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Modeling and Analysis of Pressure Drop Oscillations in Horizontal Boiling Flow 

Hongtao QIAO*, Christopher R. LAUGHMAN 

Mitsubishi Electric Research Laboratories 

Cambridge, MA 02139, USA 

{qiao, laughman}@merl.com 

ABSTRACT 

In general, two-phase flow phenomena can be described based on the one-dimensional conservation laws. Models 

with different formulations can be obtained with different assumptions. This paper presents three models with different 

complexity to simulate pressure drop oscillations. The direct comparison indicates that there are substantial differences 

between these models. The mechanism of pressure drop oscillations is discussed and the effect of operating parameters 

on system instability is explored. It is shown that two bifurcation points can exist when varying heat input and inlet 

subcooling. Root locus analysis corroborates the simulation results. 

Keywords: Thermo-hydraulic, Instabilities, Two-phase, Boiling flow, Pressure drop oscillations, Modeling 

1. INTRODUCTION 

Two-phase flow boiling systems are widely used in the HVAC&R, power generation, thermal management, 

chemical and other industries. Under certain conditions the pressure-drop vs. flow-rate characteristic curve of a boiling 

system (internal curve) may exhibit an N-shape (or S-shape) due to distinct thermal-hydraulic behavior between liquid, 

two-phase and vapor. Depending on the corresponding characteristic curve of the external system, the operational 

points can be stable or unstable. When system operation is unstable, repeated oscillations of flow rate and system 

pressure occur and can cause undesirable issues such as mechanical vibrations, thermal fatigue and control failure. 

Under extreme circumstances, flow oscillations are so severe that the amount of fluid flow in the system may decrease 

dramatically, leading to elevated heat transfer surface temperatures and possible system burnout (Ruspini et al., 2014). 

Thermally induced flow instabilities are of a great concern in the design and operation of many industry systems 

and thus have drawn attention of many researchers. A whole series of interesting and noteworthy papers focusing on 

experimental investigations and theoretical analyses on dynamic instabilities of two-phase flow have been published 

since 1960s. In general, two-phase dynamic instabilities can be classified into the following categories based on 

different physical mechanisms, Ledinegg instability, pressure-drop oscillations (PDO) and density-wave oscillations 

(DWO), etc. Ledinegg instability often occurs when the slope of the internal characteristic curve is negative and 

steeper than the external characteristic curve and multiple intersections of the internal and external characteristics exist. 

Different from Ledinegg instability, the conditions for the occurrence of PDO require the external characteristics 

steeper than the internal characteristics and the presence of a compressible volume in the flow circuit. In comparison 

with low-frequency PDO, high-frequency DWO is caused by the delay in the propagation of disturbances and the 

feedback processes conditioning the inlet parameters. Due to page limit constraints, we are unable to discuss in detail 

all three types of flow instabilities. This presented paper will focus on the mathematical modeling and analysis of 

PDO. 

Two-phase flow phenomena can be described based on the one-dimensional conservation laws. Models with 

different formulations can be obtained with different assumptions. Among the models that are used to predict the flow 

instabilities, the integral method is often applied to model the heater tube of the involved system because it can 

significantly reduce the dimensionality of the problem. With this method, the dynamic behavior of fluid in the heater 

tube is neglected and steady-state equilibrium conditions with linear enthalpy profile are assumed even during 

transients. Although this simplified model provides insight when conducting stability analysis, its underlying 

assumptions cannot be fulfilled under certain conditions, resulting in completely opposite predictions when comparing 

with other models. Another popular choice is to use high-order fully discretized formulation based on finite 

difference/finite volume method. However, the fully-discretized model yields spurious high frequency oscillations 

which are often mistaken for density-wave oscillations due to discretization effects. One of the remedies for this 

problem is to use the moving boundary method to model the fluid flow in the heater tube. Unfortunately, a 

comprehensive review of literature indicates that this has not been done yet. To fill in this research gap, this paper 
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aims to propose a new low-order model using the moving boundary method to predict the low frequency PDO. This 

new model should not only eliminate the high frequency modes due to discretization artefacts, but also have the merits 

of preserving physical integrity with minimum dynamics states. The remainder of the paper is organized as follows. 

