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ABSTRACT 

Axial compressors are used extensively in the energy, power, and transportation industries. Computational Fluid 

Dynamics (CFD) has been widely used in research and development of dynamic compressors. CFD modeling for such 

designs often presents great challenges in terms of meshing and computational cost due to moving parts with complex 

shapes, tiny gaps, and a large range of length scales and time scales to resolve. In this work, a Cartesian cut-cell based 

method with adaptive mesh refinement (AMR) is used to study Rotor 67, a transonic axial compressor design from 

NASA. The adopted method is demonstrated to be easily implemented and copmutationally efficient through a mesh 

convergence study, largely due to the advantage of an autonomously generated Cartesian cut-cell grid and AMR. 

Additionally, a boundary layer mesh can be used in conjunction with the Cartesian cut-cell mesh in order to resolve 

the near-wall flow more efficiently. Both the frozen-rotor approach with a single non-inertial reference frame (SRF) 

and a moving-rotor approach in a single inertial reference frame are used for the computation of the global pressure 

ratio and the isentropic efficiency as well as the local flow velocity, pressure, and temperature. Results show great 

grid convergence and good agreement with previously published experimental data for multiple operating conditions 

in terms of both global and local flow quantities. 

1. INTRODUCTION 

Axial compressors are an important type of dynamic compressor and have a wide variety of applications in the energy, 

power generation, and transportation industries due to their advantages of being able to accommodate a high 

volumetric flow rate, high efficiency, smoothness, and ease in multi-stage operation. Computational Fluid Dynamics 

(CFD) has been used extensively in the modeling and design of axial compressors, from global performance 

evaluations to studies of local flow details. However, complex curvature of the geometries, high rotational speeds, and 

tiny tip clearances often create great challenges for CFD meshing and often incurs a conservation/stability issue for 

the numerical solution: the cells are often skewed with poor aspect ratios near the complex locations and the 

conservation of volume is difficult. The meshing for such designs is often time-consuming with difficulties in assuring 

the mesh quality, which consequently affects the numerical performance of a CFD solution. 

There are many existing efforts on computational modeling of the flow dynamics of an axial compressor. Grosvenor 

(2008) studied the NASA Rotor 67 transonic axial compressor using the Jameson-Schmidt-Turkel (JST) scheme and 

the Spallart-Allmaras turbulence modeling with a body-fitted mesh and compared against the original test data. 

Conelius et. al. (2014) employed both a transient and a steady-state solver to study multi-stage axial compressors with 

an unstructured mesh. Charalambous et. al. (2004) used a similar methodology and tools to study the effect of the 

inflow distortion on compressor performance. Most of the exiting studies require a dedicated user-created mesh with 

professional or commercial mesh generation tools, which typically involves long time and a recursiverevision process 

without precise knowledge beforehand on where the mesh should be further refined to capture the flow physics more 

accurately. Moreover, for different operating conditions, the flow could vary considerably, and the mesh may need 
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appropriate adjustments which further increase the time cost in creating a mesh suitable for a wide variety of operating 

conditions of an axial compressor. A grid convergence study could require additional meshing time to investigate the 

uncertainty due to different grid resolution, which is an essential part of any detailed CFD study. 

In this study, a Cartesian cut-cell method is used to investigate the NASA Rotor 67 transonic axial compressor 

characterized in Strazisar (1989). A single non-inertial reference frame (SRF) is used for most of the design 

performance studies and comparison with test data. This study features a novel autonomous meshing method which 

automatically generates a Cartesian mesh on-the-fly to fill the original triangulated surface geometry without requiring 

any user meshing time. At the locations where a Cartesian cell meets the boundary, the cell is cut to fit the boundary 

geometry exactly, without the need to distort the original boundary geometry, hence perfectly conserving the domain 

volume. Based on the gradient or curvature of the velocity and temperature fields, the grid is dynamically refined 

through adaptive mesh refinement (AMR), without requiring any a-priori knowledge of the flow field. The total 

pressure rise, adiabatic efficiency, and local flow details at the impeller exit have been studied and compared with the 

experiment data, with a reasonable match and good grid convergence. It is demonstrated that, although most of these 

studies are performed using a single blade passage sector geometry in a SRF and with a steady-state solver for 

computational efficiency, the same problem is also solved using the moving full geometry to conduct transient 

behavior studies, which renders this methodology tractable for industrial problems in which the assumptions of such 

geometry simplifications may not be practical. In addition, the adopted meshing technique can be optionally combined 

with body-fitted boundary layer mesh to resolve the near-wall and gap flow details with higher accuracy. Similar 

approaches have been successfully applied for several similar pump and compressor studies, including screw 

compressors, reciprocating compressors [Rowinski (2016)], and centrifugal fans [Li(2018)]. 

