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ABSTRACT 
Thermal energy storage (TES) is a promising solution to store and dispatch energy and shave peak electric load, 
reducing the operational cost of HVAC systems. We present results of a TES system using phase-change materials 
(PCM) integrated with an air conditioner. The proposed system uses an organic PCM (tetradecane) encapsulated 
within compressed expanded natural graphite foams referred to as phase-change composite. The graphite foam 
encapsulates the PCM eliminating the need for expensive storage vessels, reduces installation costs, and provides 
higher thermal conductivity that can lead to faster charge/discharge rates. Two serpentines, multi-pass circuits, 
operating as a heat source and a sink, exchange heat to and from the phase-change composite. These two circuits are 
embedded in multiple slabs of this material. The “charge” circuit contains the refrigerant that is directly coupled to a 
vapor compression system, and the “discharge” circuit removes heat from an airstream and releases it into the PCM 
composite through a water-glycol liquid coupling. This configuration allows for multiple modes of operation 
depending on the state of charge of the thermal energy storage module, the building air-conditioning load, and the 
current electricity and demand charges. This flexible operation allows variable air volume capacity control without 
the need to have a variable capacity refrigeration system. We developed a 21 kW-hr (6 RT-hr) prototype TES system 
coupled with a commercial air-conditioner to characterize the component- and system-level performance. 

1. INTRODUCTION 
The rapid penetration of on-site renewable generation for buildings has led to new requirements for sustaining the 
integrity of the electric grid. Flexible resources are needed for this paradigm, which could include behind-the-meter 
energy storage assets at buildings. These assets enable utility customers to respond to price signals, whether peak-
demand charges, time-of-use electricity rates, real-time pricing, or demand response signals [1]. This new paradigm 
requires increased flexibility in how these storage assets are used. Thermal energy storage (TES) in heating, 
ventilation, and air-conditioning (HVAC) systems can help mitigate energy and demand costs for building owners by 
lowering energy demand during high-price periods. 
Traditional TES systems for building cooling, e.g., Calmac [2], use ice as the PCM to store energy and provide cooling. 
Due to the lower freezing point of ice than typical air-conditioning temperatures, the chiller system operates at a 
reduced efficiency which negatively impacts the round-trip efficiency of the integrated system. These systems are 
typically designed and built for large capacity installations with central chiller plants. Due to their higher weight and 
capital cost, these systems are not feasible for smaller rooftop units (RTUs), but these RTUs condition a larger fraction 
of commercial floor space than the central chiller plans. Moreover, conventional TES systems typically involve a 
single fluid circuit (water-glycol coolant) which is either used to provide direct cooling from the chiller to the building 
or is used at night time to freeze ice and store energy for use during the day. These systems reduce day-time energy 
use by charging at night, but what is needed is a more flexible technology that can shave/shift on-peak air conditioning 
load, improve efficiency, and dynamically charge or discharge in response to expected grid operating levels and time 
scales [3-6]. 
This paper presents a technology that could meet these needs—a hybrid TES integrated RTU air conditioner as shown 
in Figure 1(a). The system consists of two fluid circuits: a refrigeration circuit that charges (freezes) a phase-change 
composite of n-tetradecane with compressed expanded natural graphite (CENG) foam using the evaporating 
refrigerant. A second circuit in the PCM is used to discharge (melt) the material and rejects heat from a cooling coil 
using a glycol circuit [7]. This dual-circuit design allows greater flexibility in utilizing the thermal storage system 
during dynamic grid operating conditions. Moreover, the shape-stable composite of graphite and n-tetradecane offers 
several advantages over conventional PCMs such as ice. First, the freezing point of this material is ~4.5°C which 
improves the overall efficiency of the HVAC system. Second, the composite of graphite foam and the PCM provides 
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high thermal conductivity to improve the 
charge/discharge rates. And, third, the shape 
stable composite helps encapsulate the PCM in 
its pores and eliminates the need for expensive 
tanks to store the material. We present the 
measured and modeled performance of the 
current state of this technology, and its potential 
future performance as integrated with an RTU. 
The proposed solution minimizes the weight of 
the integrated system by using a smaller capacity 
TES system compared to traditional ice-based 
systems for peak load shifting, ~(14-25 kWh) for 
a 17.5 kW (5 RT) RTU, to flatten the load during 
peak hours (Figure 1(b)). The system can be 
integrated into the RTU at the factory, reducing 
integration costs and maintaining a similar 
installation procedure to standard systems, and 
reducing the reluctance of RTU installers and 
building owners to adopt new technologies. We 
identify the limitations in the performance of the 
developed prototype, improvements for future 
system designs, and evaluate scenarios for 
flexible load shaving and operation. 

