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1Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University 

West Lafayette, 47907-2099, USA 

ma319@purdue.edu; wthorton@purdue.edu; dziviani@purdue.edu 

ABSTRACT 

In the last decades, several research and development efforts led to new compressor technologies that have been 

successfully introduced into market such as hermetic compressors with variable-speed motors, compressors with 

economization lines (both vapor and liquid injection lines), hermetic linear compressors, novel capacity modulations, and 

oil-flooding among others. During the process of implementing new compressor technologies, performance mapping is 

essential to predict the system behavior across different operating conditions. However, current standard AHRI-540 for 

compressor performance rating utilizes a 10-coefficient polynomial model that has severe limitations to include 

compressor enhancement technologies and variable operating range. In addition, it is common practice in industry to 

calibrate such polynomial correlations with at least 15 to 20 compressor calorimeter test points for a single compressor to 

ensure a good fit, which results in extended laboratory testing time and relatively high associated costs. Therefore, an 

automated compressor performance mapping approach based on artificial neural network (ANN) modeling is proposed 

to address and overcome the limitations of the current standard including applicability to any positive displacement 

compressors and minimization of number of test points required to accurately predict the compressor envelope. 

In this paper, the performance of a positive displacement compressor is mapped by this novel methodology, which 

relies on an algorithm that effectively determines the minimum set of data points required and optimizes the 

training/testing of ANN architecture. The accuracy and reliability of the proposed methodology are compared to the 

conventional 10-coefficient polynomial mapping. Lastly, the propagated uncertainties through the model and its 

extrapolation capabilities are also analyzed. 

Keywords: compressor performance mapping, calorimeter testing, artificial neuron network 

1. INTRODUCTION 

Improving the performance of air-conditioning and heat pumping (ACHP) systems to address space conditioning 

requirements, energy savings, and environmental concerns is a particularly challenging task. Research and development 

efforts at both component and system levels are continuously being pursued by both industry and academia. In order to 

evaluate the performance of different types of compressors and predict their behaviors within systems, various 

mathematical models have been proposed in the literature. In industry, it is a common practice to apply current 

ANSI/AHRI Standard 540 (AHRI, 2015) for compressor performance rating and utilize the 10-coefficient cubic 

polynomial model to predict the mass flow rate and compressor power. However, to ensure a good fit, at least 15 to 20 

compressor calorimeter test points are need for a single compressor and that requires extended laboratory testing time. In 

academic, empirical and semi-empirical models including plenty physical information have been widely used to map 

compressor performance and extrapolate results, which is usually suitable for compressor research and design. But this 

physical-based model cannot be applied for various types of compressor and is relatively cumbersome for industrial 

application. 

In order to overcome these limitations and improve the current methodology for compressor performance map rating, 

a novel approach of an automated compressor performance mapping approach based on ANN modeling has been 

developed and proposed by Ma et al., (2020) . They applied this methodology on three different types of compressors and 

compared the accuracy of ANN model to 10-coefficiency polynomial model. Ziviani et al., (2019) implemented a multi-

input multi-out ANN model that can achieve higher accuracy with respect to a semi-empirical model to predict the 

performance of a single-phase and two-phase injected scroll compressor. In these works, it illustrates that the ANN model 

has significant potential and benefits on compressor performance mapping and rating. 

In this paper, it is demonstrated the implementation of automated compressor performance mapping methodology 

based on ANN modeling with various set of training data points required and ANN architecture for a hermetic dual-

cylinder rolling-piston compressor. Furthermore, the accuracy and reliability of the proposed methodology are compared 
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to the conventional 10-coefficient polynomial mapping, and the propagated uncertainties through the model and its 

extrapolation capabilities are also analyzed. 

2. METHODOLOGY 

The overall automated compressor mapping methodology is illustrated in Error! Reference source not found., 

which is proposed by Ma et al., (2020). It is assumed that the compressor envelope has been already identified first. 