2. TEST CASE AND METHODOLOGY 

The NASA Rotor 67 model is a single stage transonic axial compressor, originally built and experimentally tested in 

1989 at the NASA Glenn Research Center [Strazisar (1989)]. It has 22 back-swept blades, with a converging cross-

sectional area from the inlet to the outlet (Figure 1). The test rig has a standard test condition of the inlet total air 

temperature at 288.15K and total pressure of 1 atm (101325Pa). At the tested speed of 16,043 revolutions per minute, 

the impeller tip speed is 429 m/s with a Mach number of 1.38. A single self-nulling combination probe wase used for 

measuring total pressure, total temperature, and flow angle, while single self-nulling 18-degree wedge-angle probes 

were used for static pressure measurement. The velocity was measured by laser anemometer. Most of the presented 

studies focus on the steady state result, hence a sector geometry is used for computational efficiency, and both a 

standard model with a tip clearance of 0.61mm and a model with zero tip clearance are investigated. The full moving 

geometry is demonstrated to be useful for further transient studies and yields steady-state results consistent with the 

sector model. Both geometries are based on the study from [Doi (2002)]. 

Figure 1: Rotor 67 full geometry (left) and sector geometry with a single blade passage (right). 

The commercial code CONVERGE [(Richards et. al. (2017)] is used for the study, which adopts a second-order finite 

volume scheme with the aforementioned Cartesian cut-cell grid, originally proposed by Senecal et. al. (2007). The 

governing momentum, energy and turbulence transport equations are solved on a finite-volume grid with all quantities 

collocated at the cell center. The Pressure Implicit with Splitting of Operators (PISO) method [Issa (1985)] is used for 

pressure-velocity coupling. Since the Cartesian cells may be cut by the wall boundary, to ensure a good aspect ratio 

and sufficient cell volume, small cut-cells will be merged with nearby full cells in a technique termed cell-pairing, 

the 
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degree to which can be controlled by a single parameter termed the minimum volume ratio. In this study, a value of 

0.3 is used for this parameter, which means that if a ratio of a cut-cell’s volume to its volume before being cut is less 
than 0.3, it will be paired to the neighboring cell with which it shares the most volume. The cell-pairing scheme can 

further improve the numerical stability on the basis of Cartesian cut-cell grid’s overall good orthogonality and perfect 

aspect ratio. Automatic and variable time step control is used based on Courant-Friedrichs-Lewy (CFL) numbers. 

Message Passing Interface (MPI) and shared memory are used for parallelization. Automatic Mesh Refinement (AMR) 

is employed to adaptively refine the mesh based on local variations of velocity and temperature to efficiently refine 

the mesh around the locations where the flow is most sensitive (for example, at the shock wave across the blade tip) 

for a highly-efficient mesh for a wide range of operating conditions as demonstrated in Pomraning(2014). A typical 

overview of the Cartesian cut-cell grid system is shown in Figure 2. 

Figure 2: The Cartesian cut-cell grid system for zero tip clearance model (left upper) and for the model with a 0.61 

mm tip gap (left lower and right). 

A compressible gas solver is used with the ideal gas as equation of state. To avoid the common checker-boarding issue 

for collocated cells, the scheme from Rhie and Chow (1983) is used with the pressure-velocity coupling methodology. 

Due to the high velocities and prominent turbulent flow features in these cases, the Reynolds Averaged Navier-Stokes 

(RANS) equations are used for turbulence modeling. Most cases in this work are run with the Reynold-Stress Model 

(RSM) RANS turbulence modeling [Liu et. al. (2020)] except in cases specifically mentioned. The RSM model, 

involves seven additional transport equations for turbulent kinetic energy, dissipation rate, and the individual 

components of the Reynolds stress tensor, and has shown good applicability in rotating flows. For meshes with finer 

resolution (y+<30), the Shear Sress Transport (SST-k-Omega) RANS model from Menter (1994) is used instead. The 

transport equations are solved by the Successive Over-Relaxation (SOR) algorithm. At the wall boundaries, standard 

law-of-the-wall models are used for velocity for RSM turbulence model and automatic wall functions are used for 

SST turbulence model. The inlet is set at 1 atm of total pressure according to the test condition, and different outflow 

static pressures are prescribed according to the multiple test conditions. A steady state solver is used for most of the 

studies, with the exception of the moving full geometry case. 

3. Results and Discussion 

3.1 Global Performance Predictions 

For the baseline runs, a 5 mm base grid is used with maximum level of refinement of 4, corresponding with the 

minimum grid size of 5/24=0.3125 mm and an average y+ around 30 near the pressure side of the blade and a maximum 

cell count of 1.62M cells. The maximum CFL number is set at 10, but it will reduce to 1 at the final stage of each run, 

which corresponds to a time step range within 2e-7s to 2e-6s. A single condition can be run to a steady state within 

12 hours with 16 CPUs. According to the original test, the pressure ratios are based on the total pressure measured at 
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station 1 (impeller inlet at z=2.743cm) and station 2 (impeller exit at z=-11.011cm). The adiabatic efficiency is 

calculated based on equation (1). 

