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ABSTRACT 

Air-source heat pump systems extract heat directly from the cold outdoor ambient and reject heat to the warm indoor 
environments of residential and commercial buildings. During their winter operation, the outdoor coil often 
accumulates frost on its surface. Frost acts as an insulator and blocks air passages, reducing the heat transfer rate and 
increasing the pressure drop of air passing through the coil. Defrost cycles are periodically executed between the 
heating times to melt the ice, drain the water from the outdoor coil, and free accumulated frost before the heating 
service can start again. Unfortunately, too many defrost cycles penalize the efficiency of the heat pumps.  

Most research in frost mitigation focused on superhydrophobic surfaces, lubricant impregnated surfaces, and 
nanostructured surfaces. Some studies proposed surface types that would lower ice adhesion such that droplet removal 
was promoted before freezing. However, the mitigation effects of these surfaces can be sensitive to experimental 
conditions and surface structure. Additionally, in circumstances where frost formation cannot be prevented due to the 
operating conditions, the challenge of predicting frost nucleation and growth rate is further complicated by transient 
flow conditions with combined heat and mass transfer phenomena to moving frost boundaries. 

This paper presents new data of freezing time, droplet diameter, and droplet shape with different surface wettability 
during initial droplet icing. Water condensation and icing formed on the flat plates for convective channel flows. Four 
surfaces with different wettability were investigated under two test conditions. The contact angle ranged from less 
than 10 degrees (i.e., superhydrophilic) to over 109 degrees (i.e., hydrophobic). Two surfaces shared similar contact 
angles but had different coating components. Because frost nucleation was partially a stochastic phenomenon 
subjected to many variables that were difficult to control and replicate even in a laboratory setting, frost tests with 
identical environmental and surface temperature conditions were repeated several times to gather meaningful averages 
for the freezing time and to quantify the magnitude of potential variability in the frost nucleation time and droplets 
size due to the surface wettability characteristics. The new data presented in this paper are used to inform and validate 
physics-based frost models, predicting the nucleation features and actual frost formation time for coated fin structures 
of heat exchangers. 

Keywords: freezing time, water condensation, nucleation, repeatability, fin coatings, heat exchangers  

