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ABSTRACT 

A computationally efficient and accurate modeling approach is critically important for designing and evaluating con­
trols and fault detection and diagnosis (FDD) algorithms. This paper proposes a reduced order modeling approach 
for vapor compression cycles (VCC) that involves application of nonlinear model order reduction (MOR) methods to 
dynamic heat exchanger (HX) models to generate reduced order HX models. A reformulated finite volume HX model 
was first developed that matches the baseline MOR model structure. Then, a nonlinear MOR framework based on 
Proper Orthogonal Decomposition (POD) and a Discrete Empirical Interpolation Method (DEIM) was developed for 
generating nonlinear reduced order HX models. The proposed approach was implemented within a comprehensive 
VCC model. Reduced order HX models were constructed for a centrifugal chiller system and coupled to quasi­static 
models of a compressor and expansion valve to complete the reduced order VCC model. The reduced cycle model 
was implemented within the Modelica­based platform and used to predict load­change transients over a wide range of 
operating conditions for comparison with measurements. The proposed reduced order modeling approach is compu­
tationally efficient and accurately captures cycle dynamics. 

1. INTRODUCTION 

Since transient models for vapor compression cycles (VCC) are particularly important for designing and evaluating 
control and fault detection diagnostic (FDD) algorithms, transient modeling of VCC has become an active area of 
research over past decades. The finite volume (FV) and moving boundary (MB) methods are the two dominant ap­
proaches to capture the complex thermo­fluid dynamic behavior of VCC (Rasmussen, 2012). The fundamental differ­
ence between them is in the discretization schemes for solving the governing conservation equations. The FV method 
divides a heat exchanger into a number of fixed control volumes, while the MB method segments a heat exchanger 
based on thermodynamic phases of the working fluid, and moves control volumes as the length of each phase section 
changes. 

In the literature, the MB method has received significant attention for control applications (He et al., 1998; Rasmussen 
and Alleyne, 2004) because of its lower dimensionality and faster execution speed. However, the model complexity and 
inherent discontinuities associated with switching model representations when a phase region disappears or reappears 
can result in simulation failure and limit capability of the MB for advanced control and FDD purposes (Kim et al., 
2020). 

In this paper, we present an alternative modeling strategy which applies a well­developed nonlinear model order re­
duction method from other fields (e.g., turbulent flow, applied mathematics and control). The proposed process starts 
from a high fidelity FV heat exchanger model. A nonlinear model order reduction approach is applied in order to 
generate reduced order models (ROMs), and then the ROMs are coupled with quasi­static models of other compo­
nents to complete a reduced order VCC model. This approach is attractive since a reduced order VCC model could 
be extracted from the high fidelity FV models in a systematic manner, and the inherent discontinuities of the MB 
method can be naturally avoided. Very few studies on this topic can be found in the literature. Henrik and Olsson 
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Figure 1: Projection of states vector onto an orthonormal basis. 

(2005) discussed feasible applications of linear and nonlinear MOR methods for heat exchanger modeling. Linear 
reduced order models were derived using the balanced truncation and Krylov subspace methods from a linearized heat 
exchanger model. In addition, a Proper Orthogonal Decomposition (POD) method was applied to produce nonlinear 
reduced order models. Dynamic responses of those models were compared under a perturbation of the evaporating 
pressure. It was reported that different models showed similar accuracy and the POD model had the lowest dimension. 
No comparison of simulation speed was provided. Recently, Xu et al. (2018) developed reduced order heat exchanger 
models from high­fidelity FV models for an Organic Rankine Cycle using POD. A reduced order evaporator model 
was implemented for a waste heat recovery system, and its performance was compared with the full order FV model. 
However, the methodology presented in the study made too strict assumptions for simplifying the problem, i.e. fixed 
refrigerant flow rate and pressure across a heat exchanger, and therefore the resulting model is not generally applicable 
for most vapor compression and expansion systems. This paper proposes a nonlinear model order reduction framework 
for generating reduced order VCC models. The propsoed framework is applied to a VCC and validation results are 
provided. 

