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ABSTRACT 

This paper presents the calibration procedures of the capacitive sensors for measuring void fraction in headers with 

R134a. The sensors utilize the difference of dielectric constants between the liquid and vapor phases of the two-phase 

mixture. The 3D printed header has eleven microchannel-tube protrusions. Eleven capacitive sensors are located 

between protrusions. All sensors are made to be identical as much as possible in the manual fabrication procedures. 

Because the electric field within each sensor is not perfectly uniform, sensors need to be calibrated before measuring 

void fraction. Another transparent 3D printed header with the same inner geometry is installed at the same location of 

the facility for visualization and pressure drop measurement purposes. By controlling valves, the flow is directed to 

either header. The calibration is based on three methods: mass measurement (quick-closing valves, QCV), 

visualization (with a high-speed camera), and capacitive signals obtained from eleven individual sensors. After the 

calibration procedure, all sensors are ready to measure the void fraction in vertical headers. 

1. INTRODUCTION 

Microchannel heat exchangers (MCHEs) are widely encountered in air-conditioning systems. With the compact 

geometry, the refrigerant charge in the MCHE is reduced from conventional finned tube heat exchangers. However, 

the prediction models of charge in the headers with refrigerant are not reported in the literature, to our best knowledge. 

The void fraction and flow regimes are the two essential parameters that are closely related to the refrigerant charge. 

Due to the complexity of the header geometry and flow patterns within the header, a systematic way to measure void 

fractions in headers with refrigerant is also missing in the literature. Some common methods used to measure void 

fractions in experiments are X-ray/γ-ray absorption (Isbin et al., 1957), optical (Wojtan et al., 2005), wire mesh probe 

(Da Silva et al., 2010), quick-closing valves (QCV) (Qian & Hrnjak, 2019) and capacitive method (Abouelwafa & 

Kendall, 1980; Canière et al., 2007; Qian & Hrnjak, 2020). Compared to other methods, capacitive sensors are non-

intrusive. The cost of the sensor is relatively low. 

Eleven capacitive sensors are designed and built to measure void fractions in headers simultaneously based on the 

same principles from the former study (Qian & Hrnjak, 2020, 2021). This method utilizes the difference of permittivity 

between the liquid and vapor phases of two-phase flow. However, the electric field within the sensors is not uniform. 

The sensors are hand-made and not fully identical. A calibration procedure is necessary before the sensors can be 

applied to measure void fraction in headers. In this paper, the calibration procedures for both vertical and horizontal 

headers are proposed. After the calibration, sensors are capable of measuring void fractions in the vertical headers 

between every two protrusions. 
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2. Experimental method 

The schematic drawing of the facility is shown in Figure 1. Pure subcooled liquid refrigerant (R134a) is pumped 

through a mass flow meter with a gear pump. Enthalpy is obtained from refrigerant pressure (Psub,i) and temperature 

(Tsub,i) before the heater. The flow is then heated by an electric heater, which is control by a VFD. The power of the 

heater is measured by a watt transducer before the VFD. With the measured power, mass flow rate, and inlet enthalpy, 

refrigerant quality after the heater is determined. After the refrigerant is mixed in the mixer, it flows into the test 

section, which includes two parts: visualization/DP measurement part and capacitive signal/average void fractions 

part (Figure 2). The model of pressure transducers is Sensotec’s TJE, and the differential pressure sensor is 

Rosemount. T-type thermocouples are used to measure temperature. All the pressure transducers, differential pressure 

transducer, and thermocouples are calibrated before being applied in the facility, and the uncertainties are listed in 

Table 1. Both tested parts have the same inner geometry. They are installed at the same height in the facility with the 

same upstream inlet tubes (500 mm of 9.25mm PFA tube). By controlling valves, refrigerant can pass through either 

part. Flow regimes are assumed to be identical in both parts for a specific test condition. After refrigerant passes the 

test section, the refrigerant flows into two coolers whose secondary liquid is glycol then subcooled into liquid 

condition. The subcooled liquid is fed into the gear pump to finish the loop. 

Figure 2 shows the details of both tested parts. For the visualization/DP measurement part (Figure 2a), it is a 3D 

printed, transparent tube with header-like protrusions. It contains ten protrusions and ten pressure measurement ports. 