Section 2 describes the physical mechanisms of PDO. Section 3 gives the details of the proposed new model along 

with the conventional integral model and fully-discretized model. Simulation results are compared and discussed in 

Section 4. The conclusions are summarized in the final section. 

2. MECHANISM OF PDO 

Figure 1 illustrates the experimental system that is often used to study the PDO. The boundary conditions of the 

system, i.e., pressure pi and fluid temperature Ti in the main tank as well as the exit pressure pe, are kept constant. p is 

the pressure in the surge tank (compressible volume), while Gi and Go is the mass flux entering and leaving the surge 

tank, respectively. Typical steady-state characteristic curves of pressure difference (between the surge tank and exit) 

versus Gi and Go are also given. Gi curve (the external characteristics) is often a parabola that opens downward since 

it is plotted against p - pe instead of pi - p, whereas Go curve (the internal characteristics) often exhibits an N-shape 

with two positive slope regions and one negative slope region. Under the steady-state operation, the equilibrium point 

can be determined by the following equations (Kakac and Bon, 2008) 
2

i i i
p p K G 

 
,e o

p p f G Q 

i o
G G

(1) 

(2) 

(3) 

where Ki and Q are the constant for the inlet restriction and heat input to the heater tube, respectively. The equilibrium 

is stable if it lies in the positive slope region of the internal characteristics. However, the equilibrium will be unstable 

if it is located in the negative slope region of the internal characteristics (as shown in Fig. 1). In this case PDO limit 

cycles will be likely to occur. When operating in the negative slope region, a slight increase in the surge tank pressure 

p will cause both Gi and Go to decrease. Because the Gi curve is steeper than the Go curve, Go decreases more than Gi, 

resulting in more liquid accumulation in the surge tank and elevating its pressure p. Therefore, the operating point will 

move upward along the internal characteristics. When the operating point reaches its peak point A, there is still an 

imbalance between Gi and Go, causing further increase in p. However, any higher surge tank pressure than point A is 

associated with a significant increase in Gi, which pushes system operation to the all-liquid side of the internal 

characteristics, i.e., point B. Since Go is now much larger than Gi, p starts deceasing and then the operating point 

moves downward along the internal characteristics. When the operating point reaches the bottom point C, Go is still 

larger than Gi, causing further decrease in p. Any lower surge tank pressure than point C is associated with a significant 

decease in Gi, which pushes system operation to the point D. Now Gi is less than Go again, which causes the surge 

tank pressure to increase. As a result, the operating point moves upward until it reaches point A where another repeated 

PDO limit cycle starts again. In summary, as long as the equilibrium lies in the negative slope region of the internal 

characteristics, a small disturbance will push the system away from the equilibrium and result in limit cycles with 

trajectory ABCDA. Please note that the influence of system dynamics is not considered in the above qualitative analysis. 

Detailed analysis of limit cycle trajectory with system dynamics taken into account will be given in Section 4. 
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Fig 1. Schematic of the PDO system 
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3. THEORETICAL MODELS 

In this section, we will describe the development of the proposed model using moving boundary method. 

Meanwhile, two conventional models (integral model and fully-discretized model) will be also presented to help 

readers better understand how these three models differ from each other in modeling the fluid flow in the heater tube. 

Before proceeding with that, the common assumptions of these models are given below. 

(1) The main tank and the system exit maintain at constant pressures. 

(2) Vapor phase and liquid phase are in thermodynamic equilibrium conditions 

(3) Energy storage of heater tube walls is negligible. 

(4) Pressure drop between the main and surge tank is concentrated at the inlet restriction. 

(5) Pressure drop between the surge tank and system exit is concentrated in the heater tube. 

(6) Two-phase homogeneous model. 

(7) Local throttling losses between the surge tank and system exit are neglected. 

