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ABSTRACT 

The recently introduced hydrofluoroolefin (HFO) refrigerants, including R1234yf and R1234ze(E), have significantly 

lower global warming potentials (GWPs) than traditional hydrofluorocarbon (HFC) refrigerants like R410A. 

However, prior tests show that direct drop-in of pure R1234yf or R1234ze(E) into equipment designed for R410A 

results in a decrease in heat exchanger capacity and the system coefficient of performance. The primary reason is the 

lower in-tube heat transfer performance of R1234yf and R1234ze(E) compared with that of R410A. To address this 

issue, previous studies have mixed the mildly flammable HFC R32 with HFOs to improve system performance, with 

HFC R125 also added to suppress flammability. Previous studies selected compositions based on simple cycle 

analyses and did not consider modifications of the heat exchanger circuitry configuration to adapt to the new 

refrigerants. This study presents a novel multi-objective optimization approach to design a refrigerant composition 

that maximizes energy efficiency within flammability and GWP limits. The approach in this work simultaneously 

optimizes mixture composition and heat exchanger circuitry configuration. A case study on a rooftop unit indicates 

that, compared with mixture-only optimization, simultaneous optimization of mixture and heat exchanger circuitry 

yields a 5.9% improvement in cycle efficiency and a 48.6% reduction in refrigerant flammability with a GWP of 268. 

Circuitry optimization using refrigerants with different temperature glides shows that the larger the temperature glide 

is, the larger EER improvement is obtained. The results show that zeotropic blends with a large temperature glide are 

more sensitive to the refrigerant circuitry than pure refrigerants and may suffer significant performance degradation 

with subpar heat exchanger circuitry design. The proposed optimization approach is generally applicable to mixtures 

with any number of components. Using this approach to design a HVAC system can yield higher system efficiency 

within flammability and GWP constraints. 

1. INTRODUCTION

Modern cooling technologies are significant sources of greenhouse gas emissions (GHGs) with total CO2 equivalent 

emissions from the HVAC sector accounting for 7.8% of global GHG emissions (Coulomb et al., 2017). Considering 

the commitment to reduce the impact of GHGs on climate in HVAC&R sector, a transition from fluorinated substances 

to alternative refrigerants with reduced global warming potential (GWP) values is supported by F-gas Regulation 

(Schulz and Kourkoulas, 2014), the Montreal Protocol with the Kigali Amendment (Clark and Wagner, 2016), and 

the Paris Agreement (2015). The requirements as set forth by the F-gas Regulation banned the use of refrigerants with 

a GWP of 2500 or greater for high refrigerant charge stationary HVAC equipment in 2020. Beginning in 2022, a GWP 

limit of 150 has been set for multi-circuit cascade systems for commercial use with a nominal capacity of 40 kW or 

more, and for 2025, the GWP limit for single split AC on the European Union (EU) market is set as 750. This ban will 

not permit the use of R410A (2088 as GWP value) in small charge system applications. In this regard, much research 

has been conducted to find the alternative low-GWP refrigerants. 
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McLinden et al. (2017) identified 138 low-GWP refrigerants by screening more than 60 million chemical formulas. 

They filtered out the refrigerants according to several criteria. For instance, only molecules that consist of eight 

chemical elements were chosen, and the maximum number of atoms in a molecule was limited to 18. In addition, the 

critical temperature was limited to between 320K and 420 K. After filtering out highly toxic and unstable fluids, the 

screening identified 23 fluids with GWP values below 1000. ANSI/ASHRAE Standard 34 (2016) added six new pure 

substances and 40 new mixtures by considering the trade-off between GWP and flammability. While the majority of 

the new nonflammable refrigerant mixtures have been formulated as alternatives for R134a and R404A, only one new 

 nonflammable mixture, R463A, was proposed as an alternative to R410A. Therefore, there is strong interest in 

developing more low- or non-flammable alternatives to R410A with a GWP lower than R410A.  