1. INTRODUCTION 

Air-source heat pump systems extract heat directly from the cold outdoor ambient and reject heat to the warm indoor 
environments of residential and commercial buildings. The performances of these systems are dependent on the air 
conditions of the outdoor environments. During winter operations, the outdoor coils often accumulate frost on their 
surfaces. Frost acts as an insulator and blocks air passages, reducing the heat transfer rate and increasing the pressure 
drop of air passing through the coils. These two combined effects lead to an increase in the temperature difference 
between the evaporating refrigerant and the outdoor air. This phenomenon enhances frost formation and, at the same 
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time, lowers the coefficient of performance of the heat pump. Defrost cycles are periodically executed in between the 
heating times to melt the ice, drain the water from the outdoor coils, and free accumulated frost before the heating 
service can start again. Unfortunately, defrost cycles penalize the efficiency of heat pumps, and their frequency should 
be monitored and controlled. One potential means of reducing the number of defrost cycles is to utilize particular 
surface types or chemical surface coatings on the heat exchangers’ fin structures. 
For environmental conditions typical of a heat pump operating conditions, frost formation has three stages: the droplet 
condensation and growth stage, the crystal growth stage, and the frost full layer growth stage (Hoke et al., 2000). All 
stages are sensitive to surface temperature, air temperature, humidity ratio, and air velocity. Besides these variables, 
droplet growth rate and the onset of freezing depend on the surface wettability, at least to some extent. Tao et al. 
(1993) observed frost growth consisting of two stages. The first stage was liquid droplet growth and the second stage 
was ice crystal growth. The transition time between the two stages was meaningful for numerical modeling of frost 
formation. Sheng et al. (2020) presented droplet shapes and wet area coverage on different surface types and observed 
that the results for superhydrophobic surfaces were different from those for a hydrophobic surface. They also indicated 
that droplets on a hydrophilic surface had extensive wet area coverage and larger water droplets. Kim et al. (2016) 
suggested that the radius of the droplets on a surface increased due to two droplets merging. Hoke et al. (2000) 
observed that smaller and more uniform droplets were formed if cold substrate temperature decreased. Seki et al. 
(1985) utilized two different test plates having contact angles of 110° and 43°. Frost incipient phenomena showed that 
droplets on the 43° plate were larger than those with a large contact angle. Bryant (1995) observed that a hydrophobic 
coating delayed the onset of ice nucleation by 15 to 35%, and the additional time allowed 15 to 25% more water 
condensation on the surface before the droplets froze. Adanur et al. (2019) investigated the effect of biphilic coatings 
with regions of hydrophilic coatings adjacent to areas with hydrophobic coatings. Their investigation indicated that 
this kind of surface wettability could influence the droplet movement and delay freezing. Harges et al. (2020) 
investigated the effects of surface wettability under different test conditions. The average droplets distribution and 
average diameter were also presented. Kim et al. (2015) had 10 repeated tests for each contact angle from 70° to 160°. 
The uncertainties of the frosting time of their 10 repeated tests had a maximum of 9.5%. They concluded that when 
test plate temperature was -10°C (14°F) and -12°C (10.4°F), the dimensionless freezing time increased with increasing 
water contact angle, while when test plate temperature was -10°C, it did not have an effect on freezing time retardation. 
This paper is based on the authors’ previous work (Cremaschi et al., 2018), and it presents new data on droplet growth 
and freezing characteristics during initial frost nucleation. The central regions of the test plates were visually recorded 
by an in-situ calibrated non-invasive infrared thermal camera to provide instantaneous measurements of droplet 
diameter and droplet area coverage, as well as droplet freezing time. The IR camera also measured the frost surface 
temperature while the test apparatus measured the instantaneous heat flux and water mass deposited on the cold flat 
plates. With respect to the authors’ previous study (Cremaschi et al., 2018), the static contact angle of flat plates was 
extended and ranged from less than 10° (i.e., superhydrophilic) to over 109° (i.e., hydrophobic). Because frost 
nucleation was partially a stochastic phenomenon subject to many variables that were difficult to control and replicate 
even in a laboratory setting, frost tests with identical environmental and surface temperature conditions were repeated 
several times in different days and sometimes different months. This approach quantified the effect of surface coating 
robustness, that is, potential coating deterioration and potential surface oxidations due to multiple frost and defrost 
processes, cleanups, and water drying procedures. Averages and distributions of the experiments are discussed in this 
paper. The variability of the frost nucleation time and droplets diameter at the onset of freezing are also presented and 
analyzed based on the surface wettability characteristics of newly coated surfaces. 