2. THERMAL ENERGY STORAGE 
SYSTEM 
The proposed system consists of a primary 
refrigeration circuit with a secondary loop heat exchanger that has embedded composite phase- change composite as 
shown in Figure 1. The composite PCM uses a high porosity compressed expanded natural graphite (CENG) foam to 
contain the PCM used in the prototype system (n-tetradecane). The CENG foam produces a shape-stable composite 
that has solid-like properties (i.e. it does not flow). The foam also enhances thermal conductivity by about 100 times 
that of the pure PCM [8]. 
Figure 2 shows a 3-D CAD drawing and photograph of one module. The module consists of 12 slabs of composite 
PCM with alternating discharge (22% Ethylene Glycol) and charge (R410a) fluid circuits. The dimensions of an 
individual slab are 0.520 m × 0.460 m × 0.035 m (L×W×H). Copper tubes of 0.0095 m (3/8 in) outer diameter were 

Figure 1: (a) Dual-circuit c-PCM HX integrated with air 
conditioner, (b) modeling results showing 30% peak reduction 
by adding a 14 kWh storage to a 17.5 kW variable-speed 
rooftop unit. 

Figure 2: 3-D CAD rendering (left) and the fabricated thermal energy storage module (right) 
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used for both fluid circuits. The fluid circuits formed a 20-pass serpentine path in each row. A total of 13 tubes (7 
discharge, 6 charge) were used. There were 7 single-pass discharge circuits and 2 three-pass charge circuits. The 
design of the thermal energy storage (TES) modules rely on the thermal conduction path between the two fluid circuits. 
Thus, the thermal conduction of the graphite foam along with the contact conductance between the copper tubes and 
the composite material are critical factors in the performance of this design. For the system to operate efficiently, these 
conductance values should be maximized. 

3. METHODS 
3.1. Experiments 
A commercial RTU of 21.1 kWth nominal cooling capacity was modified to fabricate the prototype hybrid unit. There 
are three sub-systems: a charging subsystem, a discharging subsystem, and the TES subsystem (Figure 3). 

Figure 3: Schematic of the prototype 5RT system with instrumentation 

The charging subsystem delivers high-pressure liquid refrigerant to the TES and receives low-pressure vapor from 
the TES. The subsystem consists of a re-purposed split system condensing unit which was modified with a variable 
speed compressor, suction-line heat exchanger, and a refrigerant accumulator. The suction-line heat exchanger and 
the integrated accumulator provided refrigerant superheating and prevented liquid-phase refrigerant from entering the 
compressor. The instrumentation allowed measurement of refrigerant temperatures, pressures, and mass flow rate. 
The charging subsystem allows for variable control of charging to one of the following modes: 

1. Constant charging capacity – maintain a constant heat removal rate from the TES 
2. Constant charging temperature – maintain a constant evaporator saturated temperature 
3. Constant volumetric capacity – simulate a single- or multi-speed compressor 

Figure 4 shows five identical TES modules connected to the refrigeration system (charging circuit) and the air-
handling system coupled through a water-glycol loop (discharge circuit). The refrigeration system is connected to the 
TES modules such that the total refrigerant and glycol flow are equally divided and supplied to these modules at 
identical inlet conditions. We instrumented these modules to measure temperatures at various locations. All 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 



 
    

 

  

 
 

 
  

    
   

    
   

    
  

 
  

  
  

     
  

  
  

 
  

 
   

      
 

   
  

    
  

 
 

     
  

    
   

2237, Page 4 

measurement probes and actuators were connected to the data acquisition and control system in the laboratory to 
collect experimental data and implement control algorithms. 