(8) Heat input is uniformly supplied to the heater tube. 

The inlet mass flux Gi can be determined by the momentum balance 

 
1

1
i i i

i i

l

dG G G
p p K

dt L 
  

 
 
 

(4) 

where L1 is the pipe length between the main and surge tank. 

The pressure dynamics in the surge tank can be described based on the mass balance (Stenning et al., 1967) 

 
2

0

i o c

o l

G G Adp
p

dt p V 


 (5) 

where p0 and V0 is the equilibrium pressure and the equilibrium volume of gas in the surge tank, respectively. 

For the heater tube, one-dimensional momentum balance is considered. 
2

sin
2

h

G G p f G G
g

t z z D
 

 

  
    

  

 
 
 

(6) 

Please note that Eqs. (4) and (5) remain the same in all three models since the main difference between these models 

lies in the way how the heater tube is modeled. However, Eq. (6) will be handled differently in these models, which 

will be discussed in detail subsequently. For all models, pi, pe, Ki and Q are given, whereas Gi, Go and p are the state 

variables that need to be computed. 

3.1 Integral Model 

Eq. (6) is a PDE that describes the temporal and spatial variations of fluid flow in the heater tube. In order to 

simplify the analysis, Eq. (6) will be integrated over the heater tube and a lumped model can be obtained with 

additional assumptions: (1) gravity effect is neglected, (2) mass flux Go does not change spatially from the surge tank 

to system exit, and (3) linear enthalpy profile is assumed in the heater tube (Padki et al., 1992). 

   
2

,

1
1

o o l

e fric o

t l e

dG G
p p p G Q

dt L



 
    

   
  

   
(7) 

The enthalpy of fluid leaving the heater tube is 

 /
e l o c

h h Q G A  (8) 

where hl is the enthalpy of liquid entering the heater tube. 

Comparing he with the enthalpy at the bubble and dew points hf and hg evaluated at the surge tank pressure p, it 

is very easy to determine whether the fluid flow exits the heater tube in the state of vapor, liquid or two-phase. 

Meanwhile, the length of respective regions (subcooled region, two-phase region, and superheated region) can be also 

calculated as follows. 

   min , /
sc t e f l e l

L L h h h h h    

    min max , , /
tp t e f g f e l

L L h h h h h h    

   max , /
sh t e g g e l

L L h h h h h    

(9) 

(10) 

(11) 
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Different from the integral model in literature in which pressure drop is often calculated based on a curve-fitted 

function of mass flux and exit quality, this paper use Churchill correlation (Churchill, 1977) and Jung-Radermacher 

correlation (Jung and Radermacher, 1989) to calculate frictional pressure drop for single-phase and two-phase regions, 

respectively. Mean thermal-physical properties of fluid can be used to calculate pressure drop for single-phase region, 

while Newton-Cotes seven point formula can be used to numerically compute pressure drop for the entire two-phase 

region. 

3.2 Discretized Model 

It is evident that steady-state mass and energy balances are assumed in the integral model. However, these 

assumptions can be only justified for big compressible upstream tank and short heater tube. When the magnitude and 

the frequency of PDO increase, neglecting the inertia of mass and energy of two-phase flow can lead to significant 

errors when predicting its dynamics. Therefore, a discretized model is required to give more accurate results. 

However, the standard model of a discretized pipe with n segments consist of 3n ODEs. In order to reduce model 

complexity, it is assumed that the time derivatives of pressures in the heater pipe is the same of that in the surge tank. 

With this assumptions, the number of ODEs reduces to 2n+1. The discretized equations using finite volume method 

for segment i are (Qiao et al., 2015; Qiao and Laughman, 2018). 

1/ 2 1/ 2

i i i

i i

i i

dhdp
z G G

p dt h dt

 


 

 
  

 

 
 
 

(12) 

   
1/ 2 1/ 2 1/ 2 1/ 2

/
i

i i i i i i i t

dh dp
z G h h G h h Q z V

dt dt
 

   
     

 
 
 

(13) 

where the partial density derivatives are evaluated using the surge tank pressure. 