2. EXPERIMENTAL METHODOLOGY 

2.1 Experimental Test Apparatus 
The experimental facility, test setup, sensors, and data reduction are described in detail in the authors’ previous work 
(Adanur et al., 2019). They are briefly summarized next for completeness of this paper. In addition, the cleaning and drying 
procedures used during the tests were described in detail in Harges et al. (2020).  
The test facility consisted of a closed airflow wind tunnel that controlled the air temperature, humidity, and speed. A 
second smaller airflow wind tunnel, shown in Figure 1(a), was installed inside the large wind tunnel, and it 
accommodated the cold flat plates. Two thermoelectric coolers (TECs) and an in-house built stainless-steel heat flux 
meter controlled the test plates’ surface temperature during frosting. An infrared (IR) camera was positioned at the 
top of the plate, and a High Resolution Charged Couple Device (HR CCD) camera was located at the front or, in 
repeated tests, at the side of the test plate, as shown in Figure 1(b). The IR camera measured the temperature of the 
frost surface and droplet size during freezing, while the HR CCD camera measured droplet size right after freezing 
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and subsequent frost thickness. Sensors of the test apparatus shown in Figure 1(a) measured the time-dependent heat 
flux, surface temperature, air dry bulb, and dew point temperatures at the inlet and outlet of the test plates, airflow 
rate, and air static pressure and air pressure drop across the channel of the test plate. We installed smoothly converging 
and diverging duct sections at the inlet and outlet of the test plate, keeping the angles low enough to reasonably assume 
the airflow over the plate to be initially well mixed and fully developed. These converging and diverging sections to 
and from the test plate sections are indicated in Figure 1(a). Aluminum plates were machined to dimensions of 25mm 
length (i.e., depth of the plate along the airflow direction) by 152 mm width and 6 mm thickness (1 in x 6 in. x 0.25 
in). These plates are referred to as the “test plates” throughout this paper. The test plates were exposed to convective 
airflow frosting conditions on their top surfaces with airflow cross-section dimensions of 4 mm high (perpendicular 
to the surface) and 152 mm wide (equal to the width of the test section). Air entered the test plates at 5°C (41°F) dry 
bulb temperature and the dew point temperature was 2°C (35.5°F), which yielded an entering relative humidity of 
about 80% and absolute humidity of 0.0043 kg-water/kg-air. In order to maintain the dew point temperature constant 
at the inlet, a humidifier was utilized with purified deionized water (Water, ACS Reagent Grad, ASTM Type I, ASTM 
Type II). The airflow rate (4.9 CFM) was constant for the entire test, that is, during both phases of frost nucleation 
and subsequent frost growth. During a frost test, a nitrogen displacement technique was used to produce ultra-low dew 
point temperatures in the gas surrounding the test plate during the temperature pull-down period of the test plate. This 
nitrogen blanket avoided water vapor condensation (and frost nucleation) during the pull-down phase of the test. Then, 
when the test plate temperature reached the setpoint, nitrogen gas was removed, and the air was immediately circulated 
onto the top surface of the test plate. Water vapor condensed on the test plate surface, and droplets gradually grew. 
The surface temperature was constant during droplet growth, crystal growth, and frost growth stages, and the freezing 
time and freezing period were identified from the start of the water vapor condensation. 

(a) 
IR Camera 

HR CCD (top) 
Camera 
(front position) 

Frost 
Growth 

Airflow 
direction 

HR CCD Heat Flux 
Camera Direction 
(side 
position) 

(b) 

Fig. 1: (a) Schematic of main test apparatus and (b) Illustration of the HR CCD camera and IR camera with respect 
to the test plate. 
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The test plates were rectangular bars of about 6 mm (0.25 in) thickness. Four substrates and different coatings were 
developed, and the main body of the plates was 6061 Aluminum. While the specific details of the coatings composition 
are proprietary, each plate was characterized by using a static contact angle and a substrate material. The first plate 
(referred to as Flat Plate A) had a contact angle of about θ ≈ 88°. The second plate (Flat Plate B) had its top surface 
coated with a hydrophilic (θ < 10°) coating and the third plate (Flat Plate C) had a hydrophobic (θ ≈ 108°) coating. 
These three plates shared the same substrate material.  The fourth plate (Flat Plate F) had a contact angle of θ ≈ 110°. 
However, it had a different coating substrate material than the ones used in Flat Plates A, B, and C. Comparison of 
the data of Flat Plate F (θ ≈ 110°) against Flat Plate C (θ ≈ 108°) indicated frost nucleation characteristics for surfaces 
that shared same static contact angle but had different substrate materials and manufacturing processes. Twenty T-
type thermocouples were embedded in the metal block underneath the test plate to measure heat flux and derive the 
plate's top surface temperature. The accuracy of the sensors is reported in Table 1, and the authors’ previous work 
reported more details about the instrumentation (Cremaschi et al., 2018). 