Hence, the compressor colorimeter (or hot gas bypass) testing data within the envelope can be used to train and test the 

ANN model. This simplification is necessary in order to develop and test the proposed mapping algorithm. Since the 

number and quality of training data impact the accuracy of prediction dramatically, the determination the training and 

validation dataset is critical for model regression. With respect to selecting the initial training samples, Aute et al., (2015) 

suggested that initial training samples can be chosen to be the vertices of a compressor envelope polygon, or the points 

as close to envelope boundary as possible to capture the compressor operating envelope. 

In ANN model, the inputs include the ambient temperature (𝑇𝑎𝑚𝑏 ), suction pressure (𝑃𝑠𝑢𝑐 ), suction temperature (𝑇𝑠𝑢𝑐 ), 

and discharge pressure (𝑃𝑑𝑖𝑠). Whereas, the outputs from the model are the discharge temperature (𝑇𝑑𝑖𝑠), mass flow rate 

of refrigerant ( 𝑚̇ 𝑟), and compressor power consumption ( 𝑊̇𝑐𝑜𝑚𝑝 ). In additions, four or five data points are selected on 

the compressor envelope boundary as the initial training samples, which include the lowest and highest evaporating and 

condensing temperatures, respectively. These initial points also present the minimum and maximum values of the output 

variables. After creating a training dataset with minimum number of training samples, an ANN model with single-input-

layer, single-hidden-layer and single-output-layer structure is trained to predict compressor performance through iterating 

the weights and biases values. Additionally, the remaining data samples are used for validation. The method of 

determining the initial training data and ANN model structure is based on the work presented by Ma et al., (2020). 

Figure 1: Conceptual schematic of the overall mapping methodology 

To evaluate the accuracy of the trained ANN model, three well-known statistical quantities have been used 

introduced. The 𝑅2 value is used to measure how statistically close the data are to the fitted regression line and is defined 

as: 

𝑐𝑜𝑣(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 )
𝑅2 = (1) 

√𝑐𝑜𝑣(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 )𝑐𝑜𝑣(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡) 

where 𝑐𝑜𝑣(∙) denotes the covariance, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 is the actual experimental data, and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the ANN model predicted 

data. Since the 𝑅2 cannot determine whether the coefficient estimated and the predictions are biased, additional indicators 

are introduced. The mean absolute percentage error (MAPE) in Equation (2) is selected to statistically measure how 

accurate the ANN model. 
𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 
100% 𝑦𝑖 

𝑀𝐴𝑃𝐸 = ∑ | |𝑎𝑐𝑡𝑢𝑎𝑙 (2)𝑛 𝑦𝑖 

25th International Compressor Engineering Conference at Purdue, May 23-28, 2021 



  

   

 

  
 

  
            

             

          

                   

           

                    

               

             

  

 

 
 

 

 

           

         

          

               

           

              

                 

          

 

 

 

 

                 

                

             

          

            

  

 

  
            

               

           

    

                

            

 

  

  

 

             

110033, Page 3 

3. COMPRESSOR MAPPING MODELS 

3.1 AHRI 10-coefficient mapping and ANN models 
The proposed compressor mapping approach is applied to a hermetic dual-cylinder rolling-piston compressor with 

R410A as the working fluid. A total of 43 steady-points were collected by colorimeter testing to train and validate the 

ANN model. The accuracy of the trained and validated ANN model is compared to the AHRI 10-coefficient mapping, 

where the 10 coefficients are trained based on Equation (3) and listed in the work done by Ma et al., (2020). Regards to 

the 10-coefficient polynomial regression, 11 data points, i.e. least number of regression data points for least-square, have 

been selected wisely based on their locations within the compressor envelope. It is proposed by Ma et al., (2020) that the 

selection of the points, shown in Figure 2 started by choosing points on the boundary or vertices of the sketched 

compressor envelope, and then the other points are selected such that all the 11 points are evenly spread across the whole 

data set. 

