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ABSTRACT 

Condensation heat transfer of R410a in a multiport mini-channels tubes with different cross-sectional geometry is 

experimentally investigated. Three tubes with aspect ratio of 0.395, 0.385 and 0.446, and hydraulic diameters of 1.147 

mm, 1.135 mm and 0.846 mm with number of channels (7, 11 and 18) are tested in this study. The experimented range 

of heat flux is from 3 to 15 kW/m2, mass flux from 50 to 500 kg/m2s. The data show that the heat transfer coefficient 

increases with heat flux, mass flux and vapor quality. A performance comparison was conducted among the 3 tested 

tubes and it was found out that the number of channels increases heat transfer coefficient significantly at low heat flux 

and mass flux, while this effect is damped at higher heat/mass flux condition. In addition, it was found that heat 

transfer in small hydraulic diameter and high aspect ratio channels deteriorated. Possible mechanism to this 

deterioration is proposed. Finally, a new correlation is developed to predict the heat transfer coefficient of R410a in a 

multiport mini-channels tube. 

1. INTRODUCTION

Mini and microscale heat transfer technology has been widely adopted in recent years. Their chief advantages over 

conventional size instruments including reduced weight, material cost, refrigerant charge while still retaining an 

adequately high heat transfer rate. Therefore, further studies should be conducted to not only advance understanding 

of miniature condensation phenomena but also to maximize their efficiency in practical application. 

In recent years, significant number of papers has been dedicated to different technical aspects of the technology. 

Sakamatapan et al (2013) studied the condensation heat transfer characteristic of R134a inside two multiport mini-

channels with the hydraulic diameter 1.1 and 1.2 and aspect ratio successively of 1.25 and 0.5. Their data mostly fall 

onto the annular flow and mist flow regimes when plotted on the map of Coleman and Garimella (1999). They found 

that mass flux and vapor quality increase the heat transfer coefficient. As for the geometrical effect, it was observed 

that the smaller hydraulic diameter yields a higher heat transfer coefficient. 

Liu et al (2016) conducted an experimental investigation of heat transfer and pressure drop of three refrigerants: R290, 

R1234ze and R22 in a circular tube of 1.085 mm diameter and a square channel of 0.952 mm. Similar trend is reported, 

that heat transfer coefficient increases with vapor quality, heat flux and mass flux and decreases with saturated 

temperature for all 3 refrigerants. Heat transfer coefficient of propane is larger than that of R1234ze(E) which is then 

larger than those of R22. On the effect of channel geometry, they found that the square channel’s heat transfer 

coefficient is larger than the circular channel at the same experimental condition.  
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Similar to Liu, Shin & Kim (2005) experimentally studied flow condensation of R134a for a single circular channel 

of 0.493mm, 0.619mm, 1.067mm and square channel of 0.494mm, 0.658mm, 0.972mm hydraulic diameter. Their 

report is similar to Liu et al (2016) except that they did not find a clear relationship between heat flux and heat transfer 

coefficient. On the effect of cross-sectional geometry, clear enhancement of heat transfer is found with decreasing 

hydraulic diameter. For low mass flux, the rectangular channel has a higher heat transfer coefficient, while the reverse 

is true at higher mass flux. They attributed this result to the effect of surface tension at the corners, similar to Liu’s 

explanation. 

The pressure drop and heat transfer coefficient of 4 different refrigerants: R32. R134a, R1234ze(E) and R410a in 

rectangular multiport mini-channels of 0.85 hydraulic diameter is investigated (2016) by Jige et al. A common trend 

of increasing heat transfer with mass flux and vapor quality is observed again. They found that the heat transfer 

coefficient for R32 is higher than that of R1234ze due to the higher thermal conductivity of R32. They also compared 

their data with Nakashita’s data (2002) of multiport mini-channels with diameters of 0.79 and 1.06 and found out that 

heat transfer increases with decrease in hydraulic diameter, although the effect of diameter is weaker at high heat flux. 

It should be noted that channels in comparison all have different aspect ratios.  

Although a significant number of papers devoted to the study of mini/micro scale condensation heat transfer has been 

published recently, there still many open problems that need to be resolved. The effect of channel cross-sectional 

geometry on heat transfer still require an additional study. In this work, three channels consist of two channels with 

similar aspect ratio and hydraulic diameter, and one channel with a slightly higher aspect ratio and 25% smaller 

diameter are studied. R410a is chosen as the studied fluid because of its current wide usage and its role in the future 

as a substitution for the soon phased-out R-22. The resulting data with one unprecedented trend, will be presented. 

