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ABSTRACT 

Space cooling and heating equipment account for nearly 32% of the total residential electricity consumption in the 
U.S. In the residential space conditioning equipment market, air-conditioning and heat-pumping systems are prevalent, 
so even a slight improvement in these system efficiencies can have a significant impact on reducing the overall energy 
consumption. Over the years, the energy efficiency benchmarks established by the U.S. Department of Energy have 
been successful in encouraging manufacturers to develop higher efficiency equipment. These benchmarks are based 
on an energy efficiency standard, and these standards are based on a rating test procedure that forms the technical 
basis. Currently, in the U.S., AHRI 210/240 is the rating procedure for residential air-conditioning and heat-pumping 
equipment, which is based on a steady-state performance measurement method with a degradation coefficient to 
account for the cycling losses in part-load conditions. Although it provides a standard metric to compare different 
equipment performances, there has been a debate that this current methodology fails to appropriately characterize the 
performance of systems with variable-speed compressors and advanced control design. This is largely attributed to 
the steady-state nature of this current testing approach, which also involves overriding the equipment native control. 
In contrast to this, a load-based testing methodology has been developed in which the equipment responds to a 
simulated virtual building load, and the system dynamic performance is measured with its integrated controls. The 
load-based testing methodology is described in detail by Hjortland and Braun (2019), Patil et al. (2018), and Cheng et 
al. (2021), which forms the basis for CSA standard draft EXP07:2019 (CSA, 2019). In this paper, these two 
performance measurement methodologies, steady-state and dynamic load-based, are compared for application to a 5-
ton residential heat-pump system. The equipment performance was measured in cooling mode and the seasonal 
performance estimates based on the two testing approaches are compared. The differences in the two test 
methodologies' performance evaluation results are discussed with a causal analysis of the observed differences. 

1. INTRODUCTION 

In the U.S., the current testing and rating procedure for electric driven residential air-conditioning and heat-pumping 
vapor compression direct-expansion (DX) systems is based on AHRI 210/240 (AHRI, 2020) along with the method 
of test (MoT) outlined in ASHRAE Standard 37 and 116 (ASHRAE, 2010, 2019). Based on the current procedure, 
test equipment is installed in a pair of psychrometric test rooms serving as an indoor and outdoor environment, and its 
performance (i.e., cooling or heating capacity, and power consumption) is measured at different sets of required and 
optional test conditions depending on the system configuration (e.g. single-stage, two-stage or variable-speed type). 
For a test interval, indoor and outdoor test rooms conditions are kept at steady-state, and compressor and indoor unit 
fan speed are fixed, usually with proprietary control settings from the manufacturer. Measured performance at different 
ambient conditions is then utilized to estimate seasonal performance of equipment based on a temperature-bin method. 
This rating approach provides a standard metric of performance for comparing the relative performance of different 
available systems in the market; however, it does not characterize the overall performance of a system with its 
embedded controls and their dynamic interaction with representative building loads. This could result in seasonal 
performance estimates that may not be representative of the test unit’s actual field performance. Proctor & Cohen 
(2006) monitored field performance for five high SEER (Seasonal Energy Efficiency Ratio) air conditioners, four with 
2-stage and one with 1-stage compressor, and observed that actual energy efficiency ratios were between 59% to 84% 
of the rated SEER. Kavanaugh (2002) also expressed concerns on using SEER as an actual energy savings indicator 
for the unit because of the high indoor temperature used in the current testing approach compared to the typical field 
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application, little consideration of dehumidification performance, and a low external static pressure requirement 
compared to a typical application. All of these factors could lead to an overestimation of seasonal performance. As an 
alternative, a load-based testing methodology has recently been developed in which the dynamic performance of a 
heat-pump is measured in a test facility by allowing it to respond to an emulated representative building model. 

In the load-based testing approach, the indoor psychrometric test room temperature and humidity conditions are 
continuously adjusted using a virtual building model to emulate the response of a representative building being served 
by the heat-pump system. The test unit thermostat is also installed in the indoor psychrometric test room, which senses 
this dynamic temperature variation from its setpoint, and accordingly, equipment controls respond. In this way, the 
load-based testing approach enables capturing the dynamic performance of the equipment with its integrated controls 
and thermostat in a laboratory environment. Patil et al. (2018), Hjortland and Braun (2019), and Cheng et al. (2021) 
provide details on the load-based testing methodology development and implementation, which forms the basis for 
CSA (Canadian Standards Association) standard draft EXP07 (CSA, 2019) for residential equipment. Hjortland and 
Braun (2019) demonstrated the load-based testing approach to evaluate and compare two similar RTUs (rooftop units) 
performance with their integrated controls in three different modes – single-stage, two-stage, and variable-speed. Patil 
et al. (2018) and Cheng et al. (2021) further extended the load-based laboratory testing approach for residential air-
conditioning equipment performance evaluation with their embedded controls and thermostat. Cheng et al. (2018) 
presented a sensitivity study of thermostat location and virtual building parameters on load-based test results. Dhillon 
et. al. (2021c) compared the cooling mode performance and dynamic behavior of a heat-pump in a residential house 
to that of a laboratory using a load-based testing approach at similar test conditions. Dhillon et al. (2021b) further 
extended this load-based testing approach for RTUs with integrated econmoizers. Another application of the load-
based testing approach could be the evaluation of advanced heat-pump control design in a laboratory setting as 
demonstrated by Dhillon et al. (2021a) and Ma et al. (2021). Further, Dhillon et al. (2018) evaluated and compared 
the performance of two residential heat-pumps based on the load-based testing methodology as well as the steady-
state testing approach, AHRI 210/240 (2012). They observed that, for both heat pump systems, estimates of the cooling 
seasonal performance based on the steady-state testing (AHRI 210/240) approach were significantly higher (15.6% to 
34%) compared to the load-based testing results. These differences were due to the differences in the testing approach 
and test conditions between the two methodologies as well as due to the difference in building load-lines utilized for 
seasonal performance estimation. 