The global momentum balance is given by 

 
2 2

1/ 2

,

11/ 2

1 n

o n o

e fric i

it n l

dG G G
p p p

dt L  






    
   

  
   

 (14) 

In the above 2n+1 equations, there are n+1 state variables (p and h) and n algebraic variables (mass flux G). Please 

note that local frictional pressure drop will be evaluated for each segment and the total sum is used in Eq. (14). 

3.3 Moving Boundary Model 

The moving boundary method is characterized by dividing the pipe into different control volumes, each of which 

exactly encompasses a particular fluid phase (vapor, two-phase or liquid) and is separated by a moving boundary 

where fluid phase transition occurs. The one-dimensional governing equations are integrated over each control volume 

using the Leibniz integration rule. This method can significantly reduce model complexity while still preserving the 

prevailing physics. This paper uses the model presented in Qiao et al. (2016) and more details can be found in the 

paper. For the sake of brevity, here we only give the governing equations. 

The mass and energy balances for the subcooled region are 

 1

1 12

sc

sc f o

dLd
L G G

dt dt


     (15) 

 1 1 1

1 1 121

sc sc

sc f f o l f

t

dL Ldh d dp
L h h h G h G h Q

dt dt dt dt L


        
 

    
 

(16) 

The mass and energy balances for the two-phase region are 

   2 2

2 12 23

2

tpsc

tp f g g

dLdLdp
L G G

p dt dt dt


   


     


(17) 

 
   2 2

12 232

2

1
tp tpsc

tp f f g g g g f g

t

dL Lh dLdp
L h h h h G h G h Q

p dt dt dt L


   


       



 
    

  

(18) 

The mass and energy balances for the superheated region are 

 
 

3

3 23

sc tp

sh g e

d L Ld
L G G

dt dt


 


    (19) 
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 
 

3 3 3

3 3 233

sc tp sh

sh g g g e e

t

d L Ldh d dp L
L h h h G h G h Q

dt dt dt dt L


  


      

 
    

 
(20) 

Please note that the model structure could change due to the varying number of fluid phases under large transients. 

In the context of PDO, the state of fluid leaving the heater tube could change periodically between vapor phase and 

two-phase. In this case, a numerically robust scheme is required to handle the switch between different model 

structures. 

All three models were implemented in the Modelica language using the Dymola 2020x simulation environment, 

and the DASSL solver was used to integrate the set of differential algebraic equations with a tolerance of 10-5. 

4. RESULTS AND DISCUSSION 

As the first step towards the comparison of these different models, we constructed three cases to verify the efficacy 

of these models. The conditions and parameters of these cases were given in Table 1. Figs. 2, 3 and 4 illustrated the 

simulation results for case 1, 2 and 3 with the integral model, discretized model and moving boundary model, 

respectively. It was evident that PDO with different amplitude and frequency was generated in each case, indicating 

that the models were appropriate. It was worth noting that the superimposed high-frequency mass flux oscillations 

observed in the results obtained by the discretized model were discretization artefacts and should not be mistaken for 

density-wave oscillations. These high-frequency oscillations were generated whenever the fluid state in a control 

volume transitioned between single-phase and two-phase, and the corresponding correlations for calculating pressure 

drop were switched. Since the discretized model did not track the phase boundaries, sudden change in pressure drop 

calculation could result in these discontinous edges. In comparison with the discretized model, the integral model and 

the moving boundary model did not exhibit these high-frequency modes because phase boundaries were tracked in 

these two models and the length of each phase was continous. 

As mentioned earlier, the pressure-drop limit cycle shown in Fig. 1, which was often used to explain the 

generation mechanism of PDO, was nothing more than conceptual because it did not take system dynamics into 

account. Fig. 5 illustrated the stable trajectory of PDO in case 1 when system dynamcis were accounted for. The 

trajectory of the inlet mass flux Gi was counter-clockwise and intersected with the external characteristics at M and 

N. From Eq. (4), one can know that dGi/dt should be equal to zero at both M and N, indicating that Gi would achieve 

its minimum and maximum at M and N respectively. When Gi was on the right-hand side of the external 

characteristics, it meant that Gi was larger than its corresponding steady-state value at the same surge tank pressure. 