Typical criteria for new refrigerant mixture development include factors such as increasing volumetric cooling 

capacity, improving energy efficiency, reducing GWP, and reducing flammability. To develop low-GWP refrigerants, 

hydrofluoroolefins (HFOs) are commonly used as components in the mixture. For R410A alternatives, Bobbo et al. 

(2018) reviewed the experiment data of 16 HFO refrigerants and their mixtures. They concluded that only R1234yf 

and R1234ze(E) have been extensively investigated in terms of the thermodynamic and transport properties. 

Therefore, R1234yf with a GWP of 4 is one of the best component candidates to replace R410A. However, R1234yf 

has much a smaller latent heat than R410A; thus, the coefficient of performance (COP) of a heat pump system would 

be decreased if R1234yf were used alone. To maintain the system performance, Domanski et al. (2017)  proposed that 

refrigerant mixtures of R1234yf and other fluids with large latent heat be used, such as R32, since R32 can contribute 

to increased system performance and heat exchanger (HX) cooling capacity due to its high volumetric cooling capacity 

and large latent heat. To form the R410A alternative mixtures, R125 is one of the commonly supplied HFCs in HVAC 

industry and is widely used to suppress the flammability. Table 1 lists the characteristics of R32, R1234yf, R125, 

R410A, and several R410A alternative mixtures in terms of the ozone depletion potential (ODP), GWP, temperature 

glide and ASHRAE safety class (2016), and mixture compositions. The temperature glides are evaluated at saturation 

pressure corresponding to 8 °C dew-point temperature. 

Table 1: Comparison of characteristics of selected refrigerants 

Refrigerant ODP GWP 
Temperature 

Glide [K] 

ASHRAE 

Safety Class 
Compositions 

R32 0 675 0 A2L - 

R1234yf 0 4 0 A2L - 

R125 0 3500 0 A1 - 

R410A 0 2088 0.1 A1 50.0% R32 / 50% R125 

R452A 0 1127 3.8 A1 11.0% R32/59.0% R1234yf /30.0% R125 

R452B 0 1363 1.1 A2L 67.0% R32/7.0% R1234yf /26.0% R125 

R452C 0 1014 3.4 A1 12.5% R32/61.0% R1234yf /26.5% R125 

R454A 0 2140 5.5 A2L 35.0% R32/65.0% R1234yf 

R454B 0 698 1.3 A2L 68.9% R32/31.1% R1234yf 

R454C 0 2220 7.6 A2L 21.5% R32/78.5% R1234yf 

To achieve a low GWP, low flammability, and high system performance, the compositions of the R32/R1234yf/R125 

mixture should be carefully determined. Fujitaka et al. (2010) experimentally compared the COP of a room air-

conditioner with a R32/R1234yf mixture with that of R410A and concluded that the COP increased with an increase 

in R32 composition in the mixture but was slightly lower than the COP using R410A. Okazaki et al. (2010) tested 

R32/R1234yf mixture in a room air-conditioner and concluded that the mixture having 60% R32 yields more than 

93% of the annual performance factor of R410A. Trade-offs among system performance, flammability, and GWP 

were observed in these studies. Abdelaziz et al. (2016) conducted experiments to compare R410A and its alternatives 

in small residential mini-split applications and large commercial packaged rooftop units (RTUs). All previous studies 

focused on drop-in replacements of refrigerants without modifications of the equipment. 

 Shen et al. (2018) found that if retrofits with minor equipment modifications of the existing systems are implemented, 

the detrimental variations in system performance due to the drop-in alternative refrigerants can be mitigated. Shen et 

al. (2018) enumerated different circuitry patterns of the tube-fin condenser and tube-fin evaporators used in a R410A 

RTU and simulated the RTU performance using different R410A alternatives. They found that redesigning HX 

circuitry configurations can make the new refrigerant more compatible to the system. In the literature (Li et al., 2019), 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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HX circuitry optimization has proven to be a convenient and cost-effective way to improve the system performance 

because it only modifies the tube connections (i.e., hairpins) without changing other structural parameters for a HX. 