Figure 2 showed an Infrared (IR) camera image of hydrophobic flat plate C (θ ≈ 108°) taken during freezing at -3.8 
°C (25°F) for the plate base surface temperature. The temperature color legend on the right side of Figure 2 shows the 
water droplets’ measured temperature and iced beads in °C. The IR camera started recording and captured images every 
1 frame (2 seconds = 1 frame) when water condensation first occurred on the cold test plate. In order to capture what 
time the freezing process occurred, the freezing duration process had to be taken into account. The “freezing duration” 
was defined as the time from when the first droplet was observed to begin freezing ݐଵ until the last droplet in the field 
of view of the IR camera had completed its freezing process ݐଶ. The test started time ݐ଴ is defined as the first instant 
when water droplet condensation occurred on the cold test plate. The light-colored droplets were undergoing the 
liquid-to-solid phase transition, that is, freezing into ice beads. They appeared lighter in color because of the temporary 
increase in the surrounding air temperature when the heat of fusion from the droplets was released into the surrounding 
air during the phase transition and the perturbation of their surface emissivity during such transition. Dark blue droplets 
were either still in the liquid phase or had already frozen. The details of the freezing process were discussed in detail 
in the authors’ previous work (Harges et al. 2020).  

Table 1: Measurement devices, set points, ranges, accuracies, and control tolerances 

Parameter Measuring Set Control 
Calibration Accuracy 

Measured Device Point/Range Tolerance 

Sensors for controlled variables 
Air Temp. 
(dry bulb) 
Air Temp. 
(dew point) 

Plate Temperature 

Air Volume Flow 
Rate 

Thermocouple 
(grid) 

Chilled Mirror 
Dew Point Meter 

Thermocouple 
(grid) 

Flow Nozzle 

In situ* 

Manufacturer 

In situ* 

Manufacturer 

5°C (41°F) 

0.56°C (~33°F) 

-15°C (~5°F) 

8.5 m3/h 
(5 cfm) 

±0.056°C 
(±0.1°F) 
±0.28°C 
(±0.5°F) 
±0.04°C 

(±0.07°F) 
±0.05 m3/h 
(±0.03cfm) 

±0.28°C 
(±0.5°F) 
±0.28°C 
(±0.5°F) 
±0.28°C 
(±0.5°F) 

±0.09 m3/h 
(±0.05 cfm) 

Measured Variables 

Air Pressure Drop 

Frost Surface 
Temperature 

Pressure 
Transducer 

Infrared Camera 

Manufacturer 

In situ 

0 to 250 Pa 
(0 to 1 H2O) 
-22°C to 5°C 
(-8°F to 41°F) 

0.25% full 
scale 

±2°C (±3.6°F) 

(-) 

±1.6°C 
(±3.5°F) 

Frost Mass 
High Precision 
Digital Scale 

Manufacturer 
0 to 5 g 

(0.011 lbm) 
±0.1 mg 

 (±0.0015 gr) 
(-) 

Frost Thickness CCD Camera In-situ 0.2 to 3 mm 
±80 µm @ 0.4 mm 
±40 µm @ above 1 mm 

Heat Transfer 
Rate 

Conduction side In situ* 
5 to 8 W 

(17 to 27.3 Btu/hr) 
15% (-) 

*Temperature bath and temperature sensor with accuracy of ±0.05C (±0.1F) were used for on-site calibration.
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air flow direction 

Figure 2: IR image of droplets freezing on the cold hydrophobic flat plate (legend color scale on the right side 
indicates the measured temperature with the IR camera in °C). 

This single image of the freezing process in Figure 2 had an actual freezing time of about 12 minutes ( 0.5 minutes 
due to human error), and it was calculated by using equation (1).  

ଶݐ െ ி௥௘௘௭௜௡௚ ൌݐଵݐ ሺݐଵ െ ଴ሻݐ ൅  ሺ  ሻ (1) 
2 

(a) (b) 

Fig. 3: (a) Average diameter of water droplet measurement and (b) Average wet area coverage measurement in 


thermal infrared camera image (legend color scale on the right side is in °C). 


