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ABSTRACT 

Many atmospheric water harvesting technologies have been produced to mitigate water scarcity as an auxiliary source 
of water. These technologies may be described as direct and indirect water collection techniques. The direct method 
is to induce a phase-change turning from vapor to liquid on a cooling surface and generate condensate without interim 
processes. On the other hand, the indirect method has absorption or adsorption processes to take water from humid air 
before producing water. This paper focuses on the direct methods and discusses the effects of humidity and surface 
temperature on water generation rates and condensate droplet formation patterns in a macro- and micro-view with 
previous experimental data. In the view of water harvesting, the generation rate of condensate showed a dependency 
on the temperature difference between a dew point and a surface temperature. As a result of analyzing droplet 
formation behaviors considering the importance of the subcooling effect in the macro-view, it was investigated that 
droplet formation rates and the growth regimes of the condensate also had strong relationships with the humidity of 
air and the surface temperature. This review would be useful for further research on the modeling of condensate droplet 
formation and condensation enhancement for thermally driven water generation systems. 

Keywords: Atmospheric water, relative humidity, drop-wise condensation, dew point, water harvesting 

1. INTRODUCTION 

Recently, a technology of atmospheric water harvesting (AWH) has shown a possibility as a new water source to 
mitigate water scarcity in an arid area since the convenience of shipping and deployment to respond quickly to the 
locations where electric grids and freshwater are unreliable. Many types of devices, which handle water vapor 
differently, have been developed so far. These technologies can be classified into a direct and an indirect water 
collection method, as Table 1 shows. The direct method is to use a cooling surface and generate condensate on its 
surface without any interim processes. On the other hand, the indirect method has an interim process such as absorption 
or adsorption to take water vapor from humid air before producing water. In this study, we focused on the direct 
condensation method rather than the indirect AWH. 

Condensation of water vapor is crucial not only to AWH but also to many industrial sectors, such as desalination, 
power plants, and dehumidification systems. Condensation may occur in two ways, film condensation (FWC) and 
drop-wise condensation (DWC). In general, it is known that the heat transfer coefficient (HTC) of DWC is around 5-
7 times higher than that of FWC (Eslami and Elliott, 2011; Rose, 2002; Rykaczewski and Scott, 2011; Koch et al., 
1997; Schmidt et al., 1930). Therefore, many techniques for direct water harvesting or condensation enhancement 
have been focused on avoiding droplets spreading out over surfaces and lasting DWC by improving the geometry or 
the wettability of the surface. 

Early applications used plates, tubes, and fins, but these methods are still attractive to many researchers seeking 
functionally long-lasting and simple devices. For morphology improvement of a condensing surface, observing the 
critical droplet size on the micro-grooved surfaces was explored by Sommers and Jacobi (2008). The experimental 
research results showed the droplet volume at incipient sliding on the micro-grooved was significantly reduced by 
more than 50% compared to droplets on plain surfaces. Shi et al. (2018) showed that thin string could enhance the 
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water collection rate in fog water harvesting, and they found that the fog-harvesting rate increased with decreasing 
wire diameter of the collecting materials. 

Table 1: Atmospheric water harvesting technologies 

Direct or 
indirect 

Technique Detail method Reference 

Direct 
method: 
Surface 

Various morphology Thin drainage path 

Micro-grooved 

Lee et al. (2012) 

Sommers and Jacobi (2008) 
cooling String Shi et al. (2018) 

Surface coating Graphene coating Preston et al. (2015) 
Biomimetic micro-patterned coating Thickett et al. (2011) 

Various morphology 
and 

wettability improvement 

Mesh-covered hydrophobic 

Hydrophobic nanostructure 

Wen et al. (2018) 

Miljkovic et al. (2012) 

Needle with hybrid surface Mondal et al. (2015) 

Hydrophobic nanowire composition Wen et al. (2017) 

Other Electrospray with cooling surface Reznikoy et al. (2015) 

Indirect 
method: 
Material 

Liquid absorption Liquid desiccant 

Membrane-based absorption 

Gido et al. (2016) 

Huang and Zhang (2013) 
use Solid adsorption Solid desiccant coated HX Li et al. (2016) 