2. MODEL ORDER REDUCTION METHODOLOGIES 

2.1 Proper Orthogonal Decomposition 
The Proper Orthogonal Decomposition (POD) is a popular model reduction method, which produces optimal low order 
basis functions from ensembles of data, or namely snapshots in the state space. A POD reduced order model can inherit 
the original system dynamics from samples of state trajectories of the baseline model which can be obtained from either 
a numerical simulation of the full­order model or experimental observations. The nature of the POD is similar to the 
Fourier modes: functions of interest are projected onto a set of basis functions or modes thus providing a finite set 
of scalar coefficients that represent the underlying functions. The POD method produces a particular set of modes 
that form an optimal, orthonormal basis for describing the finite set of samples. More precisely, consider a standard 
nonlinear system, 

ẋ = f(x, u) (1) 
where x ∈ Rn denotes the dynamic states, u ∈ Rm denotes the control inputs. Suppose the system is perturbed with 
some input profiles, and take p snapshots of state responses. Let X be the ensemble of the snapshots as follows, 

(1) (2)X = [x x . . . x(p)] (∈ Rn×p), (2) 

where each column of the snapshots matrix represents states at a time instance. 

The POD seeks to find a special basis Vk(= [v1 v2 . . . vk] ∈ Rn×k) which solves the following optimization prob­
lem: 

min∥X − VkVk
TX∥2 

F (3)
s.t. Vk

TVk = Ik 

where ∥ ⋅ ∥F denotes the matrix Frobenius norm. It can be shown that the objective function is equal to 

p 
T (i)∥2∑∥x(i) − VkVk x 

i=1 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 



         

----

2201, Page 3 

which represents the sum of the orthogonal projection errors. Note that VkVT
k x (=∶ x̂) is the orthogonal projection 

of x onto the span of column vectors of Vk as depicted in Figure 1. The constraint indicates that Vk represents an 
orthonormal basis. Kunisch and Volkwein (1999) demonstrated the close connection between POD and the Singular 
Value Decomposition (SVD) in constructing a reduced basis, and showed that the solution to the minimization problem 
in (3) is a truncation of the left singular vectors of the snapshots matrix X with the approximation error indicted by the 
singular values, 

p N 

∑ T∥x(i) − VkVk x(i)∥2 = ∑ σ2 
j (4) 

i=1 j=k+1 

where k < n and σj is the jth singular value. This facilitates solving the POD problem, since there are efficient and 
reliable tools to compute SVD of any rectangular matrix, for instance, the MATLAB svd() function. The SVD of a 
snapshot matrix X is 

X = VΣUT (5) 

where all left singular vectors are stored in V ∈ Rn×n . 

As mentioned before, the POD basis is a truncation of the left singular vectors V by selecting the first k columns 
according to the first k dominant singular values. The choice of the reduced basis dimension k is certainly of central 
importance in applying POD, as a trade­off between approximation accuracy and computational savings. Observing 
the magnitude of singular values can be a natural criterion, since POD approximation error is connected with singular 
values which are formed in a descent order, as shown in (4). Practically, the ratio of amount of energy captured by the 
POD basis to the total energy is usually used to determine the dimension (Kunisch and Volkwein, 1999; Kerschen et 
al., 2005), 

∑k
i=1 σ2 

iE(k) = . (6)
∑N

i=1 σ2 
i 

A threshold for determining dimension k can be set for the value of E(k), where 99.99% is adopted in this work. 

Once the reduced order basis Vk is generated, corresponding POD reduced order models are constructed by applying 
Galerkin projection. The state space is first approximated by a linear combination of the reduced basis, 

k 

x(t) ≈∑ x̃i(t)vi = Vkx̃(t) (7) 
i=1 

where the coefficients vector ̃x ∈ Rk will be the reduced states. Then projecting the governing equations of (1) onto the 
reduced basis results in a reduced system, 

˙̃x = Vk
Tf(Vkx̃, u) (8) 

2.2 Stabilization of Reduced Order Models 
Preserving the stability of the original high­fidelity model is crucially important for model order reduction methods. 
Unfortunately, projection­based model reduction methods (e.g., POD) often result in an unstable reduced order model 
although the baseline system is (locally) stable. Therefore, stabilization methods should follow as a posterior process 
after POD reduced order models are obtained. We adopt the methodology proposed by Amsallem and Farhat (2012). 
The method is motivated by semidefinite programming, and requires primarily the solution of a convex optimization 
problem. 