The infrared camera measured the average droplet diameter and wet area coverage. Figure 3 illustrates the 

measurement technique of droplet size and wet area coverage. Since the droplet size looked very similar right before
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and after freezing (see Figure 2), the infrared camera image shown in Figure 3 was taken from the last frame just 
before the first droplet was observed to begin freezing on the hydrophobic Flat Plate C (θ ≈ 108°) at -3.8 °C (25°F) 
surface temperature. The rectangular area from the top to bottom edges of the test plate was selected as the total 

. The average diameter of water droplets was measured from selected droplets in Figure 3(a). The ௧௢௧ܣ measured area 
smallest droplets, which could be individually distinguished, had a diameter of about 110 μm. This size was 
determined based on the resolution of the IR camera and calibration  of pixel size. The human error during  the

 was also ௪௘௧ܣ identification and tracing of the droplet diameters was estimated to be within 5%. The wet area 
measured by identification and tracing of the droplet contours, as shown in Figure 3(b). The average wet area coverage 
of the entire flat plate was estimated from the measured wet area in the IR camera’s optical window by assuming that

 was constant across the entire flat plate. In other words, the assumption of spatially uniform frost ௧௢௧ܣ/௪௘௧ܣ the ratio 
nucleation was made because the flat plate surface area was large enough to limit edge effects. 

Several repeated tests for each flat plate were conducted in the present work. In these repeated tests, the environmental 

conditionds, surface temperature, and type of coating were identical. For Flat Plate A (θ ≈ 88°) and Flat Plate C (θ ≈
	
108°), 9 tests were conducted at the same test conditions. For Flat Plate B (θ < 10°), 5 repeated tests were conducted. 

For Flat Plate F (θ ≈ 110°), 7 repeated tests were conducted at the same test conditions, while 4 repeated tests were 

conducted at a lower plate temperature. 


3. TEST RESULTS 

3.1 Test conditions and repeat test freezing time results for each Flat Plate 

Table 2 presents the nominal test conditions and legend numbers investigated in this study. The only difference 
between the two sets of test conditions is the surface temperature. For the first set of test conditions, the authors did a 
series of continually repeated tests on all four flat plates, while for the second test condition, only Flat Plate C (θ ≈ 
108°) and Flat Plate F (θ ≈ 110°) were tested. At a surface temperature of 25°F, there were some tests for which the 
droplets did not freeze within 1.5 hours, especially on Flat Plate F (θ ≈ 110°). In order to more thoroughly analyze the 
frost nucleation characteristics for Flat Plate F (θ ≈ 110°), a second test condition was added for the comparison of 
Flat Plate F (θ ≈ 110°) and Flat Plate C (θ ≈ 108°). 

Table 2: Test conditions and legend numbers 

Test Conditions Number 1 2 
Test Plate Temperature, °C (°F) -3.8 (25) -5 (23) 
Relative Humidity, % 82% 82% 
Air Temperature, °C (°F) 5 (41) 5 (41) 
Air Face Velocity, m/s (fpm) 3.8 (750) 3.8 (750) 

Figure 4 presents freezing times for each repeated test on all flat plates at test conditions 1. Some of the repeated tests 
did not freeze within one hour of testing, and those tests were not included in Figure 4. Flat Plate B (θ < 10°) had the 
lowest average freezing time and most stable freezing time during 5 repeated tests. Flat Plate A (θ ≈ 88°) and Flat 
Plate C (θ ≈ 108°) had unstable and somewhat inconsistent freezing time within the 9 repeated tests. Flat Plate C (θ ≈ 
108°) had two trials that did not freeze within one hour; those tests were excluded from Figure 4 and were not included 
in the freezing time average. But the poor repeatability and large freezing times of Flat Plate A (θ ≈ 88°) and Flat Plate 
C (θ ≈ 108°) are still reported in this figure to clearly show the contrast to the data of Flat Plate B (θ < 10°). The first 
repeat test of Flat Plate C (θ ≈ 108°) was excluded because its freezing time was over 1 hour, while the third repeat 
test of Flat Plate C (θ ≈ 108°) had a freezing time of around 13 minutes only. This inconsistent freezing results might 
be caused by high test surface temperature had low dependence on surface wettability. 
As a reminder, Flat Plate F (θ ≈ 110°) had a very close contact angle to Flat Plate C (θ ≈ 108°), but Flat Plate F (θ ≈ 
110°) had a different coating substrate. Unlike Flat Plate A (θ ≈ 88°) and Flat Plate C (θ ≈ 108°), there was only one 
test on Flat Plate F (θ ≈ 110°) which froze within one hour of testing. All other repeated tests on Flat Plate F (θ ≈ 110°) 
were unfreezing within two-hour test periods. Thus, it was challenging to compare Flat Plate F (θ ≈ 110°) with other 
test plates in Figure 4 with respect to freezing time. Analysis of the average droplet size at the same test run time was 
still possible for all tested flat plates. The details of the droplets IR images will be shown and discussed in the next 
section.  
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Figure 5: Freezing time vs. number of repeat tests for Flat Plate C (θ ≈ 108°) with coating substrate type 1 and Flat 
௔,ܶ F,°= 23௦ܶPlate F (θ ≈ 110°) with coating substrate type 2 under test conditions 2. ( 