The motivation for this study was to further extend the Dhillon et al. (2018) work to better understand and quantify 
the differences between the two test approaches utilizing a different residential heat-pump system. In this work, a 5-
ton variable-speed heat-pump system was installed and tested in the psychrometric test facility at the Ray W. Herrick 
Laboratories using load-based testing (CSA, 2019) and steady-state testing (AHRI, 2020) approaches. First, the heat-
pump performance was measured in cooling mode at the test conditions defined in EXP07 (CSA, 2019) for load-based 
testing and AHRI 210/240 (AHRI, 2020) for steady-state testing. The two test methodologies have different target 
indoor conditions, so to isolate the effect of differences in the indoor conditions from performance measurement 
differences, heat-pump performance was also measured based on EXP07 and AHRI 210/240 ambient test conditions 
but with the same target indoor conditions. Then, performance estimates from measurements based on both approaches 
were propagated through a temperature-bin method to estimate the seasonal performance for different climate zones. 
In this paper, a comparison of the test results based on the two methodologies is presented along with an analysis of 
the differences. In the sections below, first, an overview of the test setup and two test methodologies is provided. 
Then, the heat-pump performance results are presented and a comparison with an analysis of the differences is 
presented. Finally, the conclusions section provides a brief summary and review of the results with a discussion of 
future work. 

2. TEST SETUP AND METHODOLOGY 

A 5-ton variable-speed split-type ducted heat pump was installed in a pair of psychrometric test rooms at the Ray W. 
Herrick Laboratories. The indoor unit return and supply air temperatures were measured using thermocouple grids, 
and humidities were measured using chilled mirror dew point hygrometers. The indoor unit supply air volumetric 
airflow was measured using a nozzle box code-tester. To verify the air-side measurements, refrigerant-side capacity 
was also determined based on the refrigerant mass flow rate measured using a Coriolis-effect mass flow meter, 
together with pressure and temperature measurements at different state points of the cycle. The indoor and outdoor 
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unit power consumptions were also measured. The thermostat was installed on a wooden board around 4 ft high from 
the floor in the indoor psychrometric test room to control the unit during load-based testing. 
First, the test unit performance was measured for cooling with dry and humid-coil test conditions as per EXP07 (CSA, 
2019) using the load-based testing methodology and also for steady-state test conditions as per AHRI 210/240 (AHRI, 
2020). For load-based testing, the virtual building model parameters were scaled based on the test unit full-load (i.e. 
maximum) capacity measured at 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 test conditions (AHRI, 2020). Then, the test unit performance was also 
evaluated at the same load-based and steady-state test conditions except with a target indoor temperature of 75℉ and 
relative humidity (RH) of 51.1%. Finally, the measured test results were used to estimate the cooling seasonal 
performance based on a temperature-bin method for the purpose of comparing performance ratings. In the sections 
below, an overview of the two testing and rating methodologies for residential air-conditioners is provided along with 
the test conditions and an overview of the seasonal performance estimation approach. 

Load-Based Testing Methodology 
The load-based testing methodology involves emulating the dynamic response of a representative building in the 
indoor side psychrometric chamber by dynamically adjusting the psychrometric chamber temperature and humidity 
setpoints using a virtual building model as illustrated in Figure 1. The virtual building model represents the building 
heat load and thermal mass characteristics of a representative residential building. In this work, a simple virtual 
building model similar to the one described by Patil et al. (2018), Hjortland and Braun (2019), and Cheng et al. (2021) 
was utilized. The load-based testing approach and virtual building model parameters were used as per EXP07 (CSA, 
2019) for cooling mode performance measurement. 

Figure 1. Load-Based Testing Schematic for a Split-Type Heat-Pump System in a Psychrometric Test Facility 

In this methodology, for each test interval, the outdoor test room conditions are kept constant, whereas, the indoor 
conditions are continuously varied based on a virtual building model response. During a load-based test, the virtual 
building model temperature (𝑇𝑇𝐼𝐼𝐼𝐼 ) and humidity ratio (𝜔𝜔𝐼𝐼𝐼𝐼 ) are updated for the next time step (𝑡𝑡 + Δ𝑡𝑡) from the 
current time step (𝑡𝑡) as per Equations (1) and (2), respectively, based on the virtual building loads, sensible �𝐵𝐵𝐵𝐵𝑐𝑐 ,𝑠𝑠� 
and latent �𝐵𝐵𝐵𝐵𝑐𝑐,𝐹𝐹�, together with the test unit measured cooling rates in real-time, sensible ��̇�𝑄𝑐𝑐,𝑠𝑠� and latent ��̇�𝑄𝑐𝑐,𝐹𝐹�. 