Metal-organic framework Kim et al. (2018) 

For wettability, Lee et al. (2012) examined the condensation rate of humid air in DWC with a uniformly hydrophilic 
surface and relatively lower wettability surfaces. They showed the hydrophilic surface exhibited higher rates of water 
condensation and collection than the lower wettability ones. However, it is not easy to maintain the DWC with a 
hydrophilic surface. Therefore, the wettability modification by using hydrophobic or hybrid (hydrophobic-hydrophilic) 
materials to achieve faster droplet growth or quicker droplet removal has been performed by many researchers. Preston 
et al. (2015) developed and tested ultrathin scalable chemical vapor deposited (CVD) graphene coatings to enhance 
DWC. Their study demonstrated that the ultrathin CVD graphene coatings promoted drop-wise condensation, and 
they claimed the heat transfer performance was improved by 4 times higher than that measured for FWC on plain 
copper plate. Thickett et al. (2011) have studied animals living in dry climates for the direct harvesting method. They 
developed the coating mimicking the Stenocara beetle and tested the biomimetic micropatterned surfaces along with 
different types of films concerning the volume and generation rate of condensate water. 

Some researchers performed improvement of both wettability and geometry. Miljkovic et al. (2012) investigated 
condensation on superhydrophobic nanostructured surfaces, and they observed the droplet growth and shedding 
behavior to find the overall performance enhancement in comparison to a hydrophobic plain surface. In the experiment, 
they showed heat flux enhancement for partially wetting droplet morphologies. Hybrid superhydrophobic-hydrophilic 
surfaces with impaling a superhydrophobic film on an array of steel needles were tested by Mondal et al. (2015), and 
they showed condensation rates with different needle pitches and different tilt angle of the surface. Wen et al. (2018) 
tested superhydrophobic hierarchical mesh-covered surface for drop-wise condensation and presented an achievement 
of faster droplet growth rate and smaller droplet departure compared to other hydrophobic plain and structured surfaces. 
To achieve rapid droplet removal, Wen et al. (2017) developed nano-wired surfaces. The experimental study showed 
that the overall heat flux of a nanostructure surface was 100 % higher than a plain hydrophobic surface. Aside from 
this, electrostatic enhancement of phase-change processes was applied by Reznikov et al. (2015) to improve heat 
exchange during condensation. They demonstrated an up to 7.5 mL/hr water harvesting rate with the 1:613 scale 
prototype moisture harvester at 11 watts of reduced cooling power to the condenser. 
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Although many condensation technologies have been developed concerning the droplet creation on a cooling surface 
and generation enhancement, it has not yet been fully clarified. Thus, the purpose of this paper is to investigate how 
the humidity affects the atmospheric water generation in a macro view and the droplet creating formulations in a micro 
view by analyzing data from previous studies to provide another approach. Furthermore, the water droplet creation 
patterns under different humidity were discussed based on specific experimental data. 

2. MATERIALS AND METHODS 

Most of the experimental data in this paper were selected only from humid air condensation research performed under 
atmospheric pressure. Thus, the bulk steam condensation process and forced convective cases, including 
condensations with windy circumstances, were not considered. To review the previous research data, the missing 
properties of humid air such as a saturation temperature (or dew point temperature), a saturation vapor pressure, and 
partial vapor pressure were calculated by using Engineering Equation Solver (EES) (Klein, 2019). Also, missing 
values of atmospheric pressures in the empirical studies were considered as 101.325 kPa for property estimation. 

3. HUMIDITY EFFECTS ON SURFACE CONDENSATION RATE 

3.1 Humidity and Overall Mass Transfer Coefficient with Phase Change 

The cooling temperature of the surface should be below the dew point of the humid air to produce water, and it can 
be provided by coolants, a vapor compression cycle, or a Peltier effect. The dew point is the temperature at which 
water vapor has reached the saturation point (100% relative humidity, RH) (ANSI/ASHRAE Standards 41.6, 2006). 
Thus, when humid air contacting a cooling surface reaches its dew point, the water vapor of the humid air starts to be 
condensed. The dew point varies according to the temperature and the humidity of the air. Figure 1 shows the dew 
point changes with the RH at different air temperatures under the atmospheric pressure. At the same RH, the higher 
dew point means that the humid air holds more amount of moisture itself. Therefore, the dew point may be considered 
as a direct value to estimate how much water it contains and will be produced from an atmospheric water generator. 

