transcritical CO2 ejector cycle and helps in finding the 

combination that gives the optimum performance. The results are encouraging as the system analysis using ejector 

performance maps can help in designing new improved systems. The methodology can also be tested for designing 

ejector air conditioning systems using other refrigerants. 

1. INTRODUCTION 

Current research in HVAC industry has been geared towards finding environment-friendly solutions. The CO2 as a 

natural refrigerant offers a potential solution. However, due to its thermophysical properties, the CO2 vapor 

compression cycle works as a transcritical cycle for a typical air conditioning application. This introduces significant 

throttling losses that accounts for lower system efficiency. 

Ejector, working as work recovery device has been reported to improve system performance of a CO2 transcritical 

system. Elbel and Hrnjak (2008) showed in one of the initial experimental studies that the system COP and cooling 

capacity of a transcritical CO2 ejector refrigeration system can be simultaneously improved by up to 8% and 7% 

respectively. Nakagawa et al., (2011) showed experimentally that an internal heat exchanger can also improve the 

performance of a transcritical CO2 ejector cycle by decreasing the quality at the evaporator inlet. Today, a transcritical 

CO2 system can employ both an ejector and an IHX for improving the system performance. 

The added complexity of a transcritical CO2 system for improving its performance has not limited its usage in large 

systems like supermarket. However, this may be the reason hindering the penetration of CO2 systems in other 

commercial applications like residential and automobile sector. One aspect of solving this added complexity is to 

develop robust design methodology that can help system design engineers in making system selection decision. 

18th  International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021  

mailto:elbel@illinois.edu


  

     

      

              

               

              

         

 

 

    

         

        

           

              

     

        

            

            

      

             

  

             

         

         

   

                 

         

 

                

              

    

           

        

         

              

   

    

       

             

      

     

  

   

  

    

 

        

       

          

                    
               

  

2528, Page 2 

A system selection process typically involves component models based on experimental performance data from the 

manufacturers. The compressor performance maps are a typical example of such models. Recently, a similar model is 

proposed for a fixed-geometry ejector by developing ejector performance map from the experimental data (Haider 

and Elbel, 2020). These performance maps can predict the ejector performance using the ejector efficiency as the 

performance variable, whereas it only requires single operational variable of the volumetric entrainment ratio for 

characterizing the ejector performance. The performance map has been reported to predict the ejector performance 

accurately within 20% for wide range of operating conditions. 

The ejector performance maps are computationally efficient, and yet accurate, which makes them practical to use in 

the system selection analysis. These performance maps are different from an evolving research area of physics-based 

ejector modeling. Aidoun et al., (2019) has summarized the latest developments in ejector physics-based models. The 

physics-based ejector models are computationally expensive, and their prediction may not remain accurate for wide 

range of operating conditions. The extended range for performance prediction is important as current research has 

shown that ejector can improve system performance through two mechanisms of power recovery and liquid 

recirculation (Pottker and Hrnjak, 2015). Most of the physics-based ejector models work with single-phase suction 

inlet conditions which tend to improve the system performance only through power recovery. However, the ejector 

performance map can accurately predict the ejector performance not only for single-phase suction inlet conditions, 

but also for two-phase suction inlet conditions. Thus, being computationally efficient and accurate for both single-

phase and two-phase suction inlet conditions, the ejector performance maps have advantage over physics-based ejector 

models when conducting system selection analysis as system performance can be evaluated for larger operational 

envelope. 

For developing a robust design methodology for a CO2 transcritical system, it is imperative to develop a detailed 

system model that can predict the system performance from the experimental performance of individual components. 

Each component plays an important role in determining the system performance. For example, Lawrence and Elbel 

(2018) showed numerically that evaporator design can improve ejector refrigeration system performance. Also, the 

system performance can be improved by changing the IHX effectiveness (Nakagawa et al., 2011). There is no 

published work to the best knowledge of authors that highlight the effect of compressor performance on the ejector 

system performance. 