Each protrusion with a thickness of 3 mm has six microchannels. The pitch between two protrusions is 15.8 mm, 

which is the same as the inner tube diameter without protrusions (D). The other end of each protrusion, which is sealed 

with a flange, for now, has a socket. It can be easily connected to an aluminum microchannel tube for the following 

studies. The total length of this test section is 173.8 mm. Both ends of the section are connected to a steel structure 

and valves. A high-speed camera is used to capture flow regimes with a resolution of 512x512 and a speed of 2200 

frames per second (fps). Phantom CV 2.8 from Vision Research Inc. is used to process the video. Pressure 

measurement ports are named 1 to 10 from low to high. To measure the pressure difference, port number 10 (assumed 

to be the lowest pressure port) is chosen to be the pressure baseline (connected to the lower-pressure input of the DP 

sensor). All other nine ports are connected to the higher-pressure input of the DP sensor by switching in a ball-valve 

system. By this method, the instrumental uncertainties from using multiple DP sensors can be reduced. All clear tubes 

connecting the DP sensor and the tested parts are heated, and no liquid is observed in the tubes. For the capacitive 

signals and the average void fraction measurement part (Figure 2b), 11 sensors are applied between 11 tubes in the 

header. At both ends of the part, two plug valves are installed as quick-closing valves (QCV) to measure the average 

void fraction. The void fraction measurement procedure is similar to the previous study in tube conditions (Qian & 

Hrnjak, 2019). The mass flux calculation is based on the minimum cross-sectional area of the header. For each test 

condition, capacitive signals, the average void fraction, the pressure drop in the header, and visualization results are 

obtained. Table 2 lists the experimental conditions that have been tested. 

The capacitive signals are read directly from sensors in pF for each test condition. Before each set of experiments is 

conducted, capacitive signals for two base points are measured: capacitive signals for full vapor phase (𝐶𝑉𝑎𝑝𝑜𝑟) and 

full liquid phase (𝐶𝐿𝑖𝑞𝑢𝑖𝑑). 𝐶𝐿𝑖𝑞𝑢𝑖𝑑 is obtained at 33 ºC. Some researches (dos Reis & Goldstein, 2005) indicated that 

the effect of temperature on relative permittivity of refrigerant vapor phase could be neglected. Hence, 𝐶𝑉𝑎𝑝𝑜𝑟 is 

measured at room temperature. After signals of the two base points are determined, the capacitive signals for other 

test conditions are measured. are also calculated: ( 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ) Time-averaged 𝐶𝑉𝑎𝑝𝑜𝑟 , 𝐶𝐿𝑖𝑞𝑢𝑖𝑑 and 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝐶𝑉𝑎𝑝𝑜𝑟 
̅̅ ̅̅ ̅̅ ̅̅ ̅ and �̅̅�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The time-averaged normalized capacitance �̅̅�𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅  are defined as follows: ̅̅ ̅̅ ̅̅ ̅̅ , 𝐶𝐿𝑖𝑞𝑢𝑖𝑑 

̅̅ ̅̅ ̅̅ ̅̅𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  − 𝐶𝑉𝑎𝑝𝑜𝑟 ̅̅ ̅̅ ̅̅ ̅̅  = (1)𝐶𝑛𝑜𝑟𝑚 ̅̅ ̅̅ ̅̅ ̅̅𝐶𝐿𝑖𝑞𝑢𝑖𝑑 

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑉𝑎𝑝𝑜𝑟 

The denominator shows the entire range of signal difference (quality from 0 to 1 for each mass flux). It is assumed 

constant for the duration of the one set of experiments. The numerator shows how much larger the measured signal is 

than the full vapor condition. Hence, the normalized signals are typically from 0 (fully vapor) to 1 (fully liquid). 
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Figure 1: Test facility, test section in the red box, DP measurement rig in the black box 