A literature review of previous research led to the conclusion that when developing low-GWP mixtures, trade-offs 

between different refrigeration selection criteria need to be considered and no fully design-compatible mixture has 

been identified for various applications as an all-in-one solution. With this goal in mind, designing a new mixture for 

specific applications to satisfy multiple criteria can be formulated as a multi-objective optimization problem. This 

paper aims at presenting a novel low-GWP alternative refrigerant mixture optimization framework that can make the 

new mixture more compatible with the systems by redesigning the HX circuitries. The remainder of the paper is 

organized as follows. Section 2 details the new optimization approach. Section 3 demonstrates the efficacy of the 

proposed approach through case studies. Section 4 provides the conclusions of this study. 

2. METHODOLOGY

2.1 System Simulation Model 
The DOE/ORNL Heat Pump Design Model (HPDM) (Shen and Rice, 2016) is used to model the performance of an 

air-conditioning system. The HPDM is a public-domain HVAC equipment and system modeling and design tool which 

supports a free web interface and a desktop version for public use. Some features of the HPDM related to this study 

are introduced below. 

  Compressor model: To compare refrigerant performances, it was assumed that the compressor has the same 

volumetric efficiency (𝜂𝑣𝑜𝑙=95% in Equation (1)) and isentropic efficiency (𝜂𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐=70% in Equation (2)).

r displacement rotation suction vol
m Volume Speed Density =    , (1) 

discharge,s suction
( ) /

r isentropic
Power m h h =  − , (2) 

where mr is compressor mass flow rate; Power is compressor power; ηvol is compressor volumetric efficiency; ηisentropic 

is compressor isentropic efficiency; hsuction is compressor suction enthalpy; hdischarge,s is the enthalpy obtained at the 

compressor discharge pressure and the suction entropy; and  Speedrotation is the motor rotational speed.  

    Heat exchanger model: A finite volume (segment-to-segment) tube-fin HX model is used to simulate the 

performance of the HX with different circuitries. This model has been validated by the experiment data from Abdelaziz 

et al. (2016). The dehumidification model used in the evaporator simulation is from Braun et al. (1989). Details can 

be seen in  Shen et al. (2018). 

  Expansion device: Isenthalpic process is assumed in the expansion process. 

    Fans: The airflow rate and power consumption are direct inputs from the laboratory measurements for the model 

calibrations. 

  Refrigerant Lines: Temperature changes and pressure drops in suction, discharge, and liquid lines are specified 

using the measured data from the experiments. 

    Refrigerant Properties: REFPROP version 10.0 (Lemmon et al., 2018) is used to simulate the new refrigerant 

mixtures by making the mixture definition file according to the required format. 

For more details on the HPDM, see Shen and Rice (2016). 

2.2 Optimization Algorithm 
In this research, the Particle Swarm Optimization (PSO) algorithm (Kennedy and Eberhart, 1995) implemented in 

GenOpt (Wetter, 2001) is integrated with HPDM. GenOpt provides an interface to integrate with simulation tools, and 

HPDM provides the numerical function evaluation, which is computationally expensive and for which derivatives are 

not available. Particle Swarm Optimization is extensively used in various problem domains due to its broad 

applicability, ease of use and global search feature. PSO is a population-based stochastic optimization algorithm. It 

mimics the social behavior of members of bird flocks or fish schools to determine the location of each particle in the 

next generation. Each design is a particle, and the set of designs in each iteration step is a population. PSO begins by 

creating the initial particles and assigning them initial velocities. It evaluates the objective function at each particle 

location and determines the best (lowest) fitness value as well as the best location in one population in order to choose 

new velocities to move the particles. It iteratively updates the particle velocities and locations until the convergence 

criterion is reached. 