̇𝐵𝐵𝐵𝐵𝑐𝑐 ,𝑠𝑠 − 𝑄𝑄𝑐𝑐,𝑠𝑠 𝑇𝑇𝐼𝐼𝐼𝐼 (𝑡𝑡 + 𝛥𝛥𝑡𝑡) = 𝑇𝑇𝐼𝐼𝐼𝐼 (𝑡𝑡) + 𝛥𝛥𝑡𝑡 ⋅ � � (1) 
𝐶𝐶𝑠𝑠 

𝐵𝐵𝐵𝐵𝑐𝑐,𝐹𝐹 − �̇�𝑄𝑐𝑐,𝐹𝐹 𝜔𝜔𝐼𝐼𝐼𝐼 (𝑡𝑡 + 𝛥𝛥𝑡𝑡) = 𝜔𝜔𝐼𝐼𝐼𝐼 (𝑡𝑡) + 𝛥𝛥𝑡𝑡 ⋅ � � (2) 
ℎ𝑓𝑓𝑓𝑓 ⋅ 𝐶𝐶𝑤𝑤 
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where 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑤𝑤 are the effective thermal and moisture capacitances, respectively, for a representative residential 
building scaled to the equipment sensible ��̇�𝑄𝑐𝑐,𝑠𝑠,𝐼𝐼� and total ��̇�𝑄𝑐𝑐,𝐼𝐼� cooling capacities at design conditions as per 
Equation (3) and (4), and ℎ𝑓𝑓𝑓𝑓 is the latent heat of vaporization for water. 

�̇�𝑄𝑐𝑐,𝑠𝑠,𝐼𝐼 [𝑊𝑊] ⋅ 300[𝑠𝑠]
𝐶𝐶𝑠𝑠[𝐽𝐽/℉] = (3) 

𝛥𝛥𝑇𝑇𝑑𝑑𝑑𝑑 [℉] 

�̇�𝑄𝑐𝑐,𝐼𝐼[𝑊𝑊]
𝐶𝐶𝑤𝑤 [𝑘𝑘𝑘𝑘] = (4) 

12.9 [𝑊𝑊/𝑘𝑘𝑘𝑘] 

where Δ𝑇𝑇𝑑𝑑𝑑𝑑 is the thermostat deadband defined as the difference between upper and lower bounds. The virtual building 
model sensible heat gain or load �𝐵𝐵𝐵𝐵𝑐𝑐 ,𝑠𝑠� for cooling mode testing is defined as a linear function of outdoor temperature 
(𝑇𝑇𝑂𝑂𝐼𝐼 ) scaled to the test unit cooling capacity at design conditions ��̇�𝑄𝑐𝑐,𝐼𝐼� as per Equation (5). 

1 �̇�𝑄𝑐𝑐,𝐼𝐼 ⋅ 𝑆𝑆𝑆𝑆𝑅𝑅𝐵𝐵𝐹𝐹𝐵𝐵𝐹𝐹𝑑𝑑𝐵𝐵𝐵𝐵𝑓𝑓 𝐵𝐵𝐵𝐵𝑐𝑐 ,𝑠𝑠 = 
𝐹𝐹
⋅ ⋅ (𝑇𝑇𝑂𝑂𝐼𝐼 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹 ) (5) 
�𝑇𝑇𝑂𝑂𝐼𝐼,𝐼𝐼 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹,𝐼𝐼� 

where 𝐹𝐹 is the building load sizing factor to scale the load-line, 𝑆𝑆𝑆𝑆𝑅𝑅𝐵𝐵𝐹𝐹𝐵𝐵𝐹𝐹𝑑𝑑𝐵𝐵𝐵𝐵𝑓𝑓 is the building cooling load sensible heat 
ratio, 𝑇𝑇𝑂𝑂𝐼𝐼,𝐼𝐼 is the outdoor design temperature, and 𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹,𝐼𝐼 is the design balance point temperature. 𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹 is the effective 
balance point temperature, which is updated as per Equation (6) to account for the variation in building load due to a 
change in indoor temperature (𝑇𝑇𝐼𝐼𝐼𝐼 ) from the indoor design temperature (𝑇𝑇𝐼𝐼𝐼𝐼,𝐼𝐼 ), which is also the thermostat setpoint. 

𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹 = 𝑇𝑇𝐵𝐵𝐵𝐵𝐹𝐹,𝐼𝐼 + �𝑇𝑇𝐼𝐼𝐼𝐼 − 𝑇𝑇𝐼𝐼𝐼𝐼,𝐼𝐼� (6) 

The virtual building latent load �𝐵𝐵𝐵𝐵𝑐𝑐,𝐹𝐹� is defined based on the simple assumption of maintaining a constant building 
load sensible heat ratio (𝑆𝑆𝑆𝑆𝑅𝑅𝐵𝐵𝐹𝐹𝐵𝐵𝐹𝐹𝑑𝑑𝐵𝐵𝐵𝐵𝑓𝑓 ) as per Equation (7). 