Figure 2: (a) visualization and DP measurement part; (b) capacitive signals and the average void fraction 

measurement part 

Table 1: Instrumental uncertainties 

Instrument Sensotec’s pressure 
transducer 

T-type 

thermocouple 

Rosemount 0 to 30 

inH2O DP 

transmitter 

Ohio Semitronics 

GW5-024CX5 watt 

transducer 

Uncertainty ±1% FS ±0.1 ºC ±0.2% FS ±0.2% FS 

Table 2: Test conditions 

Working fluid Tsat Orientation Mass flux Vapor quality 

R134a 14.5 ºC 
Horizontal and 

vertical upward 

28, 43, 58, 72 kg.m-

2.s-1 

Subcooled liquid, 

0.1-0.9 and 

superheat vapor 
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3. RESULTS FOR VERTICAL HEADERS 

3.1 Visualization 
Visualization results are first studied to analyze flow regimes in the test section. In the mass flow rate explored in this 

paper, we observed three major flow patterns for vertical upward flow: slug flow, churn flow, and annular flow (Figure 

3). 

Slug flow: Vapor slugs appear periodically with the liquid bridge in the middle. The slugs which are disturbed by 

protrusions are followed by some small bubbles. 

Churn flow: The total effect of shear on interface, pressure gradient, and gravity on a droplet is not constant upwards. 

Also, due to the disturbance of the protrusions, flow structures are very chaotic. 

Semi-Annular flow: Liquid flows along the wall of the tube with vapor in the central core. Some liquid is trapped 

between protrusions. The interface between liquid and vapor core is wavy. 

Flow regimes that appear in this geometry are compared to those in the smooth tubes (Qian & Hrnjak, 2019), and the 

flow regime map is shown in Figure 4. The visualization indicates that the flow structures of all three flow regimes in 

the entire test section are similar (Figure 5a). If the flow regime does not change along the section, the local void 

fraction can be assumed constant and equals to the measured average void fraction by QCV. All eleven sensors can 

then be calibrated to match the experimentally measured average void fraction. However, it is not enough to support 

the assumption merely with the 2D visualization results. Pressure drop and capacitive signal results are further 

analyzed in the following sections. 

Figure 3: Flow patterns in the tube w/ header-like protrusion (vertical upward flow) 

Figure 4: Flow regimes comparison between smooth tube and tube with protrusions 
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3.2 Pressure drop 
Figure 5 shows the control volume of the measured pressure drop. In the control volume, pressure drop can be divided 

into four major contributions: ΔPhydrostatic, ΔPfriction, ΔPlocal (due to protrusions), and ΔPexpansion/contraction. ΔPhydrostatic is a 

function of density, ρ. The density ρ within the control volume is also a function of void fractions, α. When the inlet 

quality is lower, the local void fractions will also be smaller, and the hydrostatic pressure drop is more significant. 
𝐺2 

ΔPlocal is caused by protrusions. Tuo and Hrnjak (2013) proposed ΔPlocal , where kloss is the local loss= 𝑘𝑙𝑜𝑠𝑠 2𝜌 

coefficient determined by experiments. ΔPlocal is again a function of local void fractions. ΔPfriction is a function of many 

variables, including density, viscosity and surface tension. It is calculated with the model from Friedel (1978). Due to 

the low mass flow rate, ΔPfriction only accounts for a small portion of the total pressure drop in most cases. 

ΔPexpansion/contraction is more important at the entrance and the exit of the test section for higher inlet qualities. It is 

estimated by the model from Chen et al. (2010). Overall, the total pressure drop within a control volume is strongly 

dependent on the local density, which is a function of local void fractions. If the pressure drop along the test section 

does not change, the local void fractions can be assumed to be constant and equal to the average void fraction measured 

from QCV. Figure 6 shows the pressure drop results for mass flow rates from 3 to 7.5 g/s. Results show that the 

pressure drop for all locations are very similar to each other along the section. When the inlet quality is 0 (fully liquid), 

the measured pressure drop between two protrusions is close to the calculated hydrostatic pressure drop based on the 

geometry and thermal properties of R134a. In the lower mass flow rate and inlet quality region, which the hydrostatic 

pressure drop is dominant, as the quality increases, total pressure drop becomes smaller. However, the higher mass 

flow rate and quality region, the total pressure drop is larger when the inlet quality is higher. In this region, hydrostatic 

pressure is relatively small, but other contributions (ΔPfriction and ΔPlocal) are more dominant. When the inlet quality 

equals to 1 (fully vapor), ΔPcontraction at the exit of the section is relatively larger. It results in a very small or even 

negative pressure drop at the location of 9-10 (Figure 6). 