 = 3.8 m/s) ௔ܸ 80% R.H. ,  
௜௡ = 41°F, ߱௜௡ ൌ 

Figure 5 presents freezing times for Flat Plates C (θ ≈ 108°) and F at test conditions 2. For test conditions 2, the surface 
temperature was reduced to 23°F, and four repeated tests were performed for the different flat plates. Compared to 
Flat Plate C (θ ≈ 108°), Flat Plate F (θ ≈ 110°) had less variability of the freezing time and, in average, it had a shorter 
freezing time. That shows that the surface wettability of Flat Plate F (θ ≈ 110°) had a significant effect on freezing 
time in this series of repeat tests. 
From a literature review study, researchers (Kim et al. 2016, Zhang et al. 2016, Wang et al. 2014.) pointed out that 
surface wettability can delay the freezing time. Harges et al. (2020) showed that when relatively high sub-freezing 
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plate temperatures were used, the test plates' surface wettability had a minor impact on the freezing time. The authors’ 
previous work also highlighted that minor surface imperfections could inhibit the surface wettability effect and delay 
freezing. When comparing two different surface temperature test conditions, it was observed that Flat Plate C (θ ≈ 
108°) had a more coherent freezing time region when its surface temperature was 23F. Flat Plate C (θ ≈ 108°) had 
inconsistent freezing times at the higher surface temperature, and the root causes of this behavior are unclear and 
require further investigation. In particular, analysis of this surface before and after multiple frost and defrost processes 
could shed some light on potential surface modifications and contamination affecting the freezing time during the run 
time at 25F. 

3.2 Average Freezing Time Results and Frozen Droplet Characteristics 

Table 3 presents the average freezing time and average droplet diameter at the time of freezing for all flat plates and 
test conditions. Flat Plate B (θ < 10°) had the lowest freezing time. Even though Flat Plate A (θ ≈ 88°) had a similar 
freezing time to Flat Plate C (θ ≈ 108°), it still had a different average frozen droplet diameter. Flat Plate C (θ ≈ 108°) 
had the lowest average droplet diameter, and the size of the droplets on Flat Plate C (θ ≈ 108°) was pretty small. The 
average freezing time of all cold flat plates was dependent on surface temperature. The average diameter of Flat Plate 
C (θ ≈ 108°) did not change significantly if its surface temperature decreased from 25°F to 23°F. In comparison, Flat 
Plate F (θ ≈ 110°) showed that if the surface temperature dropped, the droplet sizes were measurably different. Thus, 
the various substrates of the coating of Flat Plate F (θ ≈ 110°) affected droplet size and shape, but such effect was 
measurable when the surface temperature was equal to or above 25°F. 