To describe the approach, let’s denote the linearized system description of (8) at an equilibrium point as 

Vkẋ̃ = AVkx̃. (9) 

For stability analysis and notational simplicity, the term associated with inputs is omitted. Let’s consider another k­
dimensional subspace represented by Wk (∈ Rn×k) where each column vector of Wk indicates a basis vector of the new 
subspace. The projection of the dynamics of (9) onto it forms new dynamics described as follows. 

WT
k Vkẋ̃ = WT

kAVkx̃ (10) 
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According to the Lyapunov stability theorem for a linear time­invariant (LTI) descriptor system, the asymptotic stability 
criteria can be written as 

VT
k WkPWT

kAVk + VT
kA

TWkPWT
k Vk ≺ 0 (11) 

where P is symmetric positive definite. The main idea of the stabilization method is to find Wk which minimizes the 
deviation from the POD subspace, i.e. Vk, while aiming at preserving the asymptotic stability of the newly projected 
system (10). 

∈ Rn×(k+p)Given a matrix Yk+p , Wk can be parameterized as 

Wk = Yk+pZ, (12) 

where Z ∈ R(k+p)×k is the coordinates of Wk with respect to Yk+p. Theoretically Yk+p could be any matrix in Rn×(k+p) 

but it is natural to choose the first k + p (≤ n) column vectors of V in (5), since it is optimal to represent the empirical 
data. 

Then, the stability constraint (11) can be written as 

VT
k Yk+pZPZ

TYTk+pAVk + Vk
TATYk+pZPZTYTk+pVk ≺ 0. (13) 

Note that constraint (13) is a Quadratic Matrix Inequality in the variable Z which can not be solved by convex solvers 
(Boyd et al., 1994). In order to apply techniques from convex optimization, the change of variable 

P̃ = ZPZT (14) 

is introduced, which leads to a Linear Matrix Inequality. With this parameterization, the objective function can be 
expressed as 

f(Z) = ∥Yk+pZ − Vk∥ (15) 

where ∥⋅∥ denotes any matrix norm. Detailed formulation of the optimization algorithm can be found in Amsallem and 
Farhat (2012). 

It is important to mention that it is possible that no feasible solution exists for all p ∈ {0, ⋯, N − k} to this problem. 
That is, although the method in general increases the chance of obtaining a stable reduced order model substantially, 
it might fail for doing that depending on the dynamics of the original system A and the POD basis Vk. In that case, the 
only option is to attempt modifying Vk through trials and errors. 

2.3 Discrete Empirical Interpolation Method 
The standard POD model reduction technique reduces the dimension of internal states, and is computationally effi­
cient for LTI systems (Kalashnikova et al., 2014). However, when dealing with a system of general nonlinear ordinary 
differential equations (ODEs), the computational complexity of evaluating the full order nonlinear equations remains 
even though the number of states is reduced. We adopt the solution proposed by (Chaturantabut and Sorensen, 2010), 
namely the discrete empirical interpolation method (DEIM), which has been successfully applied to improve compu­
tational efficiency of projection­based nonlinear reduced order models. It constructs specially selected interpolation 
indices to minimize a certain upper bound of the approximation error. It is applicable to ODEs arising from finite 
difference or finite volume discretization of time dependent partial differential equations (PDEs). The DEIM approach 
can be viewed as a combination of projection and interpolation. The nonlinear functions, i.e. f in (1), are approximated 
by projecting them onto a reduced basis of dimension m ≪ n. Recall that the POD basis is generated from snapshots of 
state trajectories. The same procedure is adopted to extract a subspace from snapshots of nonlinear dynamics: 

F = [f(1) f(2) . . . f(q)] ∈ Rn×q. (16) 