Figure 5: (a) Flow regimes do not change along the section from visualization results; (b) control volume of the 

measured pressure drop 
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Figure 6: Pressure drop along the section, vertical 

3.3 Capacitive signal patterns 
Besides the results of the pressure drop along the section, capacitive signals are analyzed to validate the assumption. 

̆Drahos̆ and Cermák (1989) had a review on statistical signal processing for characterizing flow patterns. Three 

domains can be utilized to characterize flow patterns: amplitude domain, time domain and frequency domain. In the 

amplitude domain, probability density function (PDF) or probability density estimation (PDE) can be used to estimate 

signal amplitude distributions. Kernel density estimation (KDE) is a non-parametric method of PDF for using a data 

set to estimate probabilities. Autocorrelation functions (ACF) and cross-correlation functions (CCF) are usually 

involved in having statistical analysis in the time domain. For the frequency domain, the signals can be described by 

the power spectral density (PSD) by using the Fourier transform. It is a function of the frequency and shows at which 

frequency variations are substantial. In this study, KDE and PSD of the signals and cross-sectional void fractions 

measured by the sensor are used to characterize flow regimes. 

Figure 7 shows the KDE and PSD of the signals from different sensors of vertical upward flow with mass flow rate 

7.5 g s-1 and inlet quality xin=0.1. Sensors #2, #6, and #9 show a similar shape (one major peak) in the KDE diagram. 

In the PSD diagram, the dominant frequency from all sensors is between 0-2 Hz. Based on the visualization, pressure 

drop, and capacitive signals, it is assumed the void fraction along the section does not change and equals the average 

void fraction measured by QCV. 

Figure 7: KDE (a) and PSD (b) of the signals from different sensors, vertical upward, 7.5 g s-1, xin=0.1 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 



 

  
 

   

 

    
    

    

     

      

 

 

 

    

 

 

 

       

   

      

     

         

    

      

      

       

     

         

    

    

    

  

    

       

       

 

 

      

Signal (i) 

SellSor # l , vertical upward 

I • 

0.9 ···*· 
0.8 ·-,-~ .. • 
0.7 ~ -.. ;, 

::;: 0.6 . ., 
§ 0 j ·· .... i. 
] 0.4 ··· .... . . ~ 
"9 0.3 . 

-3 0.2 -~---. y -0.03x' + 0.0459x' - l.0138x - t 991i1 
0.1 R' = 0.9953 • ··• .. 

0 ··· ...• 

0 0.1 0.2 0 3 OA 0.5 0.6 0.7 0.8 0.9 I 

I 

::;:09 

SO 8 
E 0.1 
~ 0.6 
,g 0.5 

Sensor # I, ve11ical upward 

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

Void fraction from QCV [-] 

72 kg,m's (7.5 g,s). , • 0 9, Scmi•Annulu 

2454, Page 7 

3.4 Calibration results for vertical headers 
Figure 8 shows the sensor calibration results for the vertical upward flow, similar to the calibration procedure of 

vertical tubes (Qian & Hrnjak, 2020). For each sensor (1 to 11), time-averaged normalized signals are plot with void 

fractions measured by QCV for all tested conditions. Then with the curve fitting, the relation between capacitive 

signals and the local void fractions is established. Most void fraction data measured by the sensor falls into the ±10% 

deviations of the experimental results by QCV for vertical upward flow. 

Figure 8: Individual sensor calibration for the void fraction measurement, vertical 

4. RESULTS FOR HORIZONTAL HEADERS 

The calibration on the configuration of horizontal flow with upward protrusions is conducted first. Visualization 

results are first obtained with a high-speed camera (Figure 9). Two major flow regimes are observed: stratified-wavy 

and semi-annular flow. When the inlet quality and mass flux are relatively small, most of the liquid is at the bottom 

of the header. The boundary between the liquid and vapor phases is wavy. As the quality and mass flux increase, more 

liquid is entrained with the vapor and carried to the up portion of the header. Some liquid is trapped between 

protrusions. Hence, it is not a full annular but semi-annular flow. 