Figure 1. Dew point temperature for ambient air at 20 °C, 25 °C, and 35 °C as a function of relative humidity 
(calculated by EES assuming the atmospheric pressure as 101.325 kPa) 

Regarding the saturation temperature or dew point of humid air, the water generation rate (�̇�𝑚 ) on the unit area of a 
cooling surface by using the temperature difference between the saturation temperature of humid air and cooling 
surface temperature can be defined as Eq. (1) shows (Çengel and Ghajar, 2015). 

𝑞𝑞" ℎ�𝐿𝐿(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠−𝑇𝑇𝑠𝑠)�̇�𝑚 = ′ = ′ (1) ℎ𝑓𝑓𝑓𝑓 ℎ𝑓𝑓𝑓𝑓 
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q" is the heat flux per unit area to the surface and h'
fg is the modified latent heat. ℎ�𝐿𝐿 is the average heat transfer 

coefficient, and Tsat and Ts are the saturation temperature of humid air and the cooling surface temperature, 
respectively. 
Rohsenow (1956) introduced the modified latent heat to account for the cooling of liquid below the saturation 
temperature as Eq. (2) where 𝑐𝑐𝑝𝑝,𝑙𝑙 is the specific heat of the liquid. 

′ℎ𝑓𝑓𝑓𝑓 = ℎ𝑓𝑓𝑓𝑓 + 0.68𝑐𝑐𝑝𝑝,𝑙𝑙(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑠𝑠) (2) 

The average heat transfer coefficient, ℎ�𝐿𝐿, over entire heat exchanger is determined by the geometry, the wettability, 
the flow rate of the condensate and the humid air, and so on. Therefore, using Eq. (1) to estimate the condensate 
generation rate (�̇�𝑚 ) requires pre-definition for each term. However, in a real life, the geometry and the wettability of 
an atmospheric water generator or a heat exchanger are fixed once installed. Also, the range of temperature and RH 
of ambient air can be assumed that they are generally maintained 10-40 ℃ and 0.1-1, respectively. Thus, it may be 
worthy to observe if Eq. (1) can be defined by using overall heat transfer coefficient (HTC) for quick estimation of 
the condensate generation rate. 
To simplify Eqs. (1) and (2), the latent contribution of the overall HTC with phase change may be used. Therefore, 
the total condensation rate per unit area may then be determined by HTC, subcooling (Tsat - Ts), and latent heat of 
water from vapor to liquid phase (Eq. (3)). 

�̇�𝑚 = 𝐻𝐻𝑇𝑇𝐻𝐻 
(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠−𝑇𝑇𝑠𝑠) 

(3) ℎ𝑓𝑓𝑓𝑓 

For the condensation rate as a function of the temperature difference as shown in Eq. (3), Baghel et al.'s experimental 
study (2020) showed that the condensation rate on hydrophobic surfaces increased almost linearly as the temperature 
difference between the saturation temperature and the surface temperature. For another case, Gao (2012)'s 
experimental result was reviewed. The researcher performed the atmospheric water harvesting tests under the different 
coolant flow rates at 0.65, 0.85, 1.05, 1.25, and 1.45 L∙s-1 and measured the total mass of the condensate from the 
dehumidifier. The water generation data was rearranged as a function of the temperature difference of the dew point 
and the coolant inlet temperature (Fig. 2(a)) based on the assumption that the coolant temperature is not different from 
the condensing surface temperature. As a result of the data review, it can be considered the condensate generation rate 
and the temperature difference is in a proportional relationship. The data of the coolant flow rate higher than 1.05 L∙s-

1 was extracted as Fig. 2(b) shows to consider the more constant surface temperature of the dehumidifier, and it clearly 
shows the linearity between the subcooling temperature and condensate generation rate. Therefore, the condensate 
generation rate may be considered to be proportional to the difference between dew point and surface temperature, 
and the HTC of humid ambient air to estimate the condensate generation rate can be assumed to be constant. 