𝛾−1 
𝑝𝑡2 𝛾 
( ) −1 
𝑝𝑡1 𝜂 = , (1) 𝑇𝑡2−1 
𝑇𝑡1 

Where pt is the total pressure, Tt is the total temperature, γ is the heat capacity ratio (1.4 for dry air). Subscripts 1 and 

2 denote station 1 and station 2, respectively. With the baseline setup and RSM RANS turbulence model, the model 

performance is compared against test data in Figure 3. 

(a) Pressure ratio vs. mass flow rate (b) Pressure ratio vs. normalized mass flow rate 

` 

(c) Adiabatic Efficiency vs. mass flow rate (d) Adiabatic efficiency vs. normalized mass flow rate 

Figure 3: Pressure ratio and Adiabatic Efficiency vs. mass flow rate. 

From figures 3(a) and 3(c) illustrate that the overall trends of both pressure ratio and the efficiency curve are well 

matched against the measured test data, with the predicted choke mass flow rate of 34.70 kg/s within 1% of the 34.96 

kg/s test data. For most of existing studies, the dimensionless mass flow normalized by the predicted choke mass flow 

is often used as a metric for comparison [Grosvenor (2008)]. Therefore, the normalized pressure ratio and efficiency 

curve are also shown in Figures 3(b) and 3(d), respectively. The normalized curve indicates that the peak efficiency 

location and the near stall condition match well with the test data. The leakage effect of the tip clearance can be 
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observed when comparing the previous results to the results from the cases without tip gap. The tip gap results in 

overall slight lower performance due to the additional leakage loss. 

In CFD studies on dynamic compressors, numerical error from the grid resolution is a common issue that needs to be 

carefully addressed. For this work, the choke mass flow rate is an important quantity to be used in normalization, and 

it ought to demonstrate good grid convergence or low grid uncertainty. Figure 4 shows the grid dependency of the 

choke mass flow rate on five grids of varying resolution, whose y+ values range from 100 on grid 0 to 30 on grid 4, 

considering the average on the pressure side of the blade. Good grid convergence can be observed, and most of the 

studies in this work utilize grid 4. The adopted Cartesian cut-cell meshing approach allows a global grid convergence 

study to be performed easily and robustly, simply by changing the base grid size and optionally the maximum level 

of refinement in AMR. 

Figure 4: Grid Convergence on choke mass flow prediction. 

3.2 Predictions of Local Flow Details 

To further validate the proposed method, the local flow details for the near-peak and near-stall condition are also 

assessed in this work for the model including the gap clearance. In the original experiment, the radial distribution of 

total pressure, total temperature, static pressure and flow angle are presented for both a near-stall condition 

(corresponding to a total pressure ratio of 1.728) and a near-peak condition (corresponding to a total pressure ratio of 

1.642) at station 2. Since in this work the static pressure boundary condition is used at the outlet, the results from two 

conditions closest to the test condition (with less than 1% difference in total pressure ratio) are averaged. The 

comparisons are shown in Figure 5. 

Figure 5 shows that even at the relatively coarse resolutions (where the y+ is around 30) used as the baseline setup, 

the prediction of pressure and temperature distribution at impeller exit matches reasonably well with the test data for 

both the near-peak and near-stall conditions. The results also suggest that the ideal gas law used for the equation of 

state is sufficiently accurate for the dry air at the given condition, and that there is no need to choose a more advanced 

equation of state for these conditions (which would otherwise increase the computational cost slightly and make the 

adiabatic efficiency used in Eq. (1) less precise). As for the flow angle (defined as the angle between the flow direction 

and velocity component normal to the flow), there is overall around 4 degrees of difference compared with test data, 

but the minimum angle radial positions are accurately captured compared with the test data. The overall validation 

shown in Figures 3, 4 and 5 demonstrate the validity of the proposed methodology. The static temperature, static 

pressure and velocity contours at the middle axial chord (z=-4.62cm) are shown in Figure 6 for near-stall, near-peak, 

and near-choke conditions using the same color scale for each quantity. The shock wave which starts forming from 

choke to peak at the pressure side, and then shifting to the suction side, is clearly evident in these contour plots. 
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(a) pressure/temperature-near peak (b) pressure/temperature-near stall 

(c) flow angle-near peak (d) flow angle-near stall 

Figure 5: Radial distriubtion of flow measurement compared with test. 

(a) near-choke (b) near-peak (c) near-stall 

Figure 6: Flow field comparison at different conditions at middle axial chord. 

3.3 Other Investigations and Future Work 

For