Figure 4: Thermal energy storage modules connected to the air-conditioning and air-handling system 

The discharge sub-system cools a building space using a standard chilled water-glycol coil. Since refrigeration 
temperatures were expected to be as low as -8°C during experiments, 22% ethylene glycol was used. This subsystem 
consists of the water-glycol coil, a variable speed glycol pump, and a pair of variable speed fans packaged in an air 
handling unit. The design intent was to receive 8°C chilled glycol from the TES to cool 2000 CFM of process air to 
provide 17.6 kWth of cooling. Because the TES system delivers near-constant temperature glycol, the cooling capacity 
is modulated by changing the air and glycol flow rates. Reducing air and glycol flow during lower-load conditions 
thus translates to air temperature and humidity dropping below that of the design condition. This provides the benefit 
of delivering air at a dewpoint less than about 13°C at all operating points and maintaining an acceptably low sensible 
heat ratio (ratio of sensible heat removal to total heat removal). This combination of modulation capacity (down to 
about 20% of full load capacity) and constant supply air dewpoint creates a system with good humidity control. In 
hot/dry climates, where humidity control is not a primary concern, the air flow rate can be increased to maintain total 
capacity and deliver a higher sensible heat ratio. 
The laboratory provides air at the desired temperature and humidity to simulate different indoor and outdoor 
conditions. Airstreams were connected to the charge- and discharge-side of the system with measurements of dry bulb 
and dew point temperature, and volumetric flow rates. Pressure and temperature probes at several locations of the 
refrigerant circuit allowed us to fully define the thermodynamic state of the working fluid. With the measured mass 
flow rate of the refrigerant, the heat transfer rate in an individual component is estimated as:

Q = m (h − h ) (1) ref ref ref ,out ref ,in 

We also measured the temperature and the volumetric flow rate of the glycol-water mixture in the discharge circuit. 
Heat transfer rate on the discharge side is calculated using: 

Q glycol −water = m glycol−waterCpglycol−water (Tglycol−water ,in −Tglycol −water ,out ) (2) 
We also instrumented the thermal energy storage modules with 31 embedded thermocouples to estimate the state of 
charge (SOC) of the system. We installed 24 surface-mounted thermocouples on tubes supplying fluids to the modules 
which helped quantify circuit-to-circuit fluid distribution. 
Due to the large thermal inertia of thermal energy storage, a custom control algorithm was designed to operate the 
electronic expansion valve on the refrigerant circuit. The algorithm uses a combination of a feedforward controller 
based on a predictive model of the flow through the valve and a feedback controller as a corrector to achieve the 
setpoint of refrigerant superheat at the inlet of the compressor. 
The TES subsystem functions as a thermal buffer between the charge and discharge sub-systems. The modules allow 
the system to follow building thermal loads and maintain the thermal comfort of the occupants while managing energy 
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and power draw from the electric grid. The modules contained 24.2 kWh of thermal storage capacity calculated from 
an isothermal temperature from -2°C to 15°C. The two-fluid circuits thermally connect the phase change material, the 
glycol stream, and the refrigerant stream (evaporator). In the prototype design, the TES heat exchanger was dictated 
by existing manufacturing constraints and consisted of the serpentine design discussed above. The repeating stacking 
of the tubes and composite PCM was as follows: glycol serpentine – 35mm PCM slab – refrigerant serpentine – 35 
mm PCM slab. The thermal network dictates that the heat flows from the glycol, through the composite PCM, and 
into the refrigerant. 
The prototype system design allowed for measured thermal performance of each of the sub-systems, and to discover 
the potential for design improvement. Given this, the system design was intended to provide the following 
functionality: 