Subsequently, a new correlation for the prediction of heat transfer coefficient is proposed. 

2. EXPERIMENTAL APPARATUS

The schematic diagram of the experimental apparatus for this study is presented in Figure 1. The experimental set-up 

is composed of a refrigeration loop, a chilled water loop and a data acquisition system.   

Figure 1: Experimental apparatus 

Refrigerant is circulated by a magnetic gear pump coupled with inverter for adjusting the mass flux. Vapor is generated 

inside the preheater with DC power. In the inlet, the vapor quality of the test section is controlled by varying the DC 

power supply at the preheater. Mass flow rate is measured with a Coriolis type flow meter installed after the sub-

cooler. Saturated vapor is then partially condensed inside the test section and then condensed completely inside the 

condenser, both with chilled water. Two sight glasses are installed at the inlet and outlet of the test section to serve 

the flow visualization purpose. Liquid refrigerant post condenser is received before being recirculated with the gear 

pump. The experimental apparatus system is well-insulated to minimize heat loss affecting the testing procedure. 

Chilled water is supplied by a chiller unit with pump circulation. Water mass flow rate is measured with a flow meter 

for the calculation of the applied heat flux to the test section in the data reduction section. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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Figure 2: Test section and cross-sectional area in detail 

The detail of the test section and the cross-sectional detail are shown in figure 2. Test section is designed as a counter-

current, tube in tube heat exchanger with refrigerant condensing flow in the inner channel and chilled water flow in 

the outer annulus cover made of acrylic. Geometric parameters of the testing multiport mini-channels are shown in 

table 1. In order to calculate the heat transfer coefficient, temperature of the outer wall of the test section is measured 

with 12 0.13mm K-type thermocouples. The thermocouples are attached as shown in the figure, with 2 attached on 

the top side and 2 on the bottom side. Four resistance temperature sensors were used to measure inlet and outlet 

temperature of the refrigerant and the cooling water. For the measurement of pressure drop, a differential pressure 

transducer is installed at the inlet and outlet of the mini-channels. Saturated pressure is monitored with an absolute 

pressure sensor. 

Table 1: Test section detailed geometrical configuration 

Channels H (mm) W (mm) dh (mm) β=W/H n  D (mm) L (m) 

A 2 0.79 1.147 0.395 7 0.25 0.2 

B 2 0.77 1.135 0.385 11 0.25 0.2 

C 1.3 0.58 0.846 0.446 18 0.25 0.2 

Table 2: Experimental conditions 

Refrigerant q (kW/m2K) G (kg/m2s) Tsat 

R410a 3 - 15 50 – 500 48 

3. DATA REDUCTION METHOD

The test section inlet vapor quality is controlled by DC power supplied, through heat-balance at the preheater the 

inlet quality can be calculated as: 

1 𝑄
𝑥𝑖𝑛 =  [

𝑝𝑟𝑒−ℎ𝑒𝑎𝑡𝑒𝑟 (1) 
− 𝐶𝑝(𝑇𝑠 − 𝑇𝑖𝑛𝑙𝑒𝑡)]

ℎ𝑓𝑔 𝑚𝑟𝑒𝑓

The test section average heat flux is determined from the inlet and outlet chilled water temperature differences: 
𝑚𝑤𝑎𝑡𝑒𝑟 𝐶𝑝,𝑤𝑎𝑡𝑒𝑟 ∆𝑇 (2𝑞 = 𝑤𝑎𝑡𝑒𝑟 ) 

𝐴𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

Also with heat balancing, the test section’s outlet vapor quality can be calculated by: 
m  C  ∆T (3)x = x - water p,water water  

inlet 2mrefhlg

One-dimensional steady state heat conduction is assumed between the inner and outer wall of the channel. The inner 

wall temperature can be calculated by: Condensation Heat Transfer of R410A inside Multiport Mini-channels with 

Different Cross-sectional Geometries 
qδ

 Tw,i = T aluminium (4)
w,o kaluminium
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With the channel’s inner temperature, the heat transfer coefficient can be obtained. The differences between the 

internal and external heat transfer area are also considered, 

h =
Aexternal

Ainternal

q

(Tsat-Tw,i)
(5) 

In this study, the experimental uncertainty analysis has been performed in agreement with the guidelines provided 

by ISO (1995). 