2 2 3𝑚̇ 𝑚𝑎𝑝[kg/hr] = 𝑀1 + 𝑀2 ∙ 𝑇𝑒 + M3 ∙ 𝑇𝑐 + 𝑀4 ∙ 𝑇𝑒 + 𝑀5 ∙ (𝑇𝑒 ∙ 𝑇𝑐) + 𝑀6 ∙ 𝑇𝑐 + 𝑀7 ∙ 𝑇𝑒 + M8 
3∙ (𝑇𝑒

2 ∙ 𝑇𝑐)+𝑀9 ∙ (𝑇𝑒 ∙ 𝑇𝑐
2) + 𝑀10 ∙ 𝑇𝑐 (3)2 2 3𝑊̇𝑚𝑎𝑝[𝑊] = 𝑃1 + 𝑃2 ∙ 𝑇𝑒 + P3 ∙ 𝑇𝑐 + 𝑃4 ∙ 𝑇𝑠 + 𝑃5 ∙ (𝑇𝑠 ∙ 𝑇𝑑) + 𝑃6 ∙ 𝑇𝑑 + 𝑃7 ∙ 𝑇𝑠 + 𝑃8 ∙ (𝑇𝑠

2 ∙ 𝑇𝑑)+𝑃9 
3∙ (𝑇𝑠 ∙ 𝑇𝑑

2) + 𝑃10 ∙ 𝑇𝑑 

where 𝑇𝑒 and 𝑇𝑐 are evaporating and condensing temperatures in degree Celsius, respectively. 

With respect to the ANN model, the architecture of the network is single-input-layer, single-hidden-layer and single-

out-put layer to predict the mass flow rate and compressor power. In the first ANN model, the least number of training 

samples, i.e. five, are selected to train the network with 6 neurons in the single hidden layer. In the other ANN model, the 

training samples increase to 10 samples and another data point is chosen as testing point. All these 11 samples are the 

same data samples for 10-coefficiency polynomial regression. In addition, the neurons in the hidden layer are also 

increased to 12 in the second ANN model in order to match the expanded training data set. The connection between 

neurons of each layer in ANN models can be expressed as Equation (4). 

𝑁𝑛𝑒𝑢𝑟𝑎𝑙 𝑁𝑖𝑛𝑝𝑢𝑡 

(2) (1) (1) (2)𝑦𝑘 = ∑ 𝜑( ∑ ∙ 𝑥𝑖 + 𝑏𝑗 )(𝜔𝑘𝑗 𝜔𝑗𝑖 ) + 𝑏𝑘 (4) 
𝑗=1 𝑖=1 

(1) (1) 
where 𝑥 and 𝑦 are the neural nods in input and output layers, respectively. 𝜔 and 𝑏𝑗 are the weights and bias 𝑗𝑖 

(2) (2)
propagating the i-th input node to j-th neuron node in the hidden layer; and 𝜔 and 𝑏𝑘 are the weights and bias 𝑘𝑗 

propagating the j-th neuron node in hidden layer to k-th output node. A non-linear activation function 𝜑(∙), the hyperbolic 

tangent function is selected in the current work as activation function. Since the input and output variables are of different 

types and have different orders of magnitude, all inputs and outputs parameters are normalized by equation (Zendehboudi 

et al., 2017). 

3.2 Uncertainty Analysis 
Uncertainty of the compressor map output quantifies the potential difference between the true values of output to 

model predicted values of output. It starts from uncertainty of measurement values in both the model inputs and training 

data and propagates in the mathematical structure of compressor map or compressor ANN model. In current work, it is 

assumed that 10-coefficient mapping and ANN model 

Based on uncertainty calculation method described in Cheung et al., (2018), the uncertainty of mass flow rate and 

compressor power due to inputs in 10-coefficient mapping are expressed in following equations. 