As a result, dGi/dt was negative and Gi would decrease accordingly, pushing the operating point to move upwad along 

the trajectory. Meanwhile, from Eq. (5) one can also know dp/dt will be positive when Gi was greater than the steady-

state value, causing the surge tank pressure to increase. Therefore, both equations explained that Gi trajectory CNAMC 

moved in the counter-clockwise direction. In the contrast, the trajectory of the outlet mass flux Go ABCDA moved in 

the clockwise direction. When Go was above the internal characteristics, one can know that driving force p - pe of Go 

was greater than its required steady-state value that sustained the same mass flux. From Eq. (7) one can know that 

dGo/dt should be positive and Go will increase. On the other hand, when Go was larger than Gi (Go should be on the 

right of Gi), from Eq. (5) we can know that the surge tank pressure should decrease. Again, both Eq. (5) and (7) 

indicated that the Go trajectory moved in the clockwise direction. Go trajectory intersected with the internal 

characteristics at D and B where Go achieved its minimum and maximum respectively because dGo/dt was equal to 

zero at these two points. Gi and Go trajectories intersected with each other at A and C where the surge tank pressure 

achieved its maximum and minimum respectively because Gi and Go were equal and dp/dt was zero at these two points 

(see Eq (5)). Please note that the Gi and Go trajectories did not intersect with the external characteristic at the same 

points, although in this case M and N were very close to A and C, respectively. The trajectories shown in Fig. 5 

manifested that pressure drop limit cycle followed neither the internal nor external characteristics when system 

dynamics were present. 
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Fig. 2 PDO with the integral model (case 1): (a) surge tank pressure; (b) mass flux 
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Table 1. Parameters of simulation cases 

Parameter Case 1 Case 2 Case 3 

Fluid R134a R134a R134a 

Tube length (m) 1.2 0.6 0.6 

Tube diameter (mm) 7 7 7 

L1 (m) 1.0 1.0 1.0 

V0 (liter) 0.7 5.0 7.0 

Ki 40 40 40 

Q (W) 850 1370 1500 

pi (Pa) 4e5+4e3 4e5+4e3 4e5+4e3 

pe (Pa) 4e5 4e5 4e5 

Ti (K) 258 246 246 

Single-phase DP Churchill Churchill Churchill 

Two-phase DP Jung-Radermacher Jung-Radermacher Jung-Radermacher 

Model Integral Disretized Moving boundary 
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Fig. 5 Stable trajectory of pressure-drop limit cycle (case 1): 

M, N - dGi/dt = 0; B, D - dGo/dt = 0; A, C - dp/dt = 0 

The influence of heat input Q on the system instability was presented in Fig. 6. While the other parameters 

remained unchanged, there was a certain range of heat input that can produce pressure-drop limit cycles. As mentioned 

previously, one of the necessary conditions for PDO was that system equilibrium lied on the negative slope side of 

the internal characteristics. The shape of the internal characteristics changed when heat input increased, causing the 

system equilibrium to move along the external characteristics. The system was stable when there was no or little heat 

input, because the flow remained mostly liquid at this time and pressure drop across the heater tube increased 

monotonically with flow rate (e.g., the characteristic curves at 0W and 200 W), resulting an internal characteristics 

with positive slopes. When further increasing heat input, the internal characteristics started to exhibit an N-shape 

because frictional losses was proportional to the inverse of fluid density. However, the system was still stable because 

the equilibrium was on the positive slope side of the internal characteristics. When heat input continued increasing 

and exceeded the threshold, pressure drop oscillations occurred and the system became unstable because the stability 

conditions were not satisfied anymore. At this point, the equilibrium was on the negative slope side of the internal 

characteristics, as shown in Fig. 6b. As heat input further rose, the amplitude of oscillations increased before reaching 

the maximum. After that, the amplitude of oscillations started to decrease even with higher heat input. When heat 

input exceeded another threshold, the system became stable again because at this point the equilibrium was not on the 

negative slope side of the internal characteristics anymore (e.g., the characteristic curves at 1200W, 1400W and 

1600W). Clearly, there were two bifurcation points where system stability can change when heat input varied and we 

will provide more analysis in the subsequent section. 