Because the optimization algorithms in GenOpt only support single objective optimization, this study extends the 

capability of GenOpt to conduct multi-objective optimization by implementing the weighted sum method. For 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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instance, the two objectives of this research are maximizing the system energy efficiency ratio (EER) while 

minimizing refrigerant flammability (detailed in Section 2.4). Equation (3) shows how the fitness value of a design is 

calculated by the weighted sum method. The w1 and w2 are weights set by the user of this framework. The relative 

values of the weights reflect the different priorities of different objectives. The optimal designs are achieved through 

minimizing the fitness value. When conducting optimization under different weights, a Pareto front can be obtained 

(Arora, 2004). 

1 2 1 2
,   1

norm norm
fitness w EER w Flammability where w w=  +  + = (3) 

Because the weighted sum method depends on comparing the values of different objectives, those values usually have 

different units and/or different orders of magnitude. It is necessary to normalize the objectives. Equation (4) and 

Equation (5) show the normalized EER and normalized flammability, respectively. The minus sign in front of EER(x) 

in Equation (4) transforms the maximization problem to a minimization problem. In Equation (4), EERmax and EERo 

are constants to represent the upper limit and the lower limit EERs in the design space, respectively. Similarly in 

Equation (5), Flammabilitymax and Flammabilityo are the upper and lower limits of the flammability values in the 

design space, respectively. Obviously, those upper and lower limits cannot be known before running the optimization; 

however, the approximated values of those limits are sufficient to maintain the objectives in the same order of 

magnitude (Arora, 2004). In this study, those upper and lower limits are obtained by a few hundreds of preliminary 

HPDM simulations. 

max

max

( )
norm

o

EER EER x
EER

EER EER

−
=

−
. (4) 

max

( )
norm o

o

Flammability x Flammability
Flammability

Flammability Flammability

−
=

−
. (5) 

2.3 Case Study 
In this paper, HPDM has been closely calibrated against experiment data from drop-in alternative performance 

evaluations conducted by Abdelaziz et al. (2016) on the commercial packaged R410A RTU. The RTU is a 39.9 kW 

(11 ton) R-410A system; its power supply is 460V, 3 Phase, 60 Hz. It uses a single-speed scroll compressor. The 

condenser fan moves 10200 CFM (4.81 m3/s) across the outdoor HX and consumes 1720 W of power; the indoor 

blower provides 3715 CFM (1.75 m3/s) of supply airflow and consumes 1235 W of power. Table 2 lists the empirical 

correlations used for local heat transfer and pressure drop calculations during the performance evaluation of the 

condenser and evaporator of the RTU. As the refrigerants used in this study are zeotropic mixtures, the proper selection 

of the flow condensation and flow boiling correlations are crucial to have accurate prediction of the heat transfer 

coefficients for zeotropic mixtures. Heat transfer during boiling of mixtures involves sensible heating of mixture and 

mass transfer resistance. To take these two effects into consideration, the correction factor proposed in Thome and 

Shakir (1987) is used with the boiling correlation from Wojtan et al. (2005). Similarly, the condensation of mixtures 

involves sensible cooling of mixture and mass transfer resistance. To predict condensation heat transfer coefficient, 

Thome et al. (2003a) correlation is used with correction proposed by Bell and Ghaly (1972). Bell and Ghaly (1972) 

found that mass transfer is roughly proportional to heat transfer and heat transfer is much easier to calculate than mass 

transfer. Their method assumes the equilibrium between the different phases. They neglect the mass transfer resistance 

and compensate the neglection of mass transfer resistance by overestimating the sensible heat transfer resistance.  