Table 3: Uncertainty of measurement and calculation 

Parameters Uncertainty 

Temperature ±0.1K 

Absolute pressure ±2.5kPa 

Mass flux ±0.5% 

Heat flux ±3% 

Vapor quality ±5% 

Heat transfer coefficient ±11.7% 

4. RESULT AND DISCUSSION

4.1 The effect of mass flux, heat flux and vapor quality 
In this section, the effect of mass flux, heat flux and vapor quality on the heat transfer coefficient is discussed through 

the experimental results.  

In figure 3, heat transfer coefficient data is plotted against mass quality for different mass flux values ranging from 50 

kg/m2s to 500 kg/m2s at the same heat flux 6 kW/m2K. Here it can be seen from the graph that heat transfer coefficient 

increases with mass flux and vapor quality. According to Coleman and Garimella (1999), at high vapor quality, the 

dominant flow pattern for miniature size channels (roughly 1mm or below) is annular flow regime. In annular flow 

regime, the liquid film is thinner at high quality and thicker at lower quality. Therefore, as condensation proceeds, the 

thermal resistance of the film will increase with its thickness, and hence decrease the overall heat transfer coefficient.  

The effect of mass flux on the heat transfer can be attributed to two distinct mechanisms. First, increasing the mass 

flux increases the vapor velocity, which in turn increases the relative velocities between the two phases and 

subsequently, the shear stress at the interface. Secondly, higher mass flux allows for stronger turbulence effect, which 

corresponds to higher Reynolds number. This increment in convection as well as in interfacial shear together enhance 

the heat transfer. 

Figure 3: The effect of mass flux on heat transfer coefficient 
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Figure 4 plotted heat transfer coefficient against mass quality at the same mass flux of 300 kg/m2s and heat flux range 

from 3 to 15 kW. The graph also shows that heat transfer coefficient increases with heat flux. The effect is stronger at 

the lower heat flux range from 3 to 9 and weaker from 9 to 15. Authors suggest the increase in heat flux increases the 

level of liquid sub-cooling, which in turn enhances both the heat and mass transport within the flow. Sakamatapan 

suggested that heat flux could affect flow mechanics and lead to better heat transfer. 

Figure 4: The effect of heat flux on heat transfer coefficient 

4.2 The effect of channel’s geometry 

In figure 5, heat transfer coefficient is plotted against mass quality at the same heat flux and mass flux condition but 

for different channels. 

Figure 5: Heat transfer coefficient of tube A,B and C at low and high heat flux, mass flux condition 

From table 1, tube A and B have similar hydraulic diameter and aspect ratio, the only difference is in the number of 

channels inside the tube (7 and 11 channels respectively). The results show the impact of the number of channels has 

on the heat transfer coefficient. At lower heat flux and mass quality, the effect of the number of channels is more 

dominant. Especially at high quality, heat transfer coefficient could increase up to 46% maximum and about 30% on 

average. At high mass flux and high heat flux however, the effect of the number of channel on heat transfer is more 

difficult to notice. Yun et al attributed this increase to the more even distribution of heat flux among the channels of 

the tube.  

The effect of hydraulic diameter is also evident from the two graphs. The results show that for both higher and lower 

mass flux and vapor quality, decreasing the hydraulic diameter decreases heat transfer coefficient, which is in contrary 

to the trends often found in literature.  In the analysis in the correlation development section, it is shown from equation 

(8), decreasing the hydraulic diameter will lead to a reduction in Reynolds number, which will therefore negatively 

affect the impact of turbulence and interfacial shear stress on heat transfer. It is speculated that in channel with extreme 

value (high or small) of the aspect ratio, the effect of no-slip wall condition and flow confinement might suppress 

mixing and turbulence and reduce overall heat transfer. However, this effect is not yet clearly understood and should 

be a topic of future study. 

4.3 Comparison with existing correlations 

Experimental data were compared against 6 existing heat transfer correlations available in literature: which are 

correlations proposed by Koyama et al. (2003), Rahman et al (2018), Shah et al, Jige et al (2016), Kim et al (2013). 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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and by Pham (2019). The performance of these six correlations is graphed in figure 6 while the value mean deviation 

and average deviation are presented in Table 4. 