Flow patterns are changing along the section according to the video footage. Local void fractions (αi) does not equal 

to the average void fraction( α̅, from QCV). This means sensors cannot be calibrated in the way of vertical flow 

mentioned in the last section. To calibrate each individual sensor, QCV A and B in the test section (from Figure 1) are 

closed with different liquid refrigerant levels within. After waiting for a period, the liquid is fully stratified. Hence, all 

local void fraction is equal and can be calculated from the average void fraction from QCV (Figure 10a). Then all 11 

sensors are calibrated with different liquid levels, and the relation between void fractions and capacitive signals is 

found (Figure 10b). Further validation is carried out in the extremely low flow rate condition. In such a condition, the 

liquid-vapor interface does not touch protrusions (stratified/stratified-wavy flow). Visualization, void fractions from 

QCV, and signals from calibrated sensors are combined in the validation procedure. The liquid-vapor boundary is 

captured and digitalized based on an inner tube in the footage (Figure 11). Liquid fraction (1-α) is calculated from the 

digitalized boundary in the coordination. The liquid fraction from the visualization and sensors agree well (Figure 

12a). The liquid fraction from the QCV and sensor are also similar (Figure 12b). The repeatability of the sensors is 

also tested with relatively good results (Figure 12c). 

Figure 9: Flow patterns in the tube w/ header-like protrusion (horizontal flow with upward protrusions) 
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Figure 10: Individual sensor calibration for horizontal flow with upward protrusions, (a) calibration method; (b) 

calibration results 

Figure 11: Visualization and coordination building of low-flowrate condition 

Figure 12: Low-flowrate condition validation 
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The void fraction in this configuration is always larger than 0.5 due to the upward protrusions. The experiments with 

downward protrusions are also conducted to finish the whole-range calibration. Figure 13 shows the flow regimes for 

this configuration. More liquid is trapped between protrusions due to the influence of gravity. When the quality is 

relatively small, the wavy liquid-vapor boundary is above protrusions. As the quality and mass flux increase, most of 

the boundary is lower than protrusions. Liquid either passes through the gaps between protrusions and tube wall or is 

carried by the vapor. The boundary is step-like in the videos. 

Sensors are also calibrated in the no-flow condition, similar to the upward protrusion condition. The relations between 

signals and void fractions are established by changing the liquid level within the sensor. Figure 14 shows the relation 

between void fractions and normalized signals for both upward and downward protrusion configurations. As shown 

in the diagrams, the relations from some of the sensors are continuous, which is preferred. This means these sensors 

are symmetrical, which is not influenced by the orientation of the header. However, some sensors provide 

discontinuous relations for these two configurations. This may be because that all sensors are not fully identical and 

symmetric due to the individual-making procedures. If the sensors are fully identical, such as being made by the 

assembly line, the uncertainties for horizontal header void fraction measurement will be reduced. For now, the sensor 

will only be used with the upward protrusion configuration. Further calibration or modification may be needed before 

using it for other horizontal configurations. 

Figure 13: Flow patterns in the tube w/ header-like protrusion (horizontal flow with downward protrusions) 

Figure 14: Relation between void fractions and normalized signals are continuous for sensors in both 

configurations. Some are not. 

5. CONCLUSIONS 

This paper presents the calibration procedures of the capacitive sensors for measuring void fraction in vertical and 

horizontal headers with R134a. Because the electric field within each sensor is not perfectly uniform, and all eleven 

sensors are not identical, calibrations are needed before measuring void fraction. The calibration is based on the 

following parameters: the average void fraction measurement with quick-closing valves, flow regime visualization, 

the pressure drop along the header, and capacitive signals analysis. After the calibration procedure, the sensors are 

capable of measuring void fractions in vertical headers. For the horizontal headers, further modifications or 

calibrations may be needed. 

18th International Refrigeration and Air Conditioning Conference at Purdue, July 13-16, 2020 
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NOMENCLATURE 

C Capacitance signals (pF) 

D Inner tube diameter (mm) 

G Mass flux (kg/m2s) 

L Axial electrode length (mm) 

P Absolute pressure (kPa) 

T Temperature (°C) 

x Vapor quality (–) 

 Void fraction (–) 

Subscript 

vapor  Vapor phase 

liquid Liquid phase 

measure Measured values 

norm Normalized 

sub Subcool 

i inlet 
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