Table 2: Correlations adopted in condenser and evaporator simulations 

Operating Mode Heat Transfer Correlations Pressure Drop Correlations 

Refrigerant - Liquid Phase Dittus and Boelter (1985) Blasius (1907) 

Refrigerant - Two Phase Boiling 

(Evaporator) 

Wojtan et al. (2005) with correction 

factor from 

Thome and Shakir (1987) 

Choi et al. (1999) 

Refrigerant - Two Phase 

Condensation (Condenser) 

Thome et al. (2003a) with correction 

factor from 

Bell and Ghaly (1972) 

Choi et al. (1999) 

Refrigerant - Vapor Phase Dittus and Boelter (1985) Blasius (1907) 

Air Wang et al. (1999) Wang et al. (1999) 
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 (a)  (b) 

Figure 1: Baseline circuitry of heat exchangers in packaged rooftop unit (a) evaporator and (b) condenser. 

The circuitries of the baseline R410A evaporator and condenser are shown in Figure 1(a) and Figure 1(b), respectively. 

The evaporator has 144 tubes and 6 banks and is divided into 6 mixed flow circuits. The condenser has 192 tubes and 

4 banks and is divided into 8 mixed flow circuits. In Figure 1, a solid line represents a U-bend (i.e., hairpin) on the 

front end of the HX, while a dotted line represents a U-bend on the farther end. The different colors represent different 

circuits. The distributor distributes the refrigerant into the inlet tube of each circuit. 

2.4 Problem Formulation 
Considering the demands to improve system performance and guarantee safety, the problem is formulated as a bi-

objective optimization problem. To quantify the refrigerant flammability in the system, two factors need to be taken 

into consideration. The first factor is the flammability of the mixtures, which depends on their molecular structure. 

The second factor is the system refrigerant charge, since one common approach to guarantee safety is to reduce system 

charge when using flammable refrigerants. Thus, Equation (6) defines the flammability of the refrigerants in the RTU. 

System ChargeFlammability =  , (6) 

where Π is the flammability index of the mixture, which is predicted using the empirical model developed by Linteris 

et al. (2019). This model uses this flammable index to assess the flammability of refrigerants based on their molecular 

structures. Table 3 lists the flammability indexes of R32, R1234yf, and R125. The negative flammability index of 

R125 indicates its utility as a flammability suppressor. 

Table 3: Flammable index of selected refrigerants predicted by Linteris et al. (2019) 

Refrigerants Flammable Index (Π) 

R32 35.6 

R1234yf 6.9 

R125 -34.7
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Equation (7) shows the problem formulation. The objectives are to maximize the system EER of the RTU and to 

minimize the refrigerant flammability. A set of continuous design variables is the mass fraction (or “composition”) of 

each of the n components. Each design variable is constrained between 0 and 1, and the sum of all compositions is 

constrained to be 1. In previous research, Shen et al. (2012) developed an optimization framework that integrates 

HPDM with GenOpt to perform automatic calibration of a heat pump model based on experiment data. This study 

extends the capability of the previously developed optimization framework by adding circuitry configuration as the 

discrete design variables. Specifically, the discrete circuitry configuration variable varies among three patterns, 

counterflow, mixed flow, and parallel flow, as illustrated by a six-tube HX in Figure 2.  

(a) (b) (c) 

Figure 2: Heat exchanger circuitry patterns: (a) counterflow, (b) mixed flow, (c) parallel flow. 

The circuitry optimization conducted in this paper is different from those conducted in Li et al. (2019) where the 

length of different circuit can be different, and different circuits in one HX can interleave with each other. In this 

paper, the optimal circuitries are constrained to have regular patterns. That is, each circuit has the same number of 

tubes, and the U-bends (hairpins) are constrained to connect the adjacent tubes only. This guarantees the resulting 

circuitry to be cost-effective with short production lead time. Because the evaporator has 24 tubes in each bank, the 

number of circuits is a discrete variable which varies among all common divisors of 24. Similarly, the condenser has 