Figure 2. Water generation rate with temperature difference between dew point and coolant (data source: Gao, 
2012), (a) 0.65 - 1.45 L∙s-1 of coolant flow rate, (b) 1.05 - 1.45 L∙s-1 of coolant flow rate 

3.2 Review of Advanced AWH Technology 

18th International Refrigeration and Air Conditioning Conference at Purdue, May23-27, 2021 
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Several papers were reviewed to examine the water production rates of AWH using advanced technologies, as Fig. 3 
shows. For the analysis, the atmospheric pressure was assumed to be 101.325 kPa for the cases that did not mention 
it. Ghosh et al. (2014) performed condensation tests of the bioinspired-patterned surface, the straight-line patterned 
surface, and the plain aluminum plate in 80% of constant RH air with 20 °C and 35 °C of ambient temperatures, 
respectively. They cooled down the specimen with a Peltier device and compared the condensation rate of each 
specimen.  Al-Khayat et al. (2017) developed and carried out different patterned polymer coatings to harvest water 
from the moist air of 20.3 °C dry bulb temperature and 95% RH. Mondal et al. (2015) investigated the water collection 
rate of hybrid superhydrophobic-hydrophilic surfaces attached to 300 μm height of needles and tested under 70 % RH 
with different needle tip temperatures over 10-14 hours. Gupta et al. (2018) examined the condensation rate with 
hydrophilic surfaces, which were maintained constant surface temperature 8 °C by Peltier-heat sink system and 
different humidities. 

As the illustration for the comparison of condensate generation rate (Fig. 3) shows, each advanced technology may be 
characterized by the overall heat transfer coefficient (HTC) which is defined by Eq. (3). The latent heat ℎ𝑓𝑓𝑓𝑓 of Eq. (3) 
varies along with the saturation temperature, but the variation is very small. For example, the difference of the latent 
heats at 40 °C and at 0 °C of a dew point is less than 4%. For the ambient air, furthermore, it is rare for the dew point 
to change sharply. Thus, it may not be a big issue to consider ℎ𝑓𝑓𝑓𝑓 to be a constant value when a production rate of 
condensate from ambient air is reviewed. 

Figure 3: Comparison of condensate generation rate from humid air as a function of subcooling 

However, it is still hard to conclude which technology in Fig. 3 could generate more water from humid air under the 
same conditions, because Baghel et al. (2020) showed the variation of condensation rate with different saturation 
temperatures (303K and 313K) and the same subcooling conditions. Therefore, more studies are needed on the 
relationship between humidity and condensation rate for the direct performance comparison of test results in Fig. 3. 

4. HUMIDITY EFFECTS ON CONDENSATE DROPLET FORMATION 

4.1 Subcooling and Condensate Droplet Formation Regime 

Many researchers have also focused on condensate droplet formation as the DWC is preferred over FWC owing to 
the higher HTC. For the droplet growth on a cooling surface, it has been known that it follows power laws as Eq. (4) 
shows, and generally two distinguishable regimes are observed (e. g. μ1≠μ2) (Viovy et al., 1988, Beysens, 1995, Lo et 
al., 2014, Castillo et al., 2015, and Kajiya et al., 2016). 

〈𝑟𝑟〉~𝑡𝑡𝜇𝜇𝑖𝑖 (4) 

18th International Refrigeration and Air Conditioning Conference at Purdue, May23-27, 2021 
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where 〈𝑟𝑟〉 is the average droplet radius, and t is time after nucleation. 𝜇𝜇𝑖𝑖 is the exponent of each growth regime, and 
the value indicates the growth speed of each regime. Interestingly, the power of the first regime was smaller than that 
of the second regime's (e. g. 𝜇𝜇1 < 𝜇𝜇2 ) according to previous experimental research results (Lo et al., 2014, Castillo et 
al., 2015, and Kajiya et al., 2016). The first regime occurs after nucleation has occurred and is characterized as a 
growth regime without significant interactions between drops. The first regime shows a low surface coverage, which 
is the ratio of area covered by droplets and cooling surface area. Meanwhile, the second regime leads to interactions 
by coalescence between the droplets (Beysens,1995). 