The impact of inlet subcooling on system stability was shown in Fig. 7. Inlet subcooling is here defined as the 

difference between fluid temperature Ti and the corresponding saturation temperature at pi. Similarly, there were also 
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two bifurcation points where system stability could change when fluid subcooling increased. At a given amount of 

heat input, pressure drop strictly increased with flow rate when there inlet subcooling was small. When inlet 

subcooling increased, the internal characteristics started to exhibit an N-shape because it was possible for fluid to 

leave the heater tube in either two-phase or liquid state, depending on the amount of flow rate. When inlet subcooling 

rose above the low threshold, pressure drop oscillations occurred and the amplitude of oscillations increased. When 

inlet subcooling was greater than the high threshold, oscillations disappeared and the system became stable again 

because the equilibrium moved to the positive slope side of the internal characteristics. Meanwhile, it was observed 

that inlet subcooling had not exerted substantial influence on the frequency of oscillations, which decreased marginally 

when increasing inlet subcooling. 

The effect of the equilibrium volume of gas V0 in the surge tank on system stability was illustrated in Fig. 8. It 

was evident that there was a minimum compressible volume required to produce pressure drop limit cycles for a given 

system. When the compressible volume was greater than the threshold, the amplitude and frequency of oscillations 

both grew rapidly to the peaks and then decreased gradually with increasing the compressible volume. 

The direct comparison of all three models under the same operating conditions of case 1 was given in Fig. 9. It 

was shown that the integral model predicted oscillatory behavior, whereas the other two models predicted a stable 

operating point. This interesting finding indicated that the dynamic behavior of fluid flow in the heater tube had to be 

taken into account and unexpected results could be attained. However, this statement did not imply that the integral 

model should be abandoned and it had its advantages in stability analysis because of simplicity, which will be shown 

in the next section. 

Eigenvalues of three models at the operating conditions in case 1 were plotted in Fig. 10. For the integral model, 

there were two eigenvalues on the right-hand side of the complex plane, indicating that the system was unstable. For 

the other two models, all eigenvalues were on the left-hand side of the complex plane, indicating that the system was 

stable. This comparison manifested the differences between these three models, and once again was consistent with 

the simulation results shown in Fig. 9. 
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Fig. 6 Effect of heat input on system stability (case 1): 

(a) PDO amplitude vs. heat input; (b) p-Go curves at different heat input 
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Fig. 7 Effect of inlet subcooling on system instability (case 3): 

(a) PDO amplitude and frequency vs. subcooling; (b) p-Go curves at different subcooling 
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Fig. 10 Eigenvalues of three models (case 1): 

(a) Integral model; (b) Discretized model; (c) Moving boundary model 

5. CONCLUDING REMARKS 

We have presented three different models to successfully simulate pressure drop oscillations. The advantages and 

disadvantages of these models were discussed. Simulation studies were carried out to explore the effect of various 

parameters on system stability. It was demonstrated that these models can provide valuable insight into the 
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mechanisms that generate pressure drop oscillations. Observations in the root locus analysis were consistent with the 

simulation results. 

NOMENCLATURE 

Symbols Subscripts 

Ac cross sectional area e exit of heater tube 

Dh hydraulic diameter f saturated liquid 

f frictional factor g saturated vapor 

g gravity constant i inlet or segment index 

G mass flux n number of segments 

h specific enthalpy o outlet 

Ki inlet restriction coefficient sc subcooled 

L length sh superheated 

p pressure tp two-phase 

Q heat flow rate 

t time 

V volume 

 difference 

 density 
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