48 tubes in each bank, so the number of circuits is a discrete variable varying among all common divisors of 48. To 

simulate the performance of the RTU, the cooling capacity of the evaporator and the evaporator outlet superheat 

degree are fixed to be the same as those of the original R410A RTU; the compressor displacement volume is 

automatically altered to meet the target evaporator cooling capacity. The condenser outlet subcooling degree is 

adjusted along with the mixture compositions and HX circuitry configurations to achieve the optimum EER. In 

Equation (7), the last constraint limits the GWP value of the mixture. The GWP of R410A is set as the upper limit for 

new mixtures with the goal of developing R410A alternatives with a lower GWP. The GWP value of the mixture is 

estimated based on the linear weighted sum of the actual GWP of known substances (Schulz and Kourkoulas, 2014). 
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3. RESULTS

3.1 Results for Binary Components Mixture Optimization 
To illustrate the benefits of simultaneous optimization of mixture composition and HX circuitry, two optimization 

runs are conducted. The first run optimizes the mixture compositions alone, and the HXs circuitry configurations are 

fixed as the baseline circuitries in Figure 1. The second run optimizes the mixture compositions and HX circuitry 

configurations simultaneously. For all the optimization runs presented in this paper, the population size of PSO is 40 

and the number of generations is 40. The multi-objective optimizations are performed by varying the weight of EER 

from 0% to 100% with 10% as the interval to generate the Pareto fronts. 

Figure 3 shows the Pareto fronts for the two optimization runs for binary (R32/R1234yf) mixtures in terms 

of system EER and refrigerant flammability. The EER and flammability are normalized based on the values of the 

baseline R410A RTU. The size of the marker shows the scale of the GWP value. A number of trade-offs among 

flammability, EER, and GWP are clearly shown in  Figure 3. A large fraction of R32 provides such benefits as 

increasing EER but also has disadvantages such as increasing the flammability index (Π) and increasing GWP. Large 

fractions of R1234yf reduce the flammability and GWP but are detrimental to EER due to R1234yf’s inferior thermo-

hydraulic properties.  

Figure 3 includes two Pareto fronts: one for mixture-alone optimization and one for mixture and HX 

simultaneous optimization. The distance between the two Pareto fronts demonstrates that simultaneously optimizing 

the mixture compositions and HX configurations yields significant performance improvements compared with 

optimizing the mixture compositions alone.  Figure 3 also shows the performance for the reference refrigerants 

(R452A, R452B, R452C, and R410A) in the baseline system. The Pareto front to optimize the mixture and HXs 

simultaneously, as shown in blue circles, dominates all the other solutions in terms of increasing EER and reducing 

flammability, while it consists of inferior designs dominated by a baseline system with R410A. 

Figure 3: R32/R1234yf mixtures optimization results compared with off-the-shelf refrigerants. 

In the Pareto fronts, the extreme optimal designs of which the EER weight is 100% and the moderate optimal designs 

of which the EER weight is 50% are highlighted. For the extreme optimal designs, circuitry optimization increases 

the normalized EER by 8.7% from 1.03 to 1.12. For the moderate optimal designs, circuitry optimization increases 

the EER by 5.9% from 1.02 to 1.08 while reducing the normalized flammability by 48.6% from 2.14 to 1.11. The 

GWP of the moderate design with circuitry optimization is 268, which is significantly less than that of R410A. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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3.2 Results for Ternary Components Mixture Optimization 
Similar to the previous section, two sets of optimization runs are conducted for ternary (R32/R1234yf/R125) mixture 

optimization. Figure 4 shows the Pareto fronts for the two optimization runs with and without including HX circuitry 

configurations as design variables. The marker sizes of most points in Figure 4 are significantly larger than those in 

Figure 3, which is attributed to the addition of R125 (3500 as GWP) in the mixture. It can be seen that the 

positions of both Pareto fronts in Figure 4 are lower than the positions of the Pareto fronts in  Figure 3 because 

R125 significantly reduces the flammability. 