Table 3 Average Freezing time and frozen droplet diameter for each flat plates and each set of test conditions 

Flat Plate A 
(θ ≈ 88°) 

Flat Plate B 
(θ < 10°) 

Flat Plate C 
 (θ ≈ 108°) 

Flat Plate F 
(θ ≈ 110°) 

Surface 
Temp. 

ts (min) Diameter 
(mm) 

ts (min) Diameter 
(mm) 

ts (min) Diameter 
(mm) 

ts (min) Diameter 
(mm) 

25°F 33 1.26 ± 0.1 7 1.19 ± 0.1 29 0.98 ± 0.1 24 2.14 ± 
0.1 

23°F Not Tested Not Tested Not Tested Not Tested 21 0.92 ± 0.1 15 1.11 ± 
0.1 

Figure 6 presents droplet IR images for the droplet’s size and shape on each flat plate. The image for Flat Plate B (θ 
< 10°) was taken at about 7 minutes after the surface was exposed to humid airflow, while the images for Flat Plates 
B, C, and F were taken at about 12 to 13 minutes of continuous exposure to the air. In all cases, the surfaces were set 
at a temperature of 25F. The droplets on Flat Plate B (θ < 10°) had the largest average diameter among all test flat 
plates. Because of superhydrophilic wettability properties, the droplets spread out to wet much of the test plate and 
had irregular shapes. Flat Plate A (θ ≈ 88°) had a low contact angle and presented irregular droplet shapes. Flat Plate 
C (θ ≈ 108°) had the same coating base with Flat Plate A (θ ≈ 88°) but a larger contact angle. Flat Plate C (θ ≈ 108°) 
showed the same irregular droplet shape as Flat Plate A (θ ≈ 88°). But droplets on Flat Plate C (θ ≈ 108°) were smaller 
and appeared more similar. On the contrary, droplets on Flat Plate A (θ ≈ 88°) were sparser than on Flat Plate C (θ ≈ 
108°) and Flat Plate F (θ ≈ 110°). Flat Plate F (θ ≈ 110°) had a similar contact angle to that on Flat Plate C (θ ≈ 108°) 
but a different coating substrate component. Droplets on the Flat Plate F (θ ≈ 110°) appeared to have the same irregular 
shape as Flat Plat C but of larger size and a more uniform droplet size distribution.  

It should be noted that the droplet sizes in Figure 6 do not necessarily have to match the average droplet diameter in 
Table 3. Flat Plate A (θ ≈ 88°) and Flat Plate F (θ ≈ 110°) had similar diameters at 12-13 minutes, while for the frozen 
droplet average diameter after 24 minutes, the Flat Plate F (θ ≈ 110°) showed the largest droplets size in Table 3. It 
was expected that larger diameter droplets would be obtained when the surface contact angle decreased (Hoke et al., 
2000). However, for the flat plate types investigated in the present work and for the plate temperatures well below the 
freezing point as in Figure 6, the surface wettability effects on droplet shape were not as marked as suggested in some 
of the studies in the literature. In Table 3, comparing Flat Plate F (θ ≈ 110°) and Flat Plate C (θ ≈ 108°) under the 
lower surface temperature test condition, the measured average diameters were quite similar. 
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(a) Flat Plate A (θ ≈ 88°), Average Diameter = 0.57 mm (b) Flat Plate B (θ < 10°), Average Diameter = 1.19 mm 


(c) Flat Plate C (θ ≈ 108°), Average Diameter = 0.27 mm (d) Flat Plate F (θ ≈ 110°), Average Diameter = 0.57 mm 

Figure 6: Average droplet diameter and droplet shape on a different flat plate with a hydrophilic and hydrophobic 
coating. Flat Plate B (θ < 10°) was taken at freezing time around 7 minutes under -3.8°C (25°F) surface temperature; 
images for Flat Plate A (θ ≈ 88°), Flat Plate C (θ ≈ 108°), and Flat Plate F (θ ≈ 110°) with coating substrate type 2 
were taken around 12-13 minutes. 

3.3 Droplets area coverage 
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Figure 7: Average droplet area coverage vs different surface wettability. (a) 25°F Surface temperature test condition. 
(b) 23°F Surface temperature test condition. 