1. 17.6 kWth net cooling capacity at ASHRAE standard conditions 
2. > 1.2 hours of thermal energy storage 
3. During full load hybrid mode, the TES should provide at least 1/3 of the peak cooling capacity throughout 

its discharge. This equates to delivering 10°C chilled water at a discharge rate of ~ 6 kWth. 
4. Efficient TES module charging is critical to overall energy use and utility costs. The TES was designed to 

maintain less than a 5°C approach between refrigerant evaporator temperature and the TES module 
temperature at 17.6 kWth charge capacity. 

The refrigeration cycle efficiency is sensitive to the saturated evaporator temperature. Using a simplified Carnot 
analysis on a refrigeration cycle (assuming an ambient heat sink temperature of 35°C, two evaporator temperatures of 
10°C and 9°C, and isentropic efficiency of the compressor as 65%),  we obtain that every 1°C decrease in evaporator 
temperature increases energy use by 0.09 kW for a 17.6 kWth cooling system. Thus, a drop by 1°C in average 
evaporator temperature results in about a 4.1% increase in average energy consumption. This penalty is inherent in an 
air conditioning system with a secondary fluid coupling. Minimizing its effect is critical toward managing energy and 
power use. It is not conclusive here that the overall COP of the integrated system with TES will increase, but it will 
change as the evaporator and condenser temperatures vary. The former is impacted by the additional approach 
temperature due to the TES heat exchanger, and the second is impacted by ambient temperature. The combined system 
will benefit from using higher transition temperature phase-change material to maintain a high evaporator temperature 
and from charging the system at night time when the ambient temperatures are lower. 

3.2. Numerical Modeling 
We developed a finite-volume numerical model of the heat transfer process within the TES module following the 
approach presented in [7]. Figure 5 shows the computational domain and geometry of a single control volume (CV). 
Each CV consists of the composite PCM along the pass of the tube over the total depth of the module, and exchanges 
heat with the fluid flowing in the copper tubing. As thermal storage is inherently an unsteady phenomenon, the 
conservation laws in their unsteady form are used. 

Figure 5: Computational domain and thermal resistance network [7] 

We assumed the following to simplify the governing equations: 
• fluid flow is assumed to be one-dimensional and incompressible 
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• viscous dissipation and body forces are neglected, 
• dynamic variations in pressure are neglected and a static formulation of pressure loss is used over each control 

volume during every time step, 
• effects of axial conduction are neglected in the fluid as the Peclet (Pe) number is typically large, 
• constant cross-sectional area of fluid flow, 
• uniform heat transfer coefficient assumed in the control volume for both fluids, 
• refrigerant flow is assumed to be at a quasi-steady state with saturated vapor at the outlet of the module, 
• heat transfer in the composite PCM is modeled as two-dimensional conduction from the adjacent nodes, 
• The graphite-tetradecane composite is modeled as a single material with one set of material properties, 
• lumped capacitance is used for each PCM volume, (Biot number ~0.2) 
• heat transfer from curved tube surface to the PCM is modeled using an empirical shape factor for heat 

conduction, and 
• finite thermal contact resistance is used at the interface between the tube and the PCM volume and between 

PCM volumes. 
These assumptions simplify the conservation laws and the energy conservation equations for the two fluids and the 
composite PCM, and the static pressure drop equation is used per node to formulate the system of discretized 
equations. We use a thermal resistance network formulation to resolve different convective and conductive heat 
transfer media. Figure 5 shows a single control volume with both fluid tubes and the PCM volume. Heat transfer paths 
from the hot fluid to the cold fluid through various materials and interfaces account for the different thermal resistance 
terms discussed below. 
The model initiates with an initial condition of module and fluid temperatures at thermal equilibrium and uses time-
dependent boundary conditions of fluid inlet temperatures and flow rates as inputs. The system of discretized equations 
is solved at each time step to predict fluid outlet temperatures, nodal fluid and PCM temperatures, and the heat transfer 
rate through each fluid circuit. Material properties for the thermal energy storage material are listed in Table 1. 