The added complexity in a transcritical CO2 ejector system makes the system modeling of such a system also a 

challenge. Typically, a vapor compression system is modeled using enthalpy marching scheme. In a typical vapor 

compression cycle, the system can be solved only by considering low-side and high-side pressure while propagating 

the enthalpy from the compressor inlet to the other components. The compressor inlet enthalpy can be known based 

on the evaporator desired exit conditions. However, presence of the internal heat exchanger involving parallel flow 

conditions within in the cycle along with split and merger of different streams in the separator and ejector respectively, 

makes junction solver scheme an appropriate choice (Winkler et al., 2008). The junction solver scheme considers 

pressure and enthalpy at each inlet and exit port of the component while system is solved for energy and mass balance. 

This, however, makes solver computationally expensive and the system model may not remain practical. 

In this study, the enthalpy marching solver scheme is used, making the solver computationally less expensive than 

junction solver scheme. The enthalpy marching solver is computationally efficient because it uses less variables to 

solve the system than junction solver scheme. A transcritical CO2 ejector system model is developed for predicting 

the system performance for different combinations of components. For the sake of brevity, the effects of only three 

components namely ejector, evaporator and compressor are considered. In the first part, the component and system 

models are introduced. In the second part, the validation of component models and system model is presented. In the 

last part, the system analysis is carried out while considering eight possible component combinations. The combination 

giving the maximum COP and capacity during the analysis is selected as the final system. 

2. EJECTOR SYSTEM MODEL 

A system model for a standard transcritical CO2 ejector cycle with internal heat exchanger (IHX) has been developed 

in MATLAB for predicting system performance using different combinations of the system components. The fluid 

properties are obtained using CoolProp (Bell et al., 2014). The system schematics for the standard ejector cycle with 

an IHX is shown in Figure 1. A total of three variables 𝑃𝑐𝑝𝑟𝑖 , 𝑃𝑒𝑟𝑖  and 𝜙𝑚 = �̇� 𝑠𝑛/�̇� 𝑚𝑛  are used for finding the 

solution of the ejector system for a given high-side pressure. The constraint equations satisfy the evaporator exit 

condition, system energy balance, and the ejector pressure lift as the difference between evaporator exit and IHX 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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suction inlet pressure. It is assumed that the separator is non-ideal and some of the liquid droplets enter the suction 

line of the IHX. The internal heat exchanger and gas cooler are modeled using thermodynamic state analysis. The 

details of other component models are as follows: 

Figure 1: Schematics of standard ejector system with internal heat exchanger 

2.1 Ejector modeling 
The ejector is modeled using recently proposed ejector performance maps (Haider and Elbel, 2020). The performance 

maps use volumetric entrainment ratio, 𝜙𝑣 as the characterizing variable, and a new definition of ejector efficiency 

𝜂𝑒𝑗𝑒𝑐,𝑚𝑎𝑝 as performance variable. The ejector efficiency, 𝜂𝑒𝑗𝑒𝑐,𝑚𝑎𝑝 is given by Equation (1) 

�̇� 𝑚𝑛(ℎ(𝑃𝑑𝑟𝑜,𝑠𝑚𝑖𝑥)−ℎ𝑚𝑖𝑥 𝜂𝑒𝑗𝑒𝑐,𝑚𝑎𝑝 = (1)
�̇� 𝑚𝑛(ℎ𝑚𝑛,𝑖𝑛−ℎ(𝑃𝑠𝑛,𝑖𝑛,𝑠𝑚𝑛,𝑖𝑛) 

The volumetric entrainment ratio, 𝜙𝑣 is given by Equation (2) 

�̇�𝑠𝑛 𝜌𝑚𝑛 𝜙𝑣 = = 𝜙𝑚 (2)
�̇�𝑚𝑛 𝜌𝑠𝑛 

The performance map for a fixed-geometry ejector can be obtained by curve-fitting experimental data using second 

order polynomial given by Equation (3). 