Castillo et al. (2015) and Pionnier et al. (2018) performed condensation tests with different RHs of humid air and 
showed different power values of Eq. (4) according to the RHs. According to their experimental results, the general 
growth pattern on the same cooling surface over time and humidity was dependent on the RH. Chavan et al. (2016) 
performed vapor condensation tests on a hydrophobic and a superhydrophobic surface and measured the exponent 
value of Eq. (4). Interestingly, Castillo et al. (2015) observed the same value of the slope of each second regime during 
their tests with different RHs. They examined the average-radius growth behavior of the condensate water droplets 
for the four different RH cases. They observed the distribution and growth of condensate droplets at four different 
relative humidities (45%, 50%, 55%, and 70%) with constant temperatures of the surface and humid air (𝑇𝑇𝑠𝑠 = 
5 ℃, 𝑇𝑇𝑠𝑠 = 20 ℃). Similarly, Chavan et al. (2016) showed the same exponent values for the second regimes of the 
droplet condensation tests with different surface materials. They investigated the droplet growth rate on a hydrophobic 
and superhydrophobic surface during condensation. As a result, they had 0.1 and 0.2 for a hydrophobic and a 
superhydrophobic surface, respectively, in the first regime (𝜇𝜇1) while the second regimes (𝜇𝜇2) of them are the same 
values as 0.5. To analyze the humidity effect on droplet condensation in depth, Castillo et al.'s test results were 
reviewed, focusing on each inflection point and departing point. Two regimes were distinguished for four different 
RHs, and a strong dependency between the RH of each case and growth rate was revealed as Fig. 4 (a) shows. To 
analyze the relationship between RH and the growth rate of droplets on a cooling surface, the nucleation point (O), 
each inflection point (A, B, C, and D) between the first and the second regime, and departing points (A*, B*, C*, and 
D*) of Fig. 4(a) were examined with considering the temperature difference between the saturation temperature and 
the surface temperature. For this analysis, the atmospheric pressure of the humid air was assumed to be 101.325 kPa. 
As a result of the analytical review, the ending time of each regime and ΔT were strongly related to each other as Fig. 
4 (b) and (c) show. In addition, the fraction of the time for the first regime (𝑡𝑡𝜇𝜇1 

) and the total growth time (𝑡𝑡𝜇𝜇1 
+ 𝑡𝑡𝜇𝜇2) 

was calculated by Eq. (5) (example: 𝛼𝛼𝐴𝐴 =ln(t(OA))/ln(t(OAA*)) in Fig. 4 (a)), and the result is illustrated at Fig. 4 (d). 

ln (𝑠𝑠𝜇𝜇1)𝛼𝛼 = (5) ln (𝑠𝑠𝜇𝜇1+𝑠𝑠𝜇𝜇2) 

Based on the relationship of each time frame of the regime in Fig. 4 (d), the time fraction of regime (𝛼𝛼) was reversely 
proportional to the subcooling temperature, ΔT. Though further experimental studies are necessary, it may be 
considered as every smooth condensing surface has its own constant 𝛼𝛼 while condensate droplets are formatted.  

18th International Refrigeration and Air Conditioning Conference at Purdue, May23-27, 2021 
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Figure 4: Analytical review of water droplet growth pattern based on the test results of Castillo et al. (2015) (a) 
general growth pattern on a same cooling surface over time and humidity (b) time period of the first regime vs. 

subcooling (c) full time period of the first and second regimes vs. subcooling (d) time fraction of regime vs. 
subcooling 

4.2 Humidity and Condensate Droplet Formation Rate 

Graham and Griffith (1973) were interested in droplet size distributions in drop-wise condensation. They found 
significantly larger drop populations at atmospheric pressures than low pressures. Furthermore, they presented 
approximately 10% of the cooling surface was bare, and 50 percent of the heat was transferred through 5% of the 
surface area for both atmospheric and low-pressure conditions. Castillo et al. (2015) showed another notable 
experimental result which can determine the condensate droplet formation rate of different sizes. They investigated 
the condensation rate per unit surface area of a single droplet as a function of droplet radius at different RH conditions. 
Based upon their study assuming that all droplet shapes were hemisphere on the surface, the formation rate of each 
droplet size per unit area (N(r)⋅m-2⋅s-1) was calculated and illustrated as Fig. 5 shows. For example, 100 μm of the 
droplet could be created as many as approximate 3.07×104 of droplets per square meter per second at 45 % RH. Thus, 
the droplet creation rate can be defined as Eq. (6). 