Table 1: Thermophysical properties of tetradecane-graphite composite for TES 
Property Value 

Transition Temperature ~4.5°C 
Density 836.1 kg m-3 

Porosity ~90% 
Enthalpy of Phase-change ~168 kJ kg-1 

Thermal Conductivity (in-plane direction) 18 W m-1 K-1 

Thermal Conductivity (primary heat transfer direction) 10 W m-1 K-1 

4. RESULTS AND DISCUSSION 
4.1. Charging 
During charging, the refrigerant circuit was operated to provide cold refrigerant to remove energy from the thermal 
energy storage modules. The system was charged at a constant refrigerant temperature of -2 °C, and condenser air 
temperature of 35 °C and a flow rate of ~4500 CFM. As the system SOC increased during charging, the refrigerant 
temperature and consequently pressure continuously decrease. To prevent reaching the low-pressure limit on the 
compressor and potentially reaching the freezing point of the water-glycol mixture in the discharge loop, we controlled 
the refrigerant temperature (pressure) to stay above a lower limit at the compressor inlet. The results from one of these 
experiments are shown below. Figure 6 shows the heat transfer rate, the total energy stored, and the COP of the system 
as a function of time. During charging the heat transfer rate decreased (remaining nearly constant at ~7 kW for the 
bulk of the phase-change process) as the driving temperature difference in the system decreased. The total energy 
stored was ~25 kW-hr. In this process, the system COP remained at ~2.75. The COP of the system during charging is 
defined as: 

Qref ,TES COP = (3) ch arg ing 
 W +Welec,cond , fan elec,comp 

Figure 7 shows the performance of the system as a function of the SOC. During the initial phase of charging (starting 
at ~15 °C isothermal conditions in the thermal energy storage modules or a SOC of 0%), the compressor operated at 
the maximum allowable speed of 5000 RPM before it was modulated to maintain the refrigerant temperature limit. As 
the system SOC increases, the heat transfer resistance between the refrigerant and the liquid-solid phase-front 
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increases, leading to a decrease in the heat transfer rate during charging at a constant refrigerant temperature. The 
compressor speed decreases in response to this to maintain a constant refrigerant temperature. The system was charged 
to 100% SOC when the majority (>80%) of the embedded thermocouples inside the modules recorded a temperature 
below -2°C. 
The system COP is the ratio of heat transferred into the thermal energy storage modules and the electrical input to the 
system (compressor and condenser fan power). The system COP during charging was ~2.75 primarily due to the low 
refrigerant temperature. 
In other experiments, the COP of the system was observed to increase at higher refrigerant temperatures, as expected. 
As per the original concept, the evaporator temperature was anticipated to be only 2-5°C lower than the transition 
temperature at the measured heat transfer rates. But due to high contact resistance, the refrigerant temperature had to 
be lowered to achieve the target heat transfer rate which led to lower efficiency of the refrigeration system. 

Figure 6: Heat transfer rates and energy stored in the TES heat exchanger with a saturation temperature of -6 °C 
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Figure 7: System performance as a function of SOC during charging at -6°C 

4.2. Discharging 
After charging, the system was left overnight to equilibrate the temperature differences present in the PCM after the 
completion of charging. This allowed for isothermal initial conditions before the discharge experiment the next day. 
The system was discharged at AHRI 210/240 standard conditions with the inlet air set at 26.7°C dry bulb temperature, 
15.8°C dew point temperature, and 2000 CFM flow rate. As the system SOC decreased during discharging, the glycol 
supply temperature and the air outlet temperature from the modules increased as shown in Figure 8. As the supplied 
air temperature increases, the performance of the system was analyzed by setting a cutoff temperature of the glycol-
water mixture supplied by the modules. This also allows comparing different discharging experiments. 