1 
𝐵𝐵𝐵𝐵𝑐𝑐,𝐹𝐹 = 𝐵𝐵𝐵𝐵𝑐𝑐 ,𝑠𝑠 ⋅ � − 1� (7) 𝑆𝑆𝑆𝑆𝑅𝑅𝐵𝐵𝐹𝐹𝐵𝐵𝐹𝐹𝑑𝑑𝐵𝐵𝐵𝐵𝑓𝑓 

During a load-based test, the virtual building temperature and humidity conditions are continuously updated based on 
equations (1)-(7), which are then sent as setpoints to the indoor psychrometric test room for each time step. In this 
way, the dynamic response of a representative building is emulated in the indoor side psychrometric chamber and 
heat-pump performance is measured with its integrated controls and thermostat. 

Table 1. Load-Based Testing Methodology Cooling Mode Test Conditions (CSA, 2019) 

Test 

Humid Test Conditions Dry Test Conditions 

Outdoor 
Temperature [°F] Indoor Temperature [°F] Outdoor 

Temperature [°F] Indoor Temperature [°F] 

Dry Bulb Dry Bulb Wet Bulb Dry Bulb Dry Bulb Wet Bulb 
A N/A 

74 63 

113 

79 56 
(maximum) 

B 104 104 
C 95 95 
D 86 86 
E 77 77 

In load-based testing for cooling, a test unit’s performance is evaluated at two different sets of test conditions, dry and 
humid, as given in Table 1. In a load-based test, the indoor conditions represent the target comfort conditions set as 
the test unit thermostat and/or humidistat setpoint, whichever is applicable. For dry coil tests, only sensible building 
loads are simulated with indoor humidity levels low enough such that there is no dehumidification at the indoor unit 
cooling coil. For humid test conditions, both sensible as well as latent loads are simulated, and test equipment sensible 
and latent cooling performance is measured. At test conditions where the unit fails to maintain the indoor temperature 
to the target thermostat setpoint due to the maximum capacity being less than the building load, a full-load test is 
conducted. In a full-load test, indoor and outdoor test rooms conditions are maintained at steady-state and the 
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equipment performance is measured by running it full-out at maximum capacity with the test unit thermostat setpoint 
set below the target indoor condition. To scale the virtual building parameters, the test unit design cooling capacity 
was measured by running a full-load test at 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 indoor and outdoor test conditions (AHRI, 2020). In addition to the 
test conditions shown in Table 1, heat-pump performance was also evaluated for dry and humid-coil ambient 
conditions but with a target indoor temperature of 75℉ along with relative humidity (RH) of 51.1% for humid-coil 
tests. For these load-based tests, virtual building parameters were scaled based on the design cooling capacity 
measured at 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 outdoor test conditions, but with indoor conditions of 75℉ dry-bulb temperature and 51.1% RH. 

Steady-State Testing Methodology 
In the steady-state testing methodology based on AHRI 210/240 (AHRI, 2020), heat-pump performance is measured 
utilizing a test setup similar to the one shown in Figure 1 (i.e., in two side-by-side psychrometric test chambers). For 
variable-speed system performance measurements, Table 2 shows the 5 required humid-coil test conditions for cooling 
mode based on AHRI 210/240. Note that, in addition to indoor and outdoor test room conditions, compressor speed 
and indoor unit volumetric airflow rate requirements are also defined for each test interval. In this work, the 
compressor speeds and airflow rates were set based on proprietary test settings provided by the manufacturer, 
overriding the system's native controls. Similar to load-based testing, heat-pump performance was also evaluated at 
steady-state test outdoor conditions shown below but with indoor conditions of 75℉ dry-bulb temperature and 51.1% 
RH. 

Table 2. Steady-State Methodology Cooling Mode Test Conditions (AHRI, 2020) 

Test 
Indoor Conditions Outdoor Conditions 

Compressor 
Speed 

Air 
Volume Rate Dry Bulb 

[°F] 
Wet Bulb 

[°F] 
Dry Bulb 

[°F] 
Wet Bulb 

[°F] 
AFull 95 75 Maximum Full Load 
BFull 82 65 Maximum Full Load 
EInt 80 67 87 69 Intermediate Intermediate 
BLow 82 65 Minimum Minimum 
FLow 67 53.5 Minimum Minimum 

Seasonal Performance Estimation 
Both test methodologies utilize a temperature-bin method (ASHRAE, 2017; Knebel, 1983) to estimate the cooling 
and heating seasonal performance based on the measured performance at different ambient temperature conditions. 
For more details, the reader is referred to AHRI 210/240 (AHRI, 2020) for steady-state testing and EXP07 (CSA, 
2019) for the load-based testing approach. For a climate zone, cooling seasonal coefficient of performance (SCOP) is 
estimated as the ratio of the weighted average of cooling load with the bin-hour fractions to the weighted average of 
estimated power consumption with the bin-hour fractions at different bin temperatures. AHRI 210/240 defines cooling 
season bin-hour fractions for a single climate zone, whereas EXP07 defines values for 7 different cooling climate 
zones. For the load-based seasonal performance evaluation methodology, Table 3 summarizes the load-based testing 
results that are used for each climate zone in the SCOP calculation. 