�̂� = 𝐶1 + 𝐶2𝜙𝑣 + 𝐶3𝜙𝑣
2 (3)𝑒𝑗𝑒𝑐,𝑚𝑎𝑝 

In this study, two ejectors are considered. The data for Ejec A is from Haider and Elbel (2020), while the data for Ejec 

B is from Zhu et al., (2017). The performance maps for both the ejectors are shown in Figure 2. 

Figure 2: Ejector performance maps for the two ejectors used in the study 

2.2 Evaporator modeling 
The microchannel evaporator has been modeled by discretizing it into finite volumes. The flow inside the evaporator 

is counter-crossflow with dry conditions on the air side. The energy balance is solved inside each of the finite volumes 

while calculating refrigerant and air-side heat transfer coefficients using empirical correlations specified in Table 1. 

The pressure drop is only considered on the refrigerant side while fixed mass flow rate is assumed for the air side 

flow. The evaporator is solved iteratively by updating temperatures and pressures in each volume from 

previous 
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iteration, until the exit condition variations are below the set tolerance. The finite volume in which refrigerant flow 

changes from two-phase to single-phase condition, is further resolved in to two separate regions for calculating heat 

transfer and pressure drop using respective correlations. This allows using lower number of elements to discretize the 

evaporator. In this study, the evaporator is discretized into 10 elements per slab. 

Table 1: Empirical correlations used for modeling evaporator 

Parameter Reference 

Pressure drop single-phase refrigerant DP Churchill (1977) 

two-phase refrigerant DP Friedel (1979) 

HTC single-phase refrigerant HTC Gnielinski (1976) 

two-phase refrigerant HTC CO2: Shah (2017) 

Air-side HTC Park and Jacobi (2009) 

For analysis, two microchannel evaporators are used in this study, both having four slabs and single pass. The 

dimensions for Evap A are given in Zhu et al., 2018. The Evap B differs with Evap A only in port diameter. Evap A 

has a port diameter of 0.81mm whereas, Evap B has a port diameter of 0.53mm. The experimental data is only available 

for Evap A, and it is assumed that the model will account for the change in performance of the evaporator if the port 

diameter is changed by the given amount. 

2.3 Compressor modeling 
The compressor performance is modeled using three efficiencies for predicting specific quantity related to compressor 

performance. The volumetric efficiency, 𝜂𝑣𝑜𝑙 relates the mass flow rate with the compressor suction inlet conditions, 

and compressor operating conditions. Thus, �̂�𝑣𝑜𝑙 helps in predicting mass flow rate for the given compressor operating 

conditions. The volumetric efficiency, 𝜂𝑣𝑜𝑙 can be measured by experimental data using Equation (4). 

�̇� 𝑚𝑒𝑎𝑠 = (4)𝜂𝑣𝑜𝑙 𝜌𝑠𝑢𝑐𝐶𝑁 

The compression efficiency, 𝜂𝑐𝑜𝑚𝑝 gives the ratio between ideal and actual work required for the compression. The 

�̂�𝑐𝑜𝑚𝑝 helps in predicting the discharge temperature. It can be measured using Equation (5) 

�̇�𝑖𝑠𝑒𝑛 𝜂𝑐𝑜𝑚𝑝 = 
𝑊 

(5)
̇ 𝑎𝑐𝑡 

The compressor power is also an important performance variable which can be predicted using the isentropic or overall 

efficiency �̂�𝑖𝑠𝑒𝑛. The measured isentropic efficiency 𝜂𝑖𝑠𝑒𝑛 is given by Equation (6) 

�̇�𝑖𝑠𝑒𝑛 = (6)𝜂𝑖𝑠𝑒𝑛 𝑊 ̇ 𝑒𝑙𝑒𝑐 

The measured efficiencies from selected experimental data points for different compressor speeds and pressure ratios 
𝑃𝑑𝑖𝑠 are used to curve-fit 10-coefficient polynomials for each of the efficiency using the pressure ratio, 𝛽 = and the 
𝑃𝑠𝑢𝑐 