The performance of the existing correlation will be evaluated by mean and average deviation which is calculated as 

follow 

 𝐴𝐷 =
1

𝑛𝑑𝑎𝑡𝑎
∑ 100%

ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡−ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑛𝑑𝑎𝑡𝑎
1 (6) 

    𝑀𝐷 =
1

𝑛𝑑𝑎𝑡𝑎
∑ 100%

|ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡−ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙|

ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑛𝑑𝑎𝑡𝑎
1 (7) 

Figure 6: Comparing the existing correlation against experimental data 

Table 4: Correlation’s Mean and Average deviation 

Koyama Rahman Shah Jige Kim Pham 

MD 

Tube A 109.0% 64.3% 90.2% 38.3% 44.6% 24.6% 

Tube B 72.3% 41.8% 56.2% 31.1% 31.6% 32.7% 

Tube C 244.5% 94.8% 287.9% 125.0% 172.0% 68.9% 

All 123.3% 61.8% 118.8% 54.0% 66.6% 37.3% 

AD 

Tube A 108.0% 5.6% 89.6% 3.1% 24.1% -10.5%

Tube B 71.1% -34.4% 55.1% -16.9% 0.4% -31.0%

Tube C 244.5% 82.0% 287.9% 125.0% 172.0% 68.9% 

All 122.4% 5.9% 118.2% 21.2% 46.3% -1.7%

From the figure and the table, it is seen that none correlation made a satisfying prediction against the experimental 

data. Especially for the data of tube C, all correlation severely overpredict the experimental data up to 287%. Indeed, 

this implies that a new correlation is needed to make a more accurate prediction for observation. 

5. NEW CORRELATION
In this study, a new correlation is developed based on the modelling method proposed by Jige et al (2016). Here, 

only annular and intermittent flow regime (namely slug flow) will be analyzed with simplified model. Effect that has 

not been included in the model will be introduced by curve-fitting experimental data. 

5.1 Annular flow heat transfer model 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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The following modelling and analysis follow the Jige’s paper of 2016, in which he proposed a film condensation 

model (8), comprising two terms which represent the vapor shear dominated case (1st term of equation 8) and 

surface tension dominated cases (2nd term of equation 8). Both cases will be analyzed separately. 
𝜇𝑙𝑘𝑙(𝑇𝑠−𝑇𝑤)𝑡2

8𝜌𝑙𝛿∆ℎ
=

𝑡2

16

𝜕

𝜕𝑧
(

𝜏𝑖𝛿2

2
) +

𝛿3

3

𝜎

𝑟𝑐

(8) 

5.2 Vapor shear stress dominated case 

For cases where the mass flux is high, the surface tension effect is expected to be small and therefore its term is 

neglected in equation (8). The length z can be replaced through relation with heat flux obtained from heat balance. 

For the interfacial shear stress, Jige’s equation will be used. Finally, we include a curve-fitting term of high mass 

flux data to consider the turbulence effect in film flow. The shear dominated Nusselt number is formulated as 

𝑁𝑢𝑎𝑛,𝑠ℎ𝑒𝑎𝑟 = (0.323 + 0.07𝑅𝑒𝑙
0.313𝑃𝑟𝑙

0.6267)
𝛷𝑣

1−𝑥
√𝑓𝑣𝑜

𝜌𝑙

𝜌𝑣
𝑅𝑒𝑙 (

𝑛𝛽+(𝑛−1)𝜂𝑓𝑖𝑛+1

𝑛(𝛽+1)
) 

(9) 

The two-phase frictional multiplier and the friction factors for vapor and liquid phases that appeared in equation (9) 

are given also provided in Jige (2016). Their equation will be included in the table 6. 

5.3 Surface tension dominated case 

For flow with low mass flux, shear stress term in (8) will be neglected, then surface tension dominated annular flow 

Nusselt number can be formulated. It is speculated that the channel aspect ratio will an important parameter for 

surface tension dominated flow. The Nusselt number for this case is then formulated as: 

𝑁𝑢𝑎𝑛,𝑠𝑡 = 0.0047𝛽−6.62 [
𝜌𝑙∆ℎ𝜎𝑑ℎ

𝑘𝑙𝜇𝑙(𝑇𝑠−𝑇𝑤)
]

0.25 (10) 

5.5 Annular flow Nusselt number 

The final annular flow Nusselt number combined the effect of interfacial shear and surface tension by super-

positioning these two terms. Two new factors taking into account the suppression or enhancement 𝐹𝑠ℎ𝑒𝑎𝑟  and 𝐹𝑠𝑡 of

each effect are included in the equation. They are expected to be functions of 𝑊𝑒𝑙 and the dimensionless number