Table 3. EXP07 (CSA, 2019) Cooling Climate Zones and Test Results used for 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 Estimation 
Climate Zone Very Cold Cold/Dry Cold/Humid Marine 
Cooling Test 

Type used Humid Tests Dry Tests Humid Tests Dry Tests 

Climate Zone Mixed Hot/Humid Hot/Dry 
Cooling Test 

Type used Humid Tests Humid Tests Dry Tests 

3. TEST RESULTS 

Load-Based Testing Results 
For scaling of the virtual building loads and capacitances, the test unit design cooling rate was measured at a steady-
state 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 test (AHRI, 2020) condition with the indoor test room at 80℉ dry-bulb / 67℉ wet-bulb (51.1% RH), the 
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outdoor test room at 95℉ dry-bulb temperature conditions, and the heat pump running at full-capacity in cooling 
mode. Table 4 shows the virtual building parameters for dry as well as humid-coil cooling test conditions that were 
utilized with equations (1)-(7) to perform load-based tests as per EXP07. 

Table 4. Virtual Building Parameters for Load-Based Testing as per EXP07 

Parameter 
�̇�𝑸 𝒄𝒄,𝑫𝑫 �̇�𝑸 𝒄𝒄,𝒔𝒔,𝑫𝑫 

Dry-Coil 
𝑺𝑺𝑺𝑺𝑹𝑹𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑻𝑻𝑶𝑶𝑫𝑫,𝑫𝑫 𝑻𝑻𝑩𝑩𝑩𝑩𝑩𝑩,𝑫𝑫 𝑻𝑻𝑰𝑰𝑫𝑫,𝑫𝑫 

𝑊𝑊 𝑊𝑊 - ℉ ℉ ℉ 
Value 16212 12692 1 105 72 79 

Parameter 
𝚫𝚫𝑻𝑻𝑩𝑩𝒅𝒅 𝑭𝑭 

Humid-Coil 
𝑺𝑺𝑺𝑺𝑹𝑹𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑻𝑻𝑶𝑶𝑫𝑫,𝑫𝑫 𝑻𝑻𝑩𝑩𝑩𝑩𝑩𝑩,𝑫𝑫 𝑻𝑻𝑰𝑰𝑫𝑫,𝑫𝑫 

℉ - - ℉ ℉ ℉ 
Value 2 1.2 0.8 95 67 74 

To compare the load-based and steady-state test results with similar indoor conditions, the heat-pump performance 
was also evaluated with load-based testing at the same dry and humid-coil ambient conditions as per Table 1 but with 
a target indoor temperature of 75℉ and RH of 51.1%. For these load-based tests, virtual building parameters were 
scaled based on the equipment design cooling capacity measured for a full-load test with the indoor test room at 75℉ 
dry-bulb / 63℉ wet-bulb (51.1% RH) and the outdoor test room at 95℉ dry-bulb temperature conditions. Table 5 
provides the virtual building parameters that were updated from Table 4 for these load-based tests. 

Table 5. Updated Virtual Building Parameters for Load-Based Testing with 75℉ Indoor Target Temperature 

Parameter 
�̇�𝑸 𝒄𝒄,𝑫𝑫 �̇�𝑸 𝒄𝒄,𝒔𝒔,𝑫𝑫 

Dry-Coil Humid-Coil 

𝑻𝑻𝑰𝑰𝑫𝑫,𝑫𝑫 𝑻𝑻𝑰𝑰𝑫𝑫,𝑫𝑫 

𝑊𝑊 𝑊𝑊 ℉ ℉ 
Value 14483 11585 75 75 

Figure 2 shows the heat-pump performance, temperature, and humidity variation for cooling humid-coil load-based 
tests at 4 different ambient temperature conditions. In the upper subplot, the test unit sensible and latent cooling rate, 
virtual building sensible and latent load, and total power consumption correspond to the left vertical axis and indoor 
unit airflow corresponds to the right vertical axis. The lower subplot shows the virtual building indoor temperature 
(IDT) and relative humidity (RH), actual indoor temperature and relative humidity, and thermostat setpoint (SP) on 
the left vertical axis, and the outdoor temperature setpoint and its measured value on the right vertical axis. During 
this load-based test sequence, the indoor temperature and relative humidity measured at the AHU (air handling unit) 
return air inlet were controlled to the virtual building temperature and RH setpoint, and it can be seen that the test 
room re-conditioning system was able to track the virtual building conditions very well. The thermostat was set to 
74℉ for this humid-coil cooling load-based test, and the heat pump cycled on/off at its minimum compressor speed 
at the low ambient temperature condition of 77℉ where building loads were relatively small. As the ambient 
temperature increased, the heat-pump operated in variable-speed mode at the moderate building load outdoor test 
conditions of 86℉ and 95℉, and ran out of capacity to meet the building load at the 104℉ ambient test condition. A 
full-load test was performed at the outdoor test condition of 104℉ by setting the indoor temperature at a fixed value 
of 74℉ and forcing the unit to run at maximum capacity by lowering the thermostat setpoint. During the full-load test, 
virtual building sensible load model was deactivated, however, the latent load model was still implemented and 
relative humidity converged to around 60%. The test equipment controlled the indoor temperature around the 
thermostat setpoint, however, indoor relative humidity increased above 60% at the low load test interval when the unit 
was cycling on/off. Another thing to note is that this variable-speed unit effectively operated as a two-stage unit. 