It should be noted that the snapshots of nonlinear functions can be obtained from the POD procedure, and hence no 
additional computational cost is added to the original POD procedure although more computer memory is required 
to store values of nonlinear functions during simulation. Nonlinear functions are approximated by projection onto a 
reduced basis 

f(t) ≈ Tc(t) (17) 
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where T ∈ Rn×m is obtained by applying POD to the nonlinear function snapshots matrix F in (16), and c ∈ Rm represents 
the vector of corresponding time coefficients. To calculate the coefficients from the overdetermined system in (17), m 
distinguished rows are selected to form a well­posed system. Consider an interpolation scheme: 

PTf(t) ≈ PTTc(t) (18) 

where P is a matrix whose ith column eζi is identified by an interpolation index ζi, which means 

eζi = [0 . . . 0 1 0 . . . 0]T 
(19) 

contains the ζth columns of the identity matrix I ∈ Rn×n . Suppose PTT is nonsingular, then the coefficients can bei 
uniquely determined, 

c(t) = (PTT)−1PTf(t). (20) 

The final interpolation approximation of the nonlinear functions is expressed as 

f̃(t) = T(PTT)−1PTf(t). (21) 

Note that P and T are constant matrices, so the matrix multiplication can be pre­computed before the online simulation. 
PTf(t) can be viewed as the evaluation of a partial set of functions from the original high order system at the specified 
interpolation indices, which will significantly reduce the computational load. To complete the DEIM, Chaturantabut 
and Sorensen (2010) proposed an algorithm for determining interpolation indices (matrix P) inductively from the basis 
T and derived an approximated error bound for the DEIM algorithm: 

∥f − f̃∥ ≈ ∥(PTT)−1∥ σm+1 (22)2 2 

where σm+1 is the (m + 1)th leading singular value of the nonlinear snapshots matrix in (16). In practice, it can be 
used in determining the number of interpolation points. As more functions are evaluated, the approximation error is 
smaller since singular values are arranged in a descending order by SVD. When there is a significant gap between the 
magnitude of two adjacent singular values, the number of indices m could be selected at that point. 

3. REDUCED ORDER MODELING FOR VCC 

3.1 Reformulation of Finite Volume Model 

Figure 2: Staggered grid for heat exchanger discretization. 

To enable the use of nonlinear model order reduction techniques, a typical FV model (Bendapudi et al., 2008; Ras­
mussen, 2012), which applies refrigerant pressure and enthalpies as dynamic states, needs to be converted to the stan­
dard ODE form as shown in (1). This is because the FV formulation consisting of refrigerant pressure and enthalpies 
as states as well as an elimination of interface mass flow rates, has a descriptor form E(x)ẋ = f(x, u) due to the partial 
derivatives of refrigerant density with respect to pressure and enthalpy in the mass balance and energy balance. This 
model structure (denoted as the standard FV model in this paper) can not be used as for the baseline nonlinear model 
reduction. Therefore a reformulated FV model selecting refrigerant density, internal energy and interface mass flow 
rate as dynamic states was developed. A momentum balance is integrated into the governing equations to evaluate 
dynamics of refrigerant mass flow rates. A counter­flow arrangement is assumed for heat exchanger model develop­
ment. Incompressible liquid water is employed as the secondary fluid in this work, leading to a system of governing 
equations consisting of the refrigerant mass, momentum and energy balances as well as the tube wall and water energy 
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balances. The heat exchanger is divided into N equal control volumes. Integrating the governing equations over the 
length of each control volume yields a system of ODEs. 

dρj = 1 (ṁ r,k − ṁ r,k+1) (23)
dt Vj 

dṁ r,k = 1 (ṁ r,j−1vj−1 − ṁ r,jvj + Ac(pj−1 − pj) − Ff) (24)
dt L 

duj 1= (ṁ r,khj−1 − ṁ r,k+1hj − Q̇ r,j + uj(ṁ r,k+1 − ṁ r,k)) (25)
dt Vjρj 

˙dTt,j Qr,j − Q̇ w,j= (26)
dt Mt,jcpt 

dTw,j ṁ wcpw(Tw,j+1 − Tw,j) + Q̇ w,j= (27)
dt Mw,jcpw 

It should be noted that a staggered grid scheme was utilized to derive the above equations which has been commonly 
used in dynamic modeling of thermo­fluid systems to decouple the momentum balance from the mass and energy 
balances (Elmqvist et al., 2003; Laughman and Qiao, 2019). As shown in Figure 2, equations of refrigerant mass and 
energy balances (indices j) are solved in the volume cells (solid black line), and the momentum balances (indices k) 
are solved in the flow cells (dashed red line), which are staggered by half of one volume cell. 

