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ABSTRACT 

Computationally efficient simulation of thermal systems is usually limited by evaluation of thermophysical properties. 
It is common (for instance in heat exchanger simulation) that more than 90% of the total runtime may be spent evaluat-
ing thermophysical properties. A key (and computationally expensive, especially for mixtures) part of that calculation 
is the determination of phase equilibrium. This work demonstrates that the use of Chebyshev expansions combined 
with extended precision calculations allows for a non-iterative numerical formulation that is more accurate than the 
iterative calculations with the full equation of state and is also much faster to evaluate. In essence, this approach makes 
phase equilibrium calculations of pure fluids from equations of state obsolete. 

1. INTRODUCTION 

The phase equilibrium calculation, determining the co-existing phases for a pure fluid for a given temperature or 
pressure, is a ubiquitous problem within the analysis and design of refrigeration and thermal systems components and 
systems. Phase equilibrium data are obtained from empirical thermodynamic models implemented in software libraries 
like NIST REFPROP (Lemmon et al., 2018) or CoolProp (Bell et al., 2014). Under the hood, the computational library 
obtains the values from a rather involved numerical calculation. The problem is formulated as equating the chemical 
potentials (the Gibbs energy is equal to the chemical potential for a pure fluid) and pressures of the co-existing liquid 
and vapor phases for a given temperature. While the problem can be expressed concisely, solving the problem is 
challenging due to its non-linear nature; very accurate guess values for the liquid and vapor densities are needed, and 
there are a number of potential pitfalls that can prevent success in obtaining the correct solution. 

According to Gibbs’ phase rule, there is one independent variable for a two-phase mixture of a single component; by 
convention either the temperature or the pressure may be used, but other options are permitted thermodynamically. The 
multiparameter equations of state have as independent variable T and ρ as independent variables and the temperature 
is used here (similar results could be obtained for the pressure as independent variable). 

Aute and Radermacher (2014) successfully used multivariate Chebyshev expansions (rather, ratios of Chebyshev ex-
pansions) to approximate thermodynamic model outputs. The convergence of ratios of Chebyshev expansions to-
wards the underlying numerical function is not well understood. Fitting ratios of Chebyshev expansions to data is 
a challenging, non-linear, non-convex, optimization problem. On the other hand, the approach proposed here has 
well understood convergence behavior, can be concisely implemented in a few lines of code, and involves no global 
optimization. 

2. CHEBYSHEV EXPANSIONS 

Chebyshev basis functions are mathematical functions defined in the closed interval [-1,1] that we can think of as 
better behaved analogs of the monomial functions x0, x1, x2, …. Chebyshev expansions (a sum of Chebyshev basis 
functions times their coefficients) are used extensively in numerical analysis because their numerical conditioning is 
excellent as compared with polynomials. As a demonstration of the superiority of Chebyshev expansions for numerical 
approximation, the cosine function is approximated by both polynomials and Chebyshev expansions. For a degree of 4, 
both representations are similar in their (poor) fidelity to the model, but for very high degrees, the Chebyshev expansion 
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approach is superior - the polynomial approach is no longer able to improve its deviations relative to the model while 
the Chebyshev expansion can achieve close to numerical precision (errors on the order of one part in 1016 or so). 
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(a) Polynomial, degree 4 (b) Polynomial, degree 40 
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Figure 1: Approximation of the cosine function cos(x) given by solid curves by polynomials (a and b) and 
Chebyshev expansions (c and d) in the closed interval [-10,10]. The dashed-dotted curve indicates the value 
from the expansion. For the Chebyshev expansion, the nodes of the expansion (where the function is expected 
to be represented to numerical precision) are indicated by dashed vertical lines. 

The previous paper on density rootfinding with Chebyshev expansions (Bell and Alpert, 2018) includes a mathematical 
interlude that covers much of the analysis relevant to the problem considered here. As such, the reader is invited to 
read that section for a more comprehensive treatment. A summary of a few points related to Chebyshev expansions is 
as follows: 

• The Chebyshev basis functions Ti are defined on the closed interval [-1,1], and are among the family of or-
thogonal polynomials including Legendre polynomials, Laguerre polynomials, etc. Chebyshev functions are 
particularly well suited to the representation of smooth and continuous numerical functions defined in closed 
intervals. Mapping from a finite interval to that of [-1,1] is a linear mapping. 

• A Chebyshev expansion C is formed as the summation of the basis functions multiplied by the coefficients ci as 
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in 
N 

C = ∑ ciTi(x) (1)
i=0 

The coefficients ci can be obtained directly from a matrix×vector product where the vector is the set of function 
values at judiciously selected values of the independent variable via a discrete cosine transform. Importantly, 
these judiciously selected values of the independent variable are not evenly spaced in the interval [-1,1]. 