2 2̂ ̂𝜕𝑚̇ 𝜕𝑚̇𝑟 𝑟 ̂ 2 + ( 2∆𝑚̇𝑟 = √( ) ∙ ∆𝑇𝑒 ) ∙ ∆𝑇𝑐 (5)𝜕𝑇𝑒 𝜕𝑇𝑐 

2 2̂ ̂̇ ̇𝜕𝑊 𝜕𝑊 𝑐𝑜𝑚𝑝 𝑐𝑜𝑚𝑝 
∆𝑊̇̂ = √( ) ∙ ∆𝑇𝑒2 + ( ) ∙ ∆𝑇𝑐2 (6)

𝑐𝑜𝑚𝑝 𝜕𝑇𝑒 𝜕𝑇𝑐 

where 𝑇𝑒 and 𝑇𝑐 are dew-point temperatures which are calculated by the measured suction and discharge pressure. 

25th International Compressor Engineering Conference at Purdue, May 23-28, 2021 
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The uncertainty of dew point temperature expressed in Equation (7) is formed as the uncertainty of pressure 

measurement (∆𝑃𝑠𝑢𝑐,𝑚𝑒𝑎
, ∆𝑃𝑑𝑖𝑠,𝑚𝑒𝑎
) and uncertainty due to equation of state, since the dew-point temperatures are 

converted from measurements of suction and discharge pressure by the equation of state of the refrigerant. 

2 2𝜕𝑇𝑒(𝑃𝑠𝑢𝑐,𝑚𝑒𝑎
)
 2
 2

𝜕𝑇𝑐(𝑃𝑑𝑖𝑠,𝑚𝑒𝑎
)
 2
 2∆𝑇𝑒
=
√(
 )
∙
(∆𝑃𝑠𝑢𝑐,𝑚𝑒𝑎
+
∆𝑃𝐸𝑂𝑆
);
 ∆𝑇𝑐
=
√(
 )
∙
(∆𝑃𝑑𝑖𝑠,𝑚𝑒𝑎
+
∆𝑃𝐸𝑂𝑆
)
 (7)𝜕𝑃
 𝜕𝑃


Uncertainty of pressure measurement (∆𝑃𝑚𝑒𝑎
)
is usually described as a percentage uncertainty (listed in Table 1) of 

measurement value in the specification of a pressure transducer or thermocouple. And the uncertainty of dew-point 

pressure due to the equation of state is expressed by: 

∆𝑃𝐸𝑂𝑆
=
𝑟𝐸𝑂𝑆
𝑃𝑚𝑒𝑎
 (8) 

where 𝑟𝐸𝑂𝑆
is the uncertainty associated with the equations of state which depends on the type of refrigerant. It is 0.5% 

of the dew point pressure for R410A. 

Table 1: Sensor specifications 

Sensor Model Range Uncertainty 

Thermocouple Omega TMQSS-125T-6 0-350 C 0.75% 

Pressure Transducer 
Honeywell 

PX2AF1XX500PAAAX 
0-500 psia/0-1000 psia 0.25% 

According to JCGM GUM 100-2008 (JCGM, 2008), the combine uncertainty of outputs is obtained by appropriately 

combing the standard uncertainty of the input estimates. In ANN models, the uncertainty due to inputs can be calculated 

as follows: 

22̂ ̂𝜕𝑚̇
 𝜕𝑚̇𝑐𝑜𝑚𝑝
 𝑐𝑜𝑚𝑝

( ) 2 + (
 ) 2∙
∆𝑇𝑎𝑚𝑏,𝑚𝑒𝑎
 ∙
∆𝑃𝑠𝑢𝑐,𝑚𝑒𝑎
𝜕𝑇𝑎𝑚𝑏
 𝜕𝑃𝑠𝑢𝑐
∆𝑚̇̂
=
 (9)𝑟
 2 2̂ ̂𝜕𝑚̇
 𝜕𝑚̇𝑐𝑜𝑚𝑝
 𝑐𝑜𝑚𝑝
2 2+
(
 )
∙
∆𝑇𝑠𝑢𝑐,𝑚𝑒𝑎
+
(
 )
∙
∆𝑃𝑑𝑖𝑠,𝑚𝑒𝑎