Figure 3 shows the heat-pump performance and temperature variation for cooling dry-coil load-based tests at different 
outdoor temperature conditions with a target indoor temperature of 75℉ (thermostat setpoint). In dry-coil cooling 
load-based tests, the virtual building latent load model was deactivated and the indoor temperature was controlled 
based on the virtual building sensible load model response. The test unit cycled on/off at the outdoor test condition of 
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77℉, 86℉ and 95℉, ran in variable-speed mode at 104℉ ambient conditions and failed to maintain the indoor 
temperature close to the thermostat setpoint at 113℉ outdoor test condition. A full-load test was performed for the 
113℉ test interval, which is not shown in this plot. In this test, as the outdoor temperature increased and the unit 
started utilizing a high-stage mode, the variations in the indoor temperature increased significantly which might be 
uncomfortable for an occupant in a house. For each test interval, the test unit performance was determined based on 
the convergence criteria outlined in EXP07 (CSA, 2019) and Cheng et al (2021). Overall, these results illustrate the 
application of the load-based testing methodology to measure the dynamic performance of a heat-pump with its 
embedded controls and thermostat. 

Figure 2. Heat-pump Performance, Temperature, and Humidity Variation for Cooling Humid-Coil Load-Based Test 
with target indoor temperature of 74℉ 

Figure 4 and Figure 5 show overall cooling dry and humid-coil load-based test results for COP (coefficient of 
performance) along with the test unit behavior during different outdoor condition test intervals with target indoor 
conditions as per EXP07 (Table 1) and with target indoor conditions of 75℉ and 51.1% RH, respectively. In both 
plots, “cycling” refers to the test unit cycle on/off behavior during load-based tests. For both sets of tests, humid-coil 
tests had higher COP compared to dry-coil tests in general except at the 104℉ outdoor condition test interval with 
indoor target temperatures as per Table 1, i.e. 79℉ for dry-coil and 74℉ for humid-coil tests. For dry-coil tests, COPs 
with a 75℉ target indoor temperature were around 4% to 8% lower compared to the 79℉ indoor temperature, except 
for the 95℉ ambient condition test where the test unit cycling on/off behavior was different, resulting in different 
cycling losses. On the other hand, for humid-coil tests, COPs were comparable for 77℉ and 104℉ outdoor test 
conditions, and around 3% lower for 86℉ and 5% higher for 95℉ ambient test conditions with a 75℉ indoor target 
compared to the indoor target conditions of 74℉. As the indoor conditions were comparable, this variation was mainly 
due to the change in loads between two sets of tests which resulted in the different dynamic behavior of the unit to 
compensate for that load. 
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Figure 3. Heat-pump Performance and Temperature Variation for Cooling Dry-Coil Load-Based Test with Target 
Indoor Temperature of 75℉ 

Figure 4. Cooling Load-Based Tests COP and Unit Figure 5. Cooling Load-Based Tests COP and Unit 
Behavior with EXP07 (Table 1) Indoor Target Behavior with 75℉ and 51.1% RH Indoor Target 

Conditions Conditions 
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Steady-State Testing Results 
Figure 6 and Figure 7 show steady-state (AHRI 210/240) results for COP at different outdoor temperatures and 
compressor speeds with the indoor temperature conditions of 80℉ and 75℉ , respectively. During these tests, 
proprietary control settings from the manufacturer were utilized to set the compressor speeds and indoor airflow at 
different test conditions as per AHRI 210/240. As expected, at the same ambient temperature, the test unit COP 
decreased with increasing compressor speed and at the same compressor speed, COP decreased with increasing 
outdoor temperature for the cooling tests. At the same ambient test conditions with the indoor temperature of 75℉, 
COP was lower (9% to 18% ) compared to the tests at the indoor temperature of 80℉ due to a decrease in the 
evaporator inlet air temperature. 

Figure 6. Cooling Steady-State Tests COP with 80℉ 
and 51.1% RH Indoor Conditions 

Figure 7. Cooling Steady-State Tests COP with 75℉ 
and 51.1% RH Indoor Conditions 

Seasonal Performance Comparisons 
The measured performance results at different outdoor temperature conditions for the load-based and steady-state 
testing methodologies were propagated through a temperature-bin method to determine seasonal performance. The 
cooling seasonal coefficient of performance (SCOP) was calculated based on the AHRI 210/240 (AHRI, 2020) 
standard using steady-state test results with a default degradation coefficient of 0.25 for cycling losses and also based 
on the CSA EXP07 (CSA, 2019) standard draft using load-based test results. These two standards define different 
climate zones and also different cooling season temperature bin-hour fractions for those climate zones. To mitigate 
the effect of different temperature bin-hour fraction data in the performance comparisons, consistent climate data were 
used for the comparisons. Seasonal performance values for both standards were calculated using both AHRI 210/240 
and CSA EXP07 temperature bin-hour data. 