• As the degree N of the expansion increases, the Chebyshev expansion gives a better and better approximation of 
the targeted function. The expansion is converged when ∣cN/c0∣ is on the order of the numerical precision, which 
is close to 10−16 in double precision arithmetic. More advanced convergence metrics are also available Bell and 
Alpert (2021). 

• There are open-source libraries available for the use and construction of Chebyshev expansions in C++ (Bell 
et al., 2018), python (numpy, 2020), MATLAB (Driscoll et al., 2014), Julia (Olver and Townsend, 2014), etc. 
Evaluation of a Chebyshev expansion can be done in any programming language as it requires only functionalities 
existing in all the standard math libraries. A concise demonstration is shown in the previous paper (Bell and 
Alpert, 2021). 

• Chebyshev expansions are conceptually similar to “polynomial” functions given by monomial basis functions: 

N
y = ∑ cixi (2) 

i=0 

The primary distinction between Chebyshev expansions and monomial expansions is that Chebyshev expan-
sions (or more generally the family of orthogonal polynomials) are numerically well conditioned. Evaluation 
of Chebyshev expansions is as efficient as the evaluation of polynomials; Clenshaw’s method for evaluation of 
Chebyshev expansions is the analog of Horner’s method for polynomials. The use of a Chebyshev expansion of 
degree 100 is feasible, while polynomials (formed of monomial basis functions) of degree 8 or so are already 
beyond the limits of suitability. 

The iterative calculations for phase equilibrium described above are terminated when either a sufficiently good phase 
equilibrium solution has been found, or when the solver is not able to improve the solution any further. In practice, the 
limiting condition is usually that the densities have converged as closely as is possible, while the pressures of the two 
co-existing phases are not quite the same (although they are very close to each other). 

When numbers of vastly different magnitude are added together in a computer, the result will not be the same as carrying 
out the same calculation with pen and paper. This is because the computer represents numbers like 1.234 as a floating 
point number. The epsilon of the standard double precision numerical type is on the order of ϵdouble = 2.2 × 10−16. 
That is to say that when adding this number to 1.0 in a standard calculation in a computer, the result is still 1.0. While 
ϵdouble is a minuscule number relative to practical measurements in the laboratory, the internal iterations that are used 
in REFPROP and CoolProp frequently run up against this limit. The phase equilibrium solver is often limited by the 
fact that the equilibrium phase densities can no longer be improved as the step size for density (relative to its current 
value) drops below ϵdouble. 

These numerical challenges can be avoided by carrying out the phase equilibrium calculations in extended precision. 
Rather than working with conventional double precision numbers, extended precision can be used which offers an 
arbitrary number of digits of precision. Here the boost::multiprecision library in C++ was used, with 50 digits 
of working precision. This makes the epsilon on the order of 10−50, essentially removing the problems of numerical 
precision. Switching from double precision to extended precision is not without challenges though. Numerical libraries 
are, with few exceptions, set up to operate with double precision, and the use of extended precision introduces an 
extremely severe speed penalty (a factor of 10000× slowdown is normal). Furthermore, the use of extended precision 
is a rather advanced topic in numerical analysis. In C++ it is possible to join numerical routines for phase equilibrium 
with extended precision analysis, as is described in the companion paper (Bell and Alpert, 2021). 

The phase equilibrium problem was written and solved in extended precision in the companion paper and from these 
calculations a suite of Chebyshev expansions was built (from which the expansions were taken). The Chebyshev 
expansions have as the independent variable temperature and are of the numerical form ρ ′(T), ρ ′′(T), and p(T). 
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Figure 2: Isenthalpic and isochoric processes into the two-phase dome for propane. 

3. RESULTS FOR VLE 

In order to demonstrate the computational advantage of this approach, a (very) simple case is considered: calculation of 
the vapor quality from the adiabatic or isochoric processes of expanding an initially saturated liquid to lower pressure. 
These processes are shown in Fig. 2. 

At each temperature, either the Chebyshev or full VLE calculations are used to calculate the saturated liquid and vapor 
values of ρ ′ and ρ ′′ , respectively. In the case of isochoric expansion, the vapor quality is then calculated from 

1/ρinit − 1/ρ ′ 
qρ = (3)

1/ρ ′′ − 1/ρ ′ 

For an isenthalpic process, the enthalpies of the co-existing phases are subsequently obtained from the full equation 
= h(T, ρ ′), h ′′ of state for the given densities and temperature (h ′ = h(T, ρ ′′)), and then the vapor quality is obtained 

(hmix = qh ′′ + (1 − q)h ′ ) from 
hinit − h ′ 

qh = (4)
h ′′ − h ′ 

Here the reference equation of state for propane (Lemmon et al., 2009) is used, and CoolProp version 6.5 (Bell et al., 
2014) is used for all thermodynamic calculations. The problem is implemented in C++ to minimize calling overhead. 
While this example is simplistic, it demonstrates the power (and limitations) of this approach. 