√
 𝜕𝑇𝑠𝑢𝑐
 𝜕𝑃𝑑𝑖𝑠


22̂ ̂̇ ̇𝜕𝑊
 𝜕𝑊
𝑐𝑜𝑚𝑝
 𝑐𝑜𝑚𝑝

( )
 2 + (
 )
 2∙
∆𝑇𝑎𝑚𝑏,𝑚𝑒𝑎
 ∙
∆𝑃𝑠𝑢𝑐,𝑚𝑒𝑎
𝜕𝑇𝑎𝑚𝑏
 𝜕𝑃𝑠𝑢𝑐
̂∆𝑊̇
 =
 (10)𝑐𝑜𝑚𝑝
 2 2̂ ̂̇ ̇𝜕𝑊
 𝜕𝑊
𝑐𝑜𝑚𝑝
 𝑐𝑜𝑚𝑝
2 2+
(
 )
∙
∆𝑇𝑠𝑢𝑐,𝑚𝑒𝑎
+
(
 )
∙
∆𝑃𝑑𝑖𝑠,𝑚𝑒𝑎
𝜕𝑇𝑠𝑢𝑐
 𝜕𝑃𝑑𝑖𝑠
√


where the subscript mea represents a percentage uncertainty of measurement value. The partial derivative of an output 

with respect to an input shown in Equation (11) is calculated based on the neural network mathematical expression in 

Equation (4) with considering the nominalization process. In Equation (11), the capital X and Y represent the real 

measurement values of input and output, respectively; the small x and y represent the neural network inputs and outputs 

nominalized from measurement values. 

2𝑁𝑛𝑒𝑢𝑟𝑎𝑙
2𝜕
𝑌(𝑘)
 𝜕𝜑
 Ymax(𝑘)
−
Ymin(𝑘)(2)
 (1)(
 ) = ( ∑
 ∙ ) ∙
 )
 (11)(𝜔𝑘𝑗
∙
𝜔𝑗𝑖
𝜕
𝑋(𝑖)
 𝜑𝑥(𝑖)
 Xmax(𝑖)
−
Xmin(𝑖)

𝑗=1


In ANN model, the input variables (temperature and pressure) are measured directly without converting by equation 

of state, the uncertainty due to state conversion are not be considered. 

The other uncertainty components, such as uncertainty due to training data and uncertainty due to model random 

error, are not considered in this paper, since the model structure and model training methods are different between linear 

10-coefficient mapping and non-linear ANN model. 

25th International Compressor Engineering Conference at Purdue, May 23-28, 2021 
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2.3 Extrapolation Analysis 
As aforementioned, the training samples for all three model are selected on the boundary or vertices of the sketched 

compressor envelope. However, the compressor envelope may not be rigorously identified in some cases that the model 

is necessary to predict the compressor performance beyond the range of training data set. 

Thus, extrapolation analysis is conducted here to investigate the issue of compressor map performance outside the 

range of the training data set. Different from the previous case, the new training points in Figure 2 are selected inside the 

compressor envelope to avoid choosing data points located on the boundary or vertices of the sketched compressor 

envelope. The data points outside the training data set are validation data points for extrapolation capabilities analysis. 