It is worthwhile to mention that the higher GWP value of the ternary mixtures is also attributed to the specific problem 

formulation (i.e., maximizing EER and minimizing flammability) used in this paper. Because GWP is only considered 

to be a constraint rather than an optimization objective, R1234yf is not the most desirable component because its 

performance on EER and flammability is neutral. The optimizer depends on adding R32 to improve EER and R125 

to reduce flammability. If minimizing GWP is an optimization objective, different results can be expected. The 

purpose of the case study is to demonstrate the efficacy of the proposed optimization approach, rather than promoting 

the specific results under a specific problem formulation. According to the application scenario, the problem can be 

formulated differently to satisfy the needs of the decision maker. 

In Figure 4, the performances of the optimal designs obtained from the optimizing mixture and HX configurations 

simultaneously dominate the off-the-shelf mixtures (R452A, R452B, R452C) as well as the optimal designs from 

optimizing with the mixture alone. These results once again demonstrate the efficacy to optimize mixture compositions 

and HX configurations simultaneously. 

Figure 4: R32/R1234yf/R125 optimization results compared with off-the-shelf refrigerants. 

3.3 Effect of Mixture Compositions on System Performance 
For zeotropic mixtures, it is worthwhile to investigate the effect of mixture temperature glide on performance 

improvements obtained from heat exchanger circuitry optimization. To achieve this goal, a separate circuitry 

optimization practice is conducted using the off-the-shelf refrigerants listed in Table 1. The problem formulation is 

the same as that shown in Equation (7) except the reduction of design variables. Since the off-the-shelf refrigerants 

are used in the heat exchangers, the mixture compositions are not the design variables anymore. With these practices, 

we are aiming to assess the potential of HX circuitry optimization for refrigerants with different temperature glides. 

Figure 5 shows the EER improvement from heat exchanger optimization for different refrigerant compared with 

baseline system. The optimal systems shown in Figure 5 are corresponding to design obtained using 100% EER 

weight, i.e. the optimization runs are single objective optimizations with the only objective to improve EER. 
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Figure 5 demonstrates that R1234yf has the lowest EER improvement (4.4%) from circuitry optimization and R454C 

has the highest EER improvement (6.2%). From Table 1, R454C has the highest temperature glide among all 

refrigerants. Comparing the EER improvements among these refrigerants, the larger the temperature glide is, the larger 

EER improvement is obtained from circuitry optimization. The results show that zeotropic blends with a large 

temperature glide are more sensitive to the refrigerant circuitry than pure refrigerants and may suffer significant 

performance degradation with subpar heat exchanger circuitry design. These results emphasize the necessity for 

optimizing refrigerant circuitries for zeotropic mixtures. 

Figure 5: EER Improvements from heat exchanger circuitry optimization for off-the-shelf refrigerants compared 

with the baseline system 

4. CONCLUSIONS

A novel low-GWP refrigerant mixture composition optimization framework is presented in this paper. To improve 

the new refrigerants’ compatibility to the system, the condenser and evaporator circuitry configurations are optimized 

simultaneously with the mixture compositions. The case studies using an experimental validated R410A RTU show 

that the proposed optimization approach can generate new binary and ternary mixtures and new circuitry designs to 

improve system EER, reduce refrigerant flammability, and maintain a low GWP. A case study on a RTU indicates 

that, compared to mixture-only optimization, simultaneous optimization of mixture and HX circuitry yields a 5.9% 

improvement in cycle efficiency and a 48.6% reduction in flammability with a GWP of 268. Circuitry optimization 

using refrigerants with different temperature glides shows that the larger the temperature glide is, the larger EER 

improvement   obtained. The results show that zeotropic blends with a large temperature glide are more sensitive to 

the refrigerant circuitry than pure refrigerants and may suffer significant performance degradation with subpar heat 

exchanger circuitry design. The proposed optimization approach is generally applicable to mixtures with any number 

of components. Using this approach to design a HVAC system can yield a higher system efficiency within 

flammability and GWP constraints. 
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