18th International Refrigeration and Air Conditioning Conference at Purdue, May23-27, 2021 
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Figure 5: Formation rate of each droplet size per unit area at different humidity conditions (the original figure: 
Castillo et al. (2015)). 

𝑎𝑎𝐻𝐻 ∙ ln(�̇�𝑛(𝑟𝑟) ∙ 𝑟𝑟𝑘𝑘 ) = 𝐻𝐻 (6) 

where 𝑎𝑎𝐻𝐻 is a constant depending on the relative humidly, �̇�𝑛(𝑟𝑟) is the creation number of its size of droplet per unit 
area per unit time (N(r)⋅m-2⋅s-1). 𝑟𝑟 is the radius (μm) of droplet. In addition, Eq. (5) can be expressed as Eq. (6) 

ln(�̇�𝑛(𝑟𝑟) ∙ 𝑟𝑟𝑘𝑘 ) = 𝐻𝐻𝐻𝐻 (6) 

According to the analytical review of Castillo's test results, CH value was greater in higher humidity of air than lower 
humidity of air, and 𝑘𝑘 was approximate 3.68 for their test. 

6. CONCLUSIONS 

Condensation of water vapor of humid air is exploited in atmospheric water harvesting, dehumidification of HVAC 
systems, distillation and desalination, and other industrial sectors since increasing an HTC and performance efficiency 
in a condensation process means saving energy and reducing initial capital and operational costs. Thus, it is desirable 
to achieve DWC in industrial applications, and for this reason, many researchers have been focusing on developing 
novel technologies (e.g., surface coating, geometry modification, and nano-material composition) that can last drop-
wise status during a condensation process. 

However, predicting the condensate generation rate from a condenser sometimes requires many analyzing steps and 
assumptions. Thus, this paper reviewed how the humidity and cooling surface temperature affect the atmospheric 
water generation and the droplet growth rate in a macro-view to simply estimate the condensate generation rate in a 
humid air handling process. According to previous experimental studies, the condensate generation rate may be 
regarded as a proportional relationship with the temperature difference between the dew point and the surface 
temperature. 

This paper also reviewed the condensate droplet formation in a micro-view to consider humidity effects. By studying 
droplet growth rates considering different RH levels, many researchers found that the theoretical exponent depends 
on the RH and the wettability of the cooling surface. They observed an increase of the exponent of the first regime 
while that of the second regime, which appears when coalescence occurs, was constant and not impacted by the RH 
and the wettability of the surface. Though further experimental studies are required, the droplet growth behavior can 
be defined by the ambient humidity and temperature because the droplet formation regime shows a strong dependency 
on its dew point and surface temperature. Thus, this analytical study on the relationship between subcooling and 
condensate droplet formation in this review could serve as guidelines for further research on modeling a water 
generation rate from humid air and improvement of a water vapor condensation process. 

18th International Refrigeration and Air Conditioning Conference at Purdue, May23-27, 2021 
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NOMENCLATURE 

𝛼𝛼 time fraction of regime (-) 
DBT dry bulb temperature (°C) 
ℎ𝑓𝑓𝑓𝑓 latent heat of water vapor (kJ⋅kg-1) 
′ℎ𝑓𝑓𝑓𝑓 modified latent heat of water vapor (kJ⋅kg-1) 

HTC    overall heat transfer coefficient  (W⋅m-2⋅K-1) 
�̇�𝑚 total condensation rate per unit area (g⋅m-2⋅s-1) 
�̇�𝑛 droplet creation rate   (#⋅m-2⋅s-1) 
r     radius  (μm) 
𝑞𝑞" heat flux per unit area (W⋅m-2) 
〈𝑟𝑟〉 average of droplet radius (m) 
t  time    (s) 
T   temperature   (K) 

Subscript 
H humidity 
i droplet formation regime 
s      cooling surface 
sat             saturation 
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