𝑁 
normalized compressor speed, 𝑁𝑛𝑜𝑟𝑚 = as the two characterizing variables. The 10-coefficient polynomial for 

𝑁𝑟𝑎𝑡𝑒𝑑 

each efficiency can be written in the general form using Equation (7) 

2�̂� = 𝐶1 + 𝐶2. 𝛽 + 𝐶3. 𝑁𝑛𝑜𝑟𝑚 + 𝐶4. 𝛽2 + 𝐶5. 𝛽. 𝑁𝑛𝑜𝑟𝑚 + 𝐶6. 𝑁𝑛𝑜𝑟𝑚 + 𝐶7. 𝛽3 + 𝐶8. 𝑁𝑛𝑜𝑟𝑚. 𝛽2 + 
2 3 (7)𝐶9𝛽. 𝑁𝑛𝑜𝑟𝑚 + 𝐶10𝑁𝑛𝑜𝑟𝑚 

where �̂� can either be �̂� ̂ or �̂�𝑖𝑠𝑒𝑛. In this study, two compressors are used for analysis. However, the 𝑣𝑜𝑙, or 𝜂𝑐𝑜𝑚𝑝 
experimental data has been collected using the same compressor available in the lab facility. The compressor is a CO2 

semi-hermetic radial piston-type variable speed compressor. The performance map of two different compressors is 

obtained by collecting experimental data at two different cooling conditions for compressor. The Comp A represents 

data collected while the compressor is cooled using a fan, whereas Comp B represents data collected when the 

compressor is cooled through natural convection. The power consumed by fan for Comp A is not included in any 

calculations. The difference in the cooling mechanism is used in making a single physical compressor, work as two 

different compressors (Haider and Elbel, 2020). 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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3. MODEL VALIDATION 

This section presents the validation results for predicting the performance of individual components, as well as for 

predicting the system performance. The experimental data for model validation is obtained by the lab facility shown 

in Zhu et al., 2018. 

3.1 Components validation 
The prediction accuracy for each component is important in determining the overall system prediction accuracy. The 

performance map can predict ejector performance within 20% of accuracy using the data for Ejec A (Haider and Elbel, 

2020). The performance map uses only the single-phase suction inlet data points for curve-fitting the second order 

polynomial, while it can also predict accurately the ejector prediction for two-phase suction inlet conditions. The 

compressor power and the mass flow rate for Comp A and Comp B can be estimated within 5% accuracy (Haider and 

Elbel, 2020). 

The validation result for the evaporator model is shown in Figure 3. The model can predict within 10% of capacity 

for both single-phase and two-phase evaporator exit conditions. 

Figure 3: Predicted vs measured capacity of Evap A 

3.2 System validation 
The data for validating system model is collected for wide range of operating conditions. The data points have both 

single and two-phase evaporator exit conditions. The ambient temperature is in the range of 35-45oC, while 

compressor speed is in the range of 900-1500min-1. The suction inlet quality for IHX is taken from experimental data 

as one of the parameters for each of the simulation point. Figure 4 shows the solver can predict system COP within 

10% for most of the data points. 

Figure 4: Prediction of system COP 

4. ANALYSIS AND DISCUSSION 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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The study considers two ejectors, two evaporators, and two compressors for system analysis. Thus, a total of eight 

combinations are possible that have been labelled as shown in Table 2 for ease in reporting results. 

Table 2: Eight component combinations considered in the study 

Comb Comp Ejec Evap 

1 A A A 

2 A A B 

3 A B A 

4 A B B 

5 B A A 

6 B A B 

7 B B A 

8 B B B 

Some of the key simulation parameters are listed in Table 3. These parameters are not changed during any of the 

simulation. No pressure drop is assumed in the suction line of IHX. 