(a) (b) 

Figure 2: Compressor map with training data: (a) training data selected on compressor envelope (b) training data 

selected within compressor envelope 

4. RESULTS 

To investigate the accuracy of the ANN model, a set of parity plots of are utilized to compare the 10-coefficient 

polynomial model and the ANN models with variable number of training samples. It is evident from Figure 3 and Figure 

4 that 10-coefficient polynomial and ANN models can predict the compressor performance reasonably well. By looking 

at the parity plots in Figure 3, the mass flow rate is predicted by the 10-coefficient polynomial model with a 𝑀𝐴𝑃𝐸 of 

0.83% and 𝑅2 of 99.85%, and power ouput reported a 𝑀𝐴𝑃𝐸 of 0.26% and 𝑅2 of 99.96%. By comparing the two ANN 

models, the one trained with 5 experimental samples presents a slightly larger 𝑀𝐴𝑃𝐸 value of 2.85% and lower 𝑅2 of 

99.07%. However, the ANN model trained with 10 samples shows as high accuracy as the 10-coefficient polynomial 

model with a 𝑀𝐴𝑃𝐸 of 0.75% and 𝑅2 of 99.88%. With respect to compressor power prediction in Figure 4, both 10-

coefficient polynomial and ANN model trained by 10 samples presents a good regression that nearly all data points fall 

on the best-fitting line with only 0.25% and 0.34% of 𝑀𝐴𝑃𝐸 respectively. Only the ANN model trained by 5 samples 

report a slightly large 𝑀𝐴𝑃𝐸 of 1.42%. 

Figure 3: Comparison of validating data between models and experiment for mass flow rate (Models trained by the 

samples on the boundary of the compressor envelope) 
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Figure 4: Comparison of validating data between models and experiment for compressor power (Models trained by the 

samples on the boundary of the compressor envelope) 

Furthermore, the uncertainties of mass flow rate and compressor power for each data sample are represented as error 

bars in Figure 3 and Figure 4. In Figure 3, the ANN model trained by 5 samples has longer error bars in comparison to 

that in the 10-coefficient map and in ANN model trained by 10 samples, which means that the uncertainties of the ANN 

model trained by 5 samples are the largest among the three models in the prediction of mass flow rate. Similar results are 

represented in Figure 4 for compressor power prediction. It illustrates that the ANN model trained by 5 samples has larger 

model prediction errors and uncertainties compared with the other two models. 

(a) Mass Flow Rate (b) Compressor Power 

Figure 5: Uncertainty errors with model accuracy of all data samples (Models are trained by the samples on the 

boundary of the compressor envelope) 

Figure 5 is plotted to investigate how uncertainty changes with model accuracy. In general, it shows that the larger 

the model relative error is, the higher uncertainty the model has, which means uncertainties increase with a decrease of 

model accuracy. In Figure 5, it is clearer to see that the ANN model trained by 5 samples represents highest uncertainty 

and lowest model accuracy for both mass flow rate and compressor power. In comparation ANN model with 10-

coefficiency map, the ANN model with 10 training samples has higher uncertainties but lower model relative errors in 

the prediction of mass flow rate; but has lower uncertainties and larger model relative errors in the prediction of 

compressor power. In 10-coefficiency map and two ANN models, since there are several data points have lower relative 

error but higher uncertainties, the definite relationship between model accuracy and uncertainty cannot be identified in 

the current work. 

Figure 6 and Figure 7 represent the model accuracy of 10-coefficiency map and two ANN models with training data 

samples locating inside the sketched compressor envelope. In comparation Figure 6 to Figure 3 for mass flow rate 

prediction, the 𝑅2 s for three models, which are 10-coefficiency polynomial, ANN model trained by 5 samples and ANN 

model trained by 10 samples, reduce to 98.58%, 99.56% and 98.97% respectively; the MAPEs increase to 2.53%, 3.73% 

and 3.02% respectively. In other words, all three models are not as accurate as before when the predicting data points are 

selected beyond the training data set. This trend also happens on compressor power prediction. In Figure 7, the 𝑅2 s 

slightly decrease to 99.63%, 99.26% and 97.06%, the MAPEs clime up to 0.63%, 1.19% and 2.44% respectively for 10-

coefficient map, ANN model trained by 5 samples and ANN model trained by 10 samples. 
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Figure 6: Comparison of validating data between models and experiment for mass flow rate (Models trained by 

samples inside compressor envelope) 