(𝑞/𝐺∆ℎ). Curve-fitting the data for 𝐹𝑠ℎ𝑒𝑎𝑟  and 𝐹𝑠𝑡, annular flow Nusselt number can be found as:

𝑁𝑢𝑎𝑛 = 0.0008𝑊𝑒𝑙
0.0744(

𝑞
𝐺∆ℎ⁄ )

−0.5344

𝑁𝑢𝑎𝑛,𝑠ℎ𝑒𝑎𝑟 + 133.37𝑊𝑒𝑙
0.32(

𝑞
𝐺∆ℎ⁄ )

0.66

𝑁𝑢𝑎𝑛,𝑠𝑡
(11) 

5.4 Slug flow modeling  

Slug flow is modelled as a continuously alternating flow of single-phase liquid and two-phase annular film flow. 

Thus, vapor plug Nusselt number is considered to be equal to annular flow Nusselt number and liquid slug Nusselt 

number can then be calculated with well-known existing correlationsfor single phase liquid flow by Gnielinski 

(1976) and Hartnett, Kostic (1989). 

The slug flow regime Nusselt number can be expressed by time-averaging the Nusselt number of vapor slug and 

liquid slug regime. The following equation are given from Jige’s analysis. 

𝑁𝑢𝑠𝑙𝑢𝑔 = 𝑁𝑢𝑎𝑛𝛼 + (1 − 𝛼)𝑁𝑢𝑙𝑠 (12) 

5.5 Condensation heat transfer correlation 

The final condensation heat transfer correlation is assembled by combining all effect of both slug and annular flow 

regime that was previously discussed. The functional form is given as as similarly in Jige and is summarized in the 

bellow table 

Table 6: Correlation Summarization 

𝑁𝑢 = 𝑁𝑢𝑎𝑛𝛼 + (1 − 𝛼)𝑁𝑢𝑙𝑠, 𝑁𝑢𝑎𝑛 = 0.0008𝑊𝑒𝑙
0.0744(

𝑞
𝐺∆ℎ⁄ )

−0.5344

𝑁𝑢𝑎𝑛,𝑠ℎ𝑒𝑎𝑟 + 133.37𝑊𝑒𝑙
0.32(

𝑞
𝐺∆ℎ⁄ )

0.66

𝑁𝑢𝑎𝑛,𝑠𝑡

𝑁𝑢𝑎𝑛,𝑠ℎ𝑒𝑎𝑟 = (0.323 + 0.07𝑅𝑒𝑙
0.313𝑃𝑟𝑙

0.6267)
𝛷𝑣

1−𝑥
√𝑓𝑣𝑜

𝜌𝑙

𝜌𝑣
𝑅𝑒𝑙 (

𝑛𝛽+(𝑛−1)𝜂𝑓𝑖𝑛+1

𝑛(𝛽+1)
), 𝑁𝑢𝑎𝑛,𝑠𝑡 = 0.0047𝛽−6.62 [

𝜌𝑙∆ℎ𝜎𝑑ℎ

𝑘𝑙𝜇𝑙(𝑇𝑠−𝑇𝑤)
]

0.25

. 

𝛷𝑣
2 = 𝑥1.8 + (1 − 𝑥)1.8

𝜌𝑙𝑓𝑙𝑜

𝜌𝑣𝑓𝑣𝑜

+ 0.65𝑥0.68(1 − 𝑥)0.43 (
𝜇𝑙

𝜇𝑣

)
1.25

(
𝜌𝑙

𝜌𝑣

)
0.75

𝑓𝑣𝑜 = {
𝐶1/ (

𝐺𝑑ℎ
𝜇𝑣

⁄ )   𝑓𝑜𝑟 (
𝐺𝑑ℎ

𝜇𝑣
⁄ ) ≤ 1500

0.046/ (
𝐺𝑑ℎ

𝜇𝑣
⁄ )

0.2

  𝑓𝑜𝑟 (
𝐺𝑑ℎ

𝜇𝑣
⁄ ) > 1500

, 𝑓𝑣𝑜 = {
𝐶1/ (

𝐺𝑑ℎ
𝜇𝑙

⁄ )   𝑓𝑜𝑟 (
𝐺𝑑ℎ

𝜇𝑣
⁄ ) ≤ 1500

0.046/ (
𝐺𝑑ℎ

𝜇𝑙
⁄ )