For the reformulated FV heat exchanger model, the dynamic states are 

x = [ρ1, . . . , ρN, ṁ 1, . . . , ṁ N, u1, . . . , uN, Tt,1 . . . , Tt,N, Tw,1, . . . , Tw,N]
T (∈ R5×N), (28) 

and inputs or boundary conditions to the heat exchanger model consist of refrigerant inlet mass flow rate and enthalpy 
(ṁ i, hi), outlet pressure (po), and the inlet mass flow rate and temperature of the secondary fluid. 

Refrigerant pressure and enthalpy are evaluated as functions of density and internal energy of each control volume 
pj(ρj, uj), hj(ρj, uj). For those evaluations, tabular or regression approaches may be utilized based on a pressure and 
enthalpy database obtained from CoolProp (Bell et al., 2014). In this paper, an approach utilizing Neural Networks 
was applied. 

3.2 POD­DEIM Heat Exchanger Model 
Internal state of the reformulated heat exchanger model consists of refrigerant density, mass flow rate, internal energy, 
tube temperature and secondary fluid temperature for each control volume as shown in (28). To generate reduced order 
heat exchanger models, snapshots of the state trajectories as well as nonlinear functions are taken from numerical 
simulations of the full­order model under a perturbation of inputs. Then reduced order heat exchanger models are 
constructed using the POD and stabilization methods introduced in Section 2. Instead of directly applying the POD 
method to the entire state trajectory matrix, it was split into four matrices according to the thermodynamic and fluid 
properties of ρ, ṁ , u and T, and then the POD was applied to each sub­matrix. This results in four sets of reduced order 
basis corresponding to the different physical properties as follows. 

ρ ≈ Vρ ̃ρ ṁ ≈ Vmm̃ u ≈ Vuũ T ≈ VTT̃ (29) 

where T = [TT TT ]T, and the resulting reduced states are t w 

x̃ = [ρ̃T m̃T ũT T̃T]T 
. (30) 

For a linearized model at an equilibrium point, internal states are projected onto these bases. Then a stabilizaing basis 
WT is searched in the range of POD basis VT to stabilize the linearized reduced model. 

Finally, the DEIM approximation is applied to the reformulated heat exchanger model to reduce the computational cost 
that depends on the full order nonlinear functions in the reduced order model. Similar to splitting the state trajectories 
snapshots, the nonlinear function snapshots are grouped based on reduced states shown in (30). Then interpolation 
indices are constructed for each group of equations. Note that refrigerant mass balances are linear in refrigerant mass 
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Figure 3: Validations of refrigerant pressures 

flow rates, thus there is no need to apply the DEIM approximation, and the number of reduced mass balances to 
be evaluated completely depends on the dimension of refrigerant density basis Vρ. As shown in (22), the DEIM 
approximation error bound is indicted by singular values of the snapshots matrix. Therefore, the ratio of energy captured 
by the POD basis can also be adopted here to determine the number of interpolation points. 

4. VALIDATIONS 

The proposed methodology was applied to a R134a centrifugal chiller system. The system description, a system model 
based on the standard FV heat exchanger formulation and validation with experimental data are presented in Bendapudi 
et al. (2008). Reduced order condenser and evaporator models were generated and then coupled with other component 
models to form a reduced order cycle model. The resulting reduced order model was compared with 1) the standard FV 
model, 2) full­order reformulated model, and 3) experimental data over a wide range of operating conditions. 

The reformulated full­order HX models (15 control volumes) were simulated for collecting snapshots data of state and 
function trajectories for the POD and DEIM processes. The simulations were carried out in the Dymola environment 
with the Radau IIa solver and default relative error tolerance of 10−4. Comparisons between two reduced order mod­
els obtained from different snapshots were also investigated. Two data sets were extracted from the snapshots data. 
One, namely ROM(4), is associated with the first four operating conditions out of the 26 operating conditions, while 
the other, namely ROM(9), corresponds to the first nine operating conditions. The final POD­DEIM reduced order 
condenser and evaporator models are summarized in Table 1. It can be seen that for the ROM(4) more than half of 
the states are reduced and roughly one third of the nonlinear ODEs are eliminated by the DEIM scheme. On the other 
hand, the ROM(9) leads to less reduction in states and ODEs. This is because the ROM(9) covers a wider range of 
operating conditions which would require additional dimensions to explain them. 