Figure 7: Comparison of validating data between models and experiment for compressor power (Models are trained by 

samples inside compressor envelope) 

(a) Mass Flow Rate (b) Compressor Power 

Figure 8: Uncertainty errors with model accuracy of all data samples (Models are trained by samples inside compressor 

envelope) 

Figure 8 shows the relationship between the model relative error and uncertainty for 10-coefficiency map and two 

ANN models when the range of training samples is much smaller than compressor envelope. Comparing to Figure 5, the 

uncertainties of ANN model with 5 training samples are much lower than before. In contrast to ANN model with 5 training 

samples, the uncertainties of 10-coefficient polynomial and ANN model with 10 training samples are roughly equal to 

25th International Compressor Engineering Conference at Purdue, May 23-28, 2021 



  

   

             

    

 

 
 

 
 

            

       

 
       

 
   

  

   

  

         

 

   
    

 

   
    

 
    

10 

10 

ANN model(10 samples) 
Max= 6.6 % 

. ..... ···• ·····• ·ii•11•-··· 
·····• ······ •• ■ ■ ........ ._. 

:-····: ■ ■ ■ I I I ·····11• .. . 

!.. ....... :./ .. ~:~ :~ ...... ~ ...... 11 ........ ~ ...................... !:> 
·XNN model(5 samples) 
Max= 12.5 % ........................ 

.................. ♦ • • ·~·· ~..... .. ~. .. ......... 
, .♦ .. • ¥···· 
f ♦ ♦ ♦ ♦• ♦ .............. ~ 

................ ~ ... : .. · .... ~~ ............................. . 
·1·0: coefficient polynomial (11 samples) 
Max= 33.4 % .................... .... 

........... .. . . -·~· ,....... . ' . ..... 
i • • • ' • ·• .. ····~ 

6 0 f .... ; :· • • ....... : ............................ 50 

l:11,ip -10 ...... -........ 40 o C\ 
or;it1119 .,. -20 30 rature l 

•err, . ""{ell\l>e 
Per;ittJ -30 20 condens1n9 

re[• CJ 

ANN model(10 samples) 
Max= 0.912 % 

······• ··· .. ···• ·····• ·;·11•;·•-.. .. 
............. . ••i it·11••···· 

L:::::".{ :: .: ... .' .. :. . . . .. : !> 
.XNN model(5 samples) 
Max= 0.515 % ....................... 

................. ♦ . ...... . 
~..... . ♦ ♦ ~ • .. ....... .. 
, .♦.. • ¥• .. . 
f ♦ ♦ ♦ ♦• ♦ ............. ~ 

................ ~ ... : ... · .... ~~ .............................. . 
1'0-coefficient polynomial (11 samples) 
Max= 1.220 % ....... ........... .... 

............. .. . . -·~· ,....... . ' ' . .... . 
0 / • • ·.: ;· • . ....... : ................. ::::::> 50 

l:11,ip -10 ..... -........ 40 o C\ 
or;iti119 ""e- -20 . 30 rature \ 

".,, . ""{ell\l>e 
Per;ittJ -30 20 condens11\9 

re[• CJ 

6 

30 

25 

~ .. 
20 

g ., ., 
Cl 
.l! 
C ., 

15 
I! ., 
0. 

s 
::, 

0 ., 
.c 

10 < 

5 

1.2 

1.1 

0.9 

0.8 ~ 

"' ~ 
0.7 ·~ 

t: ., 
u 

0.6 :5 

0.5 

0.4 

0.3 

0.2 

110033, Page 8 

the uncertainties presented in Figure 5. Furthermore, in Figure 8, no obvious correlations is observed between the model 

predictive errors and uncertainty errors. 