Figure 8: Air, glycol, and module temperatures during discharge at AHRI standard conditions 

Figure 9: Heat transfer and energy storage performance of the system during discharge at AHRI 
standard conditions 

Figure 9 shows the heat transfer and energy discharged from the system. During the majority of the discharging, the 
system delivered a cooling capacity of ~12.32 kW RT and 15.87 kW-hr of total discharged energy until reaching the 
cutoff glycol temperature. The system COP during discharging is calculated as the ratio of heat transferred to the 
glycol stream and the electrical input to the system (glycol pump and fan power). The discharge COP was about 15. 
During discharging no latent cooling (moisture removal) was observed in the air stream. This is due to the relatively 
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high inlet glycol temperature entering the cooling coil. This high temperature is a result of higher than anticipated 
thermal resistance between the glycol circuit and the thermal energy storage material. We used the numerical model, 
described in Section 3, in conjunction with experimental data to estimate thermal contact resistances within the TES 
module. Our calculations show that the contact resistances between the copper-tubes and the phase-change composite 
material, and between different slabs of the material are the most dominant thermal resistances accounting for more 
than 50% of the total thermal resistance. With improved thermal contact between the fluid tubes and the thermal 
energy storage, better heat transfer rates and energy utilization can be achieved from the system. 

4.3. Hybrid Operation 
We operated the prototype system in hybrid mode (simultaneous charging and discharging) to demonstrate the 
operational flexibility of this design as compared to existing TES systems. Figure 10 shows results from one operating 
scenario that was simulated where the delivered cooling capacity is held constant while the compressor power can be 
modulated to achieve partial load shaving. The delivered cooling capacity is held steady at ~10 kW, while the 
compressor speed changes from 4700 RPM, to 2700 RPM, and then turns off (Figure 10 (a)). During these three 
phases, the TES system is being charged at 2.46 kW, discharged at 2.29 kW, and then discharged at ~10 kW, 
respectively (Figure 10 (b)). Figure 10 (c) shows the corresponding variation in the state of charge of the TES module. 
This hybrid operation enables the partial load shaving shown in Figure 1(b), without needing additional valves or heat 
exchangers. 

Figure 10: Hybrid operation showing net charge (compressor at 4700 rpm), net discharge (2500 rpm), 
and full discharge (compressor off) (color shade pink shows charging using the refrigerant, and blue 

shows discharge using the glycol-water circuit) 

5. CONCLUSIONS 
In this paper, we presented the design, fabrication, and performance evaluation of a dual-circuit PCM heat exchanger 
integrated with an air-conditioner. The modeled performance of this system indicates the potential of this technology 
to provide demand flexibility, including three potential values: 1.) Reduction in peak power and total energy required 
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during the peak demand period, 2) potential cost savings to customers and load reduction for electric utilities, and 3) 
flexible operation to meet on-peak periods of different durations, or at a different time of day. We also studied other 
operating modes including variable cooling capacity by only varying the airflow rate in the air-handling unit, and 
varying the compressor power input for load shaving. Based on our experiments and simulations, the thermal contact 
between the PCM and the fluid tubes is the major heat transfer resistance. Future designs will explore flat 
microchannels to minimize the thermal resistance and ease the manufacturing process. In conjunction with an 
improved design, increasing the PCM transition temperature can also improve the energy efficiency of the hybrid TES 
RTU. 

NOMENCLATURE 
Cp specific heat (kJ kg-1 °C-1) 
COP coefficient of performance (-) 
EXV electronic expansion valve 
HX heat exchanger 
m mass flow rate (kg s-1) 
PCM phase-change material 
Q heat transfer (kW) 

T temperature (°C) 
W electric work (kW) 
Subscript 
cond condenser 
comp compressor 
glycol-water coolant on discharge side 
in inlet 
out outlet 
ref refrigerant 
th thermal 
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