Figure 8 shows comparisons of estimated cooling SCOP based on the load-based testing approach (EXP07) utilizing 
the load-based test results and the steady-state testing approach (AHRI 210/240) utilizing the steady-state test results 
at corresponding ambient conditions as provided in Table 1 and Table 2, respectively. The steady-state test method 
estimates a higher SCOP compared to the load-based test method with a difference varying from 22% to 27% across 
different climate zones. The differences are similar for use of either CSA EXP07 or AHRI 210/240 bin-hour 
temperature data. Since the same climate zone and bin-hour fraction data were utilized, the differences associated with 
the steady-state and load-based testing methodologies results were due to the differences in the methods used for test 
unit control during testing (feedback versus overriding control), differences in test conditions, differences in the 
approach used to interpolate and extrapolate measured performance at different bin temperatures, and differences in 
the building load lines. In cooling mode steady-state testing (humid-coil tests), the indoor temperature is kept constant 
at 80°F; whereas, in the load-based testing, the indoor temperature varied around the target of 74°F for humid-coil 
cooling tests and 79℉ for dry-coil cooling tests. To isolate the effect of differences in indoor conditions, SCOP 
estimates were also compared between two methodologies utilizing the load-based and steady-state test results at the 
same indoor test conditions of 75℉ and 51.1% RH (for humid-coil tests only) as shown in Figure 9. Still, SCOP 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 



 
 

 
 

     

       
   

 
     

   

 
    

    

 
  

 

6.0 

5.0 

~ 4.0 

~ 3.0 
u 
en 2.0 

6.0 

5.0 

~4.0 
...!... 

~ 3.0 
u 
en 2.0 

1.0 

6.0 

5.0 

4.0 

~ 3.0 
u 
v:, 2.0 

1.0 

0.0 

22% 
26% 

12% 

11% 
15% 

- -

■ Load-Based ■ Steady-State 

22% 
27% 

22% 22% 
25% 

Climate Zons (Temperatui-e Bins) 

■ Load-Based ■ Steady-State 

Climate Zons (Temperature Bins) 

■ Load-Based ■ Steady-State 

11% 11% 12% 12% 
16% 17% 

- - - -
- _; 

Climate Zons (Temperature Bins) 

 2519, Page 10 

estimates based on the steady-state method were higher, but the differences decreased by 6% to 10% compared to the 
results with different indoor test conditions (Figure 8). 

Figure 8. Cooling Seasonal Performance Comparisons for Load-Based and Steady-State Tests with Indoor Target 
Test Conditions as per CSA EXP07 (Table 1) and AHRI 210/240 (Table 2) 

Figure 9. Cooling Seasonal Performance Comparisons for Load-Based and Steady-State Tests with same Indoor 
Target Test Conditions of 75℉ and 51.1% RH 

Figure 10. Cooling Seasonal Performance Comparisons for Load-Based and Steady-State Tests with same Indoor 
Target Test Conditions and same Load Lines 
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In addition, a comparison of SCOP estimates using the test results with the same target indoor conditions and the same 
load lines employed for the load-based testing methodology was performed as shown in Figure 10. Utilizing the same 
load lines further decreased the COP differences by 1% to 3%, bringing the overall differences to around 11% to 17%, 
with the steady-state testing approach predicting higher performance. The differences are mainly due to the differences 
in the fundamental test approach (i.e., dynamic with embedded controls vs steady-state with overriding native 
controls), differences in ambient conditions at which performance is measured, and differences in the interpolation 
and extrapolation approach of measured performance to different bin temperatures. 

4. CONCLUSIONS 

This paper presented a comparison of cooling mode performance results for a 5-ton variable-speed residential heat-
pump system evaluated based on a new load-based testing methodology (CSA EXP07) and the existing steady-state 
testing approach (AHRI 210/240). In load-based testing, the heat pump operated in response to a simulated building 
load at different test conditions in cooling mode. In steady-state testing, test unit performance was measured by 
keeping the indoor and outdoor test room conditions at steady-state and fixing the compressor and fan speeds to 
specifications provided by the standard. Heat-pump performance comparisons between the two standards were 
presented for use of two different sets of indoor test conditions: 1) the defined indoor test conditions from EXP07 and 
AHRI 210/240 and 2) the same indoor target conditions of 75℉ and 51.1% RH for both testing approaches. Cooling 
seasonal performance was estimated for different climate zones based on a temperature-bin method utilizing the 
measured performance at different ambient conditions for both testing approaches. Using the specified indoor test 
conditions from the two standards, estimates of the cooling seasonal performance based on the steady-state testing 
approach were significantly higher (22% to 27%) compared to the load-based testing methodology. The differences 
in seasonal performance estimates based on the two testing approaches decreased to around 11% to 17% when utilizing 
test results obtained using the same target indoor conditions and same load lines.  However, estimates based on the 
steady-state testing method were still higher compared to the load-based testing method. The primary reasons for these 
differences in seasonal performance estimates are the differences between the two testing methodologies (steady vs 
dynamic), outdoor test conditions, and the approach used to estimate equipment performance at different bin 
temperatures. One of the next steps will be to perform a similar comparative study in heating mode for the two test 
methodologies. 

REFERENCES 

AHRI. (2012). ANSI/AHRI Standard 210/240-2008. Performance Rating of Unitary Air-Conditioning and Air-
Source Heat Pump Equipment. Air-Conditioning, Heating, and Refrigeration Institute. 

AHRI. (2020). AHRI Standard 210/240-2023. Performance Rating of Unitary Air-Conditioning & Air-Source Heat 
Pump Equipment. Air-Conditioning, Heating, and Refrigeration Institute. 