Table 1: Dimension of the reduced order condenser and evaporator models 

HX Cond States Cond ODEs Evap States Evap ODEs 

Full order 75 75 75 75 
ROM(4) 34 53 32 53 
ROM(9) 43 61 38 66 

The reduced order cycle models for ROM(4) and ROM(9) respectively, were simulated to predict cycle transient re­
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Figure 4: Validations of water exit temperatures 

sponses over the 26 operating conditions. The two baseline models for comparisons are 1) the standard FV model uti­
lizing refrigerant pressure and enthalpy as states, namely FV Ph, and 2) the full­order reformulated FV model, namely 
FOM. Remember that ROM(4) and ROM(9) were generated from a part of the 26 operating conditions. Therefore 
inputs and trajectories for the rest of the conditions were unexplored in generating the reduced order models. 

Fig. 3 to 5 show result comparisons of refrigerant condensing and evaporating pressures, water exit temperatures, and 
compressor motor power. The results show that the FV­Ph and FOM are nearly identical and that they agree well 
with the measurements. Discrepancies between the ROMs and measurements are typically observed for the operating 
conditions that were not included in the generation of the ROMs, that is after 4 hours. This makes sense because the 
limited input perturbations are likely not sufficient to simulate dynamics that cover the entire controllable subspace. 
Nonetheless, the ROMs are still capable of capturing the essential features of the chiller system. It can be clearly seen 
that the ROM(9) yields a higher accuracy than ROM(4) in predicting the condensing pressure and motor power. It was 
observed that predictions of the motor power using the reduced order models had significant discrepancies compared 
to measurements. This is because the compressor model, specifically the refrigerant flow rate map, is sensitive to the 
refrigerant pressures. Errors in the compressor controller model amplified prediction errors of the refrigerant mass 
flow rate. 

Simulation speed is measured by the real time factor (RTF) Pangborn et al. (2015): 

length of CPU time taken to run simulation 
RTF = . (31)

length of time that is simulated 

For real­time simulation applications, a model having RTF less than 1 is generally required. Simulation speeds of the 
ROM(4), ROM(9), FOM, and FV­Ph are 0.005, 0.0064, 0.0137, 0.03, respectively. All these models run faster than the 
real time. Compared with the FOM, the ROM(4) and ROM(9) require less than half the computation times. ROM(9) 
requires about 28% more simulation time than ROM(4). Recall that the total number of dynamic states and ODEs 
to be solved for ROM(9) is greater than ROM(4), which play an important role in determining the model execution 
speed. This confirms the trade­off between the computational efficiency and accuracy for generating reduced order 
models. 

5. CONCLUSIONS 

This paper presented a nonlinear model order reduction framework for vapor compression systems. A series of method­
ologies were described to generate reduced order heat exchanger models. The feasibility of applying the nonlinear 
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Figure 5: Validations of motor power 

model order reduction method to refrigeration cycle systems for a centrifugal chiller was presented. Using the POD­
DEIM model reduction scheme, dynamic states as well as differential equations to be solved were reduced, leading to 
an 80% computation time reduction compared to a standard finite volume modeling approach. 

NOMENCLATURE 

ṁ Mass flow rate [kg/s] 
Q̇ Heat transfer rate [kW] 
A Area [m2] 
cp Specific heat [kJ/(kg ⋅ C)] 
h Specific enthalpy [kJ/kg] 
M Mass [kg] 
p Pressure [kPa] 
T Temperature [C] 
t Time [s] 
u Specific internal energy [kJ/kg] 
V Volume [m3] 
ρ Density [kg/m3] 

Subscript 
i inlet 
j index of volume cell 
k index of flow cell 
o outlet 
r refrigerant 
t tube 
w water 
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