Table 3: Key simulation parameters 

Parameter Value Unit 

Evaporator air inlet temperature 27 °C 

Evaporator air mass flow rate 0.3 kg/s 

Internal HX effectiveness 0.6 -

Internal HX suction inlet quality 0.95 -

Gas cooler refrigerant outlet temperature 𝑇𝑎𝑚𝑏 + 5 °C 

4.1 Effect of high-side pressure 
In transcritical CO2 systems, unlike subcritical refrigeration cycles, the high-side pressure is independent of the gas 

cooler exit temperature. The system COP can be improved by changing the high-side pressure. Figure 5(a) shows 

change in COP and Figure 5(b) shows the increase in cooling capacity for four combinations involving Evap A only 

as high-side pressure is changed. The simulations are run at a compressor speed of 1200min-1, ambient temperature of 

35oC, while keeping the evaporator exit conditions at a superheat of 5oC. The COP reaches peak at a certain value of 

high-side pressure. Combinations having Comp A (Comb 1 & 3) performs better than the combinations having Comp 

B (Comb 5 & 7). Similarly, the combinations having Ejec B (Comb 3 & 7) performs better than the combinations 

having Ejec A. The maximum COP is for Comb 3 having Comp A and Ejec B. The system capacity is also highest 

for the Comb 3. The performance difference between Comb 1 and Comb 5 is consistent with the experimental data. 

(a) (b) 

Figure 5: High-side pressure effect on system performance (a) COP (b) 𝑄𝑒 for selected system combinations 

In following subsections, the system performance is evaluated at different high-side pressures. However, only the 

maximum COP and corresponding cooling capacity is reported. 

4.2 Effect of compressor speed 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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The system model is evaluated for predicting performance of four combinations having Evap B only at different 

compressor speeds. The evaporator exit conditions are at a superheat level of 5oC and system is run at an ambient 

temperature of 35oC. Figure 6(a) shows that the Comb 4 has the highest COP at any given compressor speed as 

compared to other combinations. The Comb 2 and Comb 4 having Comp A has similar trends, whereas the 

performance trends for Comb 6 and Comb 8 having Comp B are similar. The systems with Comp A have better 

performance than the systems with Comp B in general. Ejec B improves the performance of the system greater than 

Ejec A. The effect of Ejec B is significant in Comb 8 for compressor speed 1100-1300 as Comb 8 works better than 

Comb 2. The cooling capacities for the system with Comp B (Comb 2 and Comb 4) in Figure 6(b) remain greater than 

the systems with Comp A (Comb 6 and Comb 8). 

(a) (b) 

Figure 6: Effect of changing compressor speed on performance (a) COP (b) 𝑄𝑒 for selected system combinations 

4.3 Effect of evaporator exit conditions 
The system model is simulated for four combinations involving Comp A only. The evaporator exit conditions are 

changed from single-phase to two-phase flow conditions. The system is simulated at an ambient temperature of 35oC, 

and for a compressor speed of 1200min-1. Figure 7(a) shows that the system COP is maximum when evaporator exit 

conditions are saturated vapor for all the combinations. The combinations with Ejec B perform better. Also, the 

combinations using Evap A performs better than Evap B with only one exception, i.e., Comb 1 performs better than 

Comb 4 for superheated exit conditions. 

(a) (b) 

Figure 7: Effect of changing evaporator exit conditions on (a) COP (b) 𝑄𝑒 for selected system combinations 

4.4 Effect of ambient conditions 
The transcritical CO2 system performance decreases when it is operated at higher ambient temperatures. All the 

combinations of Comp A are simulated for four different ambient temperatures. The compressor speed is kept at 

1200min-1, while evaporator exit is set to have a saturated vapor condition. Figure 8(a) shows that the COP drops 

around 60%, whereas Figure 8(b) shows that the capacity drops around 20% for each of the combination as ambient 

temperature is changed from 35oC to 50oC. The performance of systems having Ejec B remains better than the 

system 
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with Ejec A. The Comb 3 and Comb 4 have almost the same performance for saturated vapor evaporator exit 

conditions. 