(a) 

(b) 

Figure 9: Absolute percentage errors and uncertainty errors of mass flow rate for all validating points of the compressor 

map (Models are trained by samples inside compressor envelope) 

Table 2: Absolute percentage error comparison of models with different training data set 

Training samples on 

compressor envelope 

Training samples within 

compressor envelope 

Mass Flow Rate Compressor Power Mass Flow Rate Compressor Power 

ANN model 

(10 training samples) 
2.5% 1.0% 6.6% 6.1% 

ANN model 

(5 training samples) 
7.8% 3.4% 12.5% 9.1% 

10-Coefficient 

polynomial 
3.9% 1.1% 33.4% 5.0% 
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To clearly locate the position of data samples representing larger model relative error or higher uncertainty, the plots 

in Figure 9 and Figure 10 represent the absolute percentage error (APE) and model uncertainty of mass flow rate and 

compressor power for each data point and their deviation distribution on compressor map when the range of model 

training data set is smaller than the range of validation data set. Overall, the maximum APEs shown in Figure 9 and 

Figure 10 for three models increase significantly in comparation of the corresponding results presented in Ma et al., 

(2020). 

With respect to mass flow rate prediction, Table 2 illustrates that the maximum APE obtained by 10-coefficient map 

dramatically increases from 3.9% to 33.4%, where the corresponding data point shown in Figure 9(a) is on the right 

bottom vertex of the sketched compressor map. The data points representing maximum model prediction error is also the 

data point has highest uncertainty as shown in Figure 9(b). Furthermore, the maximum APEs for the ANN model with 10 

training samples and the ANN model with 5 training samples also increase from 2.5% to 6.6%, and from 7.8% to 12.5% 

respectively summarized in Table 2. It also can be observed in the ANN models that the data points with higher APEs 

have higher uncertainties, where located on the vertices or boundary lines of the compressor map. 

(a) 

(b) 

Figure 10: APEs of compressor power for all validating points of the compressor map (Models are trained by samples 

within compressor envelope) 
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To compare APEs in compressor power prediction summarized in Table 2, the maximum APEs for three models, i.e. 

10-coefficiency mapping, ANN model with 5 training samples and ANN model with 10 training samples, increase from 

1.1% to 5.0%, 3.4% to 9.1% and 1.0% to 6.1% respectively. It can be observed in Figure 10 that the data points showing 

higher APEs are the points having higher uncertainties, where located along the boundary lines of compressor map. 

It can conclude that when the range of training data set is smaller than the compressor envelope, the model is less 

accurate and the uncertainty due to inputs is higher, the data points representing lower accuracy and higher uncertainty 

are the points beyond the range of the training data set. 

5. CONCLUSIONS 

In summary, the automated compressor performance mapping methodology based on ANN modeling with various 

training data set is implemented on a hermetic dual-cylinder rolling-piston compressor. And the accuracy and reliability 

of the proposed methodology are compared to the conventional 10-coefficient polynomial mapping, and the propagated 

uncertainties through the model and model extrapolation capabilities are also analyzed in this paper. It can conclude that 

the ANN model with 10 training samples has small relative error and low uncertainty when the training samples are 

chosen on vertex or boundary line of compressor map. With a little extrapolation, the accuracy of three models decrease 

and the uncertainty of ANN models also decrease. 

Nomenclature 

𝑇𝑎𝑚𝑏 Ambient temperature [℃] 𝑃𝑠𝑢𝑐 Suction pressure [kPa] 

𝑇𝑠𝑢𝑐 Suction temperature [℃] 𝑃𝑑𝑖𝑠 Discharge pressure [kPa] 

𝑇𝑑𝑖𝑠 Discharge temperature [℃] 𝑚̇ 𝑟 Mass flow rate of refrigerant [kg/hr] 

𝑊̇𝑐𝑜𝑚𝑝 Compressor power consumption [W] 𝑇𝑒 Evaporating temperature [℃] 

𝑇𝑐 Condensing temperature [℃] 𝜔 weights 

𝑏 bias 𝑥 Input node in ANN 

𝑦 Output node in ANN 𝑋 Input quantity 

𝑌 Output quantity 𝑟 Uncertainty error 

EOS Equation of state 
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