0.2

  𝑓𝑜𝑟 (
𝐺𝑑ℎ

𝜇𝑣
⁄ ) > 1500

,𝛼 =
𝑥

𝑥+(1−𝑥)
𝜌𝑣

𝜌𝑙
⁄
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𝑅𝑒𝑙 =
𝐺(1−𝑥)𝑑ℎ

𝜇𝑙
, 𝑊𝑒 =

𝐺2𝑑ℎ

𝜌𝑙𝜎
, 𝑃𝑟𝑙 =

𝜇𝑙𝐶𝑝𝑙

𝑘𝑙
,𝑁𝑢 =

ℎ𝑑ℎ

𝑘𝑙

𝜂 =
2(𝑒𝑚𝐻−𝑒−𝑚𝐻)(1−𝑒−𝑚𝐻)(𝑒𝑚𝐻−1)

𝑚𝐻
, 𝑚 = √

2ℎ

𝑊𝑓𝑖𝑛𝑘𝑓𝑖𝑛
.

5.6 Correlation performance 

Figure 7 show the performance of the new correlation against experimental data from this study, and table 5 show 

the average and mean deviation of the correlation. Comparing with existing correlations in literature, it is evidence 

that the new correlation prediction is more accurate, with the smallest value of mean deviation and the highest 

number of points falling into the 20% and 50% error bands (81% and 97.3% respectively). 

Figure 7: Comparing the new correlation against experimental data 

Table 5: New correlation’s AD and MD 

MD AD 

Tube A Tube B Tube C All Tube A Tube B Tube C All 

12.3% 10.7% 21.2% 13.6% 2.5% 2.1% 10.3% 4.1% 

6. CONCLUSIONS

In this work, condensation heat transfer coefficient of R410a in three multiport channels with different geometrical 

configuration is experimentally studied. Key findings are summarized as follows. 

- Heat transfer coefficient increases with heat flux, mass flux and vapor quality, trends that are also reported

from many previous papers.

- Both the number of channels inside the multiport tubes and hydraulic diameter are important to the heat

transfer coefficient of the tube. The number of channel increases significantly the heat transfer coefficient

at low heat flux, mass flux condition especially at high quality regions. Heat transfer coefficient is

degraded in channels with small diameter and high aspect ratio, possibly due to the reduction of Reynolds

number, although this effect is not yet fully understood.

- A new correlation is proposed, modifying from the original model of Jige (2016). The proposed correlation

showed better agreement with measured heat transfer coefficient comparing to previously available

correlations in literature.

NOMENCLATURE 
A Area (m2) 

Cp Specific Heat  (kJ/kg K) 

dh Hydraulic diameter  (m) 

D Channel’s thickness  (m) 

H channel’s height  (m) 

h heat transfer coefficient (W/m2K) 

Greeks 

𝛼  Void fraction 

∆  Difference 

𝛿  Liquid film thickness (m) 

𝜎  Surface Tension (N/m) 
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∆ℎ  Latent heat of vaporization  (kJ/kg) 

𝑓 Frictional Factor 

G Mass flux (kg/m2 s) 

k Thermal conductivity (kW/mK) 

L Channel length (m) 

𝑚̇ Mass flow rate (kg/s) 

m Fin’s parameter 

n Number of channel 

Nu Nusselt number  

Pr Prandtl number  

P Pressure (MPa) 

rc Radius of Curvature (m) 

Q Heat capacity (kJ) 

q Heat flux (kW/m2) 

Re Reynolds number  

T Temperature   (K) 

t Length of the 

condensate film region (m) 

W channel’s width (m) 

We  Weber number 

x  Vapor quality 

z Axial coordinate          (m) 

𝜇  Viscosity (Ns/m2) 

𝜌  Density (kg/m3) 

𝜏  Shear stress (N/m2) 

𝛽  Aspect ratio (=W/H) 

𝛿  Thickness (m) 

𝜙  Two-phase frictional multiplier 

Subscripts 

an  annular flow 

an,shear  annular flow, shear stress dominated 

an,st  annular flow, surface tension dominated 

crit  Critical 

exp  Experimental value 

fin  fin 

𝑙  Liquid 

ls  liquid slug 

𝑔  Vapor 

𝑖  Interfacial 

𝑖𝑛  Inner 

𝑜  Outer 

𝑙𝑜  Liquid only 

s  Saturation 

vp  Vapor plug 

w  Wall 
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