(a) (b) 

Figure 8: Effect of ambient temperature on performance (a) COP (b) 𝑄𝑒 for selected system combinations 

4.5 Comparing the best and the worst component combination 
From above analysis, Comb 3 having Comp A, Ejec B, and Evap A is giving best performance, whereas Comb 6 

having Comp B, Ejec A, and Evap B has the lowest performance. The performance of the two systems is compared at 

a compressor speed of 1200min-1, ambient temperature of 35oC, and an evaporator exit of saturated vapor. These 

conditions are expected to give the maximum performance for Comb 6. The analysis shows that the system COP and 

cooling capacity of Comb 3 is 5.3% and 6.4% higher, respectively, than that of Comb 6. Figure 9(a) and Figure 9(b) 

shows Ph and Ts-diagram for Comb 3 and Comb 6, respectively. The evaporator temperature in Comb 3 is relatively 

lower than it is in Comb 6, which can explain for higher cooling capacity. However, the higher pressure rise due to 

Ejec B in Comb 3 makes the compressor suction inlet conditions similar in both systems, resulting in higher COP. 

(a) (b) 

Figure 9: Comparison of (a) Ph and (b) Ts-diagram for Comb 3 (best) with Comb 6 (worst) system combinations 

The best system combination has been identified as Comb 3. The ejector performance maps have been crucial in 

predicting wide range of operating conditions in making this decision. However, the evaporator model is found to be 

the most computationally expensive component model. 

5. CONCLUSIONS 

In this paper, a systematic study is undertaken for designing a transcritical CO2 ejector air conditioning system using 

the advantage of newly proposed ejector performance maps. A system model is developed from component models 

that have been validated against the experimental data. An enthalpy marching algorithm is used in solving the system. 

A total of eight combinations have been investigated while studying the effects of high-side pressure, compressor 

speed, evaporator exit conditions, and ambient temperature. It is found that the Comb 3 using Comp A, Ejec B and 
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Evap A gives the best performance for wide range of operating conditions. The study has found that an improvement 

of 5.3% in COP and 6.4% in cooling capacity is possible simultaneously while comparing the best and the worst 

performing component combinations. 

The results are very promising in making ejector system selection decision an easier task. However, computationally 

efficient evaporator models along with modeling of IHX and gas cooler need to be undertaken to expand the scope of 

system analysis. The ejector performance maps should be utilized in system designing of other refrigerant systems as 

well. 

NOMENCLATURE 

C swept volume of compressor (m3) 

Comp referring to either Comp A or Comp B (-) 

Ejec referring to either Ejec A or Ejec B (-) 

Evap referring to either Evap A or Evap B (-) 

h specific enthalpy (kJ/kg) 

IHX Internal Heat Exchanger (-) 

�̇� mass flow rate (kg/s) 

N compressor speed (min-1) 

P pressure (kPa) 

s specific entropy (kJ/kgK) 

T temperature (°C) 

�̇� power (W) 

x quality (-) 

�̂� predicted compressor efficiencies (-) 

𝛽 pressure ratio (-) 

𝜙𝑚 mass entrainment ratio (-) 

𝜙𝑣 volumetric entrainment ratio (-) 

𝜂𝑒𝑗𝑒𝑐,𝑚𝑎𝑝 ejector efficiency (-) 

𝜌 density (kg/m3) 

�̂� predicted efficiency (-) 

Subscript  

act referring to actual work 

amb ambient 

cpri compressor refrigerant inlet 

elec referring to electric work 

eri evaporator refrigerant inlet 

isen referring to isentropic work 

meas measured 

mn motive nozzle 

norm normalized 

SH super heat 

sn suction nozzle 

suc compressor suction 
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