Table 1: Speed and accuracy results for the isochoric and isenthalpic processes 

quantity speedup (relative to full EOS calculation) mean(∣qCheb − qEOS∣) 

qρ 252× 2.36 × 10−14 

qh 7.22× 1.28 × 10−13 

The isochoric process problem represents the best case because it does not invoke the full equation of state at all, and 
the Chebyshev expansions can be used directly. This results in a speedup of more than 200 times, as can be seen 
in Table 1. The absolute deviations are on the order of 10−14 (essentially numerical precision in double precision 
arithmetic). The correct baseline to assess accuracy is the extended precision calculations used to build the expansion; 
the iterative calculations themselves are in error relative to the “ground truth” of calculations in infinite numerical 
precision. 
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On the other hand, when the isenthalpic process is considered to get qh, the increase in speed is much more modest, 
less than a factor of 10 speedup. This result is to be expected because the expansions almost completely remove the 
time for the VLE calculation but leave untouched the EOS evaluation part to get h ′ and h ′′ . Very roughly, we can say 
that the time for a VLE calculation from the full equation of state tVLE is approximately 10 times that of a property 
from the equation of state without a phase determination t1EOS. Thus even if the time for the VLE goes to zero from 
the Chebyshev expansions, the speedup is still constrained by the slowest part, which now becomes the equation of 
state evaluation h(T, ρ ′) and h(T, ρ ′′). Mathematically this speedup SU can be approximated by 

tEOS tVLE + 2t1EOS ≈ 10 + 2SU = = ≈ 6 (5)
tCheb ≈ 0 + 2t1EOS 2 

A means of resolving the relatively sluggish speedup for the isenthalpic expansion is to construct Chebyshev expan-
sions for the saturated liquid and vapor enthalpy as was done for the saturation densities. Similarly, constructing the 
Chebyshev expansions for the entropy would allow all the most common saturation thermodynamic properties to be 
calculated from Chebyshev expansions. The challenge with entropy and enthalpy (as compared with density) is one of 
bookkeeping, keeping track of correctly applying shifts to the entropy and enthalpy if the reference state is changed. 
In principle, construction of the expansions for enthalpy or entropy is no more complicated than for density. 

4. FURTHER APPLICATIONS 

The idea of building Chebyshev expansions of one-dimensional thermophysical property data is broadly useful. For 
instance, the isopleth of the phase envelope of a mixture of fixed composition (more commonly just called the phase 
envelope) is often calculated at discrete points, with a “good enough” approximation of the real isopleth. Following 
the approach proposed above of building a suite of Chebyshev expansions in extended precision, it would also be 
possible to do the same thing with isopleths. This approach would allow for a massive speedup in flash calculations 
for mixtures of fixed composition (e.g., the azeotropic and zeotropic mixtures present in the ASHRAE 34 standard 
ASHRAE (2019)). On the downside, significant (human) effort would be required to modify the computational library 
to allow for calculations in extended precision with the complete multi-fluid mixture model. Once that work was 
complete, the calculations would be done at compile-time, so even if it took a rather long time to carry out (days or 
more per mixture), that work could be done once and cached. 

Another place where upfront computational effort could pay off for end users is in the calculation of saturated water 
vapor pressure with the IAPWS IF97 formulation. The IAPWS IF97 formulation (Wagner et al., 2000) for standard 
water is intended to be computationally more efficient than the reference scientific formulation of Wagner and Pruß 
(2002) and to be “accurate enough”. Figure 3 shows the deviations between the IF97 formulation of the vapor pressure 
of ordinary water (from equation 30 of the IF97 release (IAPWS, 2012)) as implemented in CoolProp version 6.5 and 
the reference equation of state. As it stands now, the time required to evaluate the vapor pressure curve of IF97 in 
CoolProp is on the order of 0.1 μs/call, which is quite similar to the evaluation of the Chebyshev expansions. The 
replacement of the simple vapor pressure curve of IAPWS IF97 with a set of Chebyshev expansions would be much 
more consistent with the equation of state (likely many orders of magnitude if the propane example is any guide). 
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Figure 3: Absolute value of relative deviations between the IF97 formulation of the vapor pressure of ordinary 
water and the reference equation of state of Wagner and Pruß (2002). 
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NOMENCLATURE 

Variables Modifiers x Independent variable ′ Saturated liquid c Chebyshev expansion coefficients ′′ Saturated vapor C Chebyshev expansion init InitialN Number of terms in expansion mix For the mixture q Vapor quality (kg∙kg−1) Cheb Calculated from Chebyshev expansions h Specific enthalpy (J∙kg−1) EOS Calculated from equation of state t Time (s) VLE Vapor-liquid-equilibrium Ti i-th Chebyshev basis function Wagner From the Wagner and Pruß EOS ρ Specific density (kg∙m−3) IF97 From the IF97 formulation for water ϵdouble epsilon of double precision arithmetic 
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