ASHRAE. (2010). ANSI/ASHRAE Standard 116-2010. Methods of Testing for Rating Seasonal Efficiency of Unitary 
Air Conditioners and Heat Pumps. American Society of Heating, Refrigerating and Air-Conditioning 
Engineers. 

ASHRAE. (2017). Energy Estimating and Modeling Methods. In 2017 ASHRAE Handbook - Fundamentals. 
American Society of Heating, Refrigerating and Air-Conditioning Engineers. 

ASHRAE. (2019). ANSI/ASHRAE Standard 37-2009 (RA 2019). Methods of Testing for Rating Electrically Driven 
Unitary Air-Conditioning and Heat Pump Equipment. American Society of Heating, Refrigerating and Air-
Conditioning Engineers. 

Cheng, L., Dhillon, P., Horton, W. T., & Braun, J. E. (2021). Automated laboratory load-based testing and 
performance rating of residential cooling equipment. International Journal of Refrigeration, 123, 124–137. 
https://doi.org/10.1016/j.ijrefrig.2020.11.016 

Cheng, L., Patil, A., Dhillon, P., Braun, J. E., & Horton, W. T. (2018). Impact of Virtual Building Model and 
Thermostat Installation on Performance and Dynamics of Variable-Speed Equipment during Load-based 
Tests. International Refrigeration and Air Conditioning Conference, Paper 2078. 
https://docs.lib.purdue.edu/iracc/2078 

CSA. (2019). CSA EXP07:19 Load-based and climate-specific testing and rating procedures for heat pumps and air 
conditioners. 

Dhillon, P., Horton, W. T., & Braun, J. E. (2021a). Load-Based Testing Methodology for Evaluating Advanced Heat 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 

https://docs.lib.purdue.edu/iracc/2078
https://doi.org/10.1016/j.ijrefrig.2020.11.016


 
   

 
 

     

  
  

 
 

 
 

  
 

  
 

 
    

 
  

   
 

 
   

 
  

    
    

 
 

 
      

    
         

 

2519, Page 12 

Pump Control Design. 13th IEA Heat Pump Conference. 
Dhillon, P., Horton, W. T., & Braun, J. E. (2021b). Demonstration of a Load-Based Testing Methodology for 

Rooftop Units with Integrated Economizers. International Refrigeration and Air Conditioning Conference, 
Paper 2521. 

Dhillon, P., Patil, A., Cheng, L., Braun, J. E., & Horton, W. T. (2018). Performance Evaluation of Heat Pump 
Systems Based on a Load-based Testing Methodology. International Refrigeration and Air Conditioning 
Conference, Paper 2077. https://docs.lib.purdue.edu/iracc/2077 

Dhillon, P., Welch, D., Butler, B., Horton, W. T., & Braun, J. E. (2021c). Validation of a Load-Based Testing 
Method for Characterizing Residential Air-Conditioner Performance. International Refrigeration and Air 
Conditioning Conference, Paper 210073. 

Hjortland, A. L., & Braun, J. E. (2019). Load-based testing methodology for fixed-speed and variable-speed unitary 
air conditioning equipment. Science and Technology for the Built Environment, 25(2), 233–244. 
https://doi.org/10.1080/23744731.2018.1520564 

Kavanaugh, S. P. (2002). Limitations of SEER for measuring efficiency. ASHRAE Journal, 44(7), 27–30. 
Knebel, D. E. (1983). Simplified energy analysis using the modified bin method. American Society of Heating, 

Refrigerating and Air-Conditioning Engineers. https://www.osti.gov/biblio/6072957 
Ma, J., Dhillon, P., Horton, W. T., & Braun, J. E. (2021). Heat-Pump Control Design Performance Evaluation using 

Load-Based Testing. International Refrigeration and Air Conditioning Conference, Paper 2520. 
Patil, A., Hjortland, A. L., Cheng, L., Dhillon, P., Braun, J. E., & Horton, W. T. (2018). Load-Based Testing to 

Characterize the Performance of Variable-Speed Equipment. International Refrigeration and Air Conditioning 
Conference, Paper 2076. https://docs.lib.purdue.edu/iracc/2076 

Proctor, J., & Cohn, G. (2006). Two-Stage High Efficiency Air Conditioners : Laboratory Ratings vs . Residential 
Installation Performance. ACEEE Summer Study on Energy Efficiency in Buildings. 

ACKNOWLEDGEMENT 

This work was supported by the Center for High Performance Buildings at Purdue and the authors are thankful for the 
funding and support of CHPB members. The authors would also like to acknowledge the Herrick Lab’s engineering 
technician - Frank Lee and research associate - Orkan Kurtulus for their help and contributions to the experimental 
work. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 

https://docs.lib.purdue.edu/iracc/2076
https://www.osti.gov/biblio/6072957
https://doi.org/10.1080/23744731.2018.1520564
https://docs.lib.purdue.edu/iracc/2077

	Comparison of Steady-State and Dynamic Load-Based Performance Evaluation Methodologies for a Residential Air Conditioner
	

	1. Introduction
	2. Test Setup and Methodology
	2.1 Load-Based Testing Methodology
	2.2 Steady-State Testing Methodology
	2.3 Seasonal Performance Estimation

	3. Test Results
	3.1 Load-Based Testing Results
	3.2 Steady-State Testing Results
	3.3 Seasonal Performance Comparisons

	4. Conclusions