Figure 7 shows the average droplet area coverage with different surface wettability and different surface temperature. 
As a reminder, all the droplet area coverage showed in Figure 7 was measured at freezing time. Flat Plate B (θ < 10°) 
had the most significant droplet area coverage than other hydrophobic test plates. Flat Plate A (θ ≈ 88°) had the lowest 
droplet area coverage. From the literature study, the lower cold substrate surface temperature was expected to augment 
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the area coverage (Sheng et al., 2020). However, Flat Plate C (θ ≈ 108°) and Flat Plate F (θ ≈ 110°) had the opposite 
trend and, as indicated in Figure 7, the droplet area coverage decreased by about 5% if surface temperature fell from 
25 to 23F. Because the droplets on Flat Plate C (θ ≈ 108°) were pretty tiny at the beginning and pinned on the surface 
with a visible high density, when such droplets grew, the droplet area coverage increased. At 25F, the droplets 
remained in the water phase for a longer time, and this more extended condensation period allowed more moisture 
vapor to accumulate on the cold plate. As a result, Flat Plate C (θ ≈ 108°) and Flat  Plate  F  (θ  ≈  110°)  had more  
extensive wet area coverage at their freezing time if their surface temperature was 25F, that is, closer (but still below) 
the water triple point temperature. 

4. CONCLUSIONS 

This paper presented new experimental data of ice droplets nucleation and water droplet characteristics on cold flat 
plates operating in frosting conditions and with air-forced convective flow. Four test flat plates with different 
wettability were investigated under two testing conditions. The contact angle ranged from less than 10° (i.e., 
superhydrophilic) to over 109° (i.e., hydrophobic). Two test flat plates shared similar contact angles but had different 
substrates of the coatings.  
The average freezing times for the cold flat plates investigated in the present paper depended on their surface 
temperatures. Superhydrophilic Flat Plate B (θ < 10°) had the shortest freezing time, and it ranged between 6 and 7 
minutes. Flat Plate A (θ ≈ 88°) and Flat Plate C (θ ≈ 108°) had longer freezing times than the superhydrophilic coated 
Flat Plate B. Repeated tests of Flat Plate A (θ ≈ 88°), C (θ ≈ 108°) showed that freezing time had large fluctuations, 
ranging from 13 up to 56 minutes. However, if surface temperature decreased by only a few degrees, then a much 
narrower span of freezing times was observed. 
Iced droplet sizes and area coverage were also measured and discussed in this paper. The superhydrophilic Flat Plate 
B (θ < 10°) had large droplets spread out on the surface. The droplets on the hydrophobic Flat Plate C (θ ≈ 108°) had 
the smallest size, and ample wet area coverage, and the diameter did not change significantly if surface temperature 
decreased from 25°F to 23°F.  The  same  was  not valid for  Flat  Plate  F  (θ ≈ 110°), which  showed that if surface 
temperature decreased, the droplet sizes were measurably different. Thus, for temperatures slightly below the freezing 
point, the various substrates combined with the top coatings affected droplet size and shape before the onset of freezing.  
The IR images of the present work showed that the static contact angle of the surface had a weak effect on the shape 
of the droplets before they turned into iced beads. For a similar contact angle of θ ≈ 108° to 110°, the substrate had a 
measurable effect on the droplet diameter when the surface temperature was at least 25°F or above. Hydrophobic 
surfaces investigated in the present work showed somewhat irregular splattered droplet shapes. This intriguing visual 
observation from the IR images appeared not consistent with the data shown in some literature studies (for example, 
in Harges et al. 2020). It might be due to differences in the specific surface coating chemistry and substrate materials 
of the flat plate investigated in the present work. Further investigations should be conducted in future research before 
comparing the droplet shapes from surfaces with similar static contact angles with different chemistry of the coatings. 

NOMENCLATURE 

௪௘௧ܣ 
௧௢௧ܣ

ts

ܶ
ሶܸ

 Droplet covered wet area 
  The selected total area for droplet measurement 

             Freezing time       (minutes) 

  temperature  (F)
	

volume flow rate (m3/h) 
߱  absolute humidity ratio     (kgwater vapor/kgdry air) 
θ                 surface contact angle (degree) 
Subscript 
a, air 
in   inlet of the test section 
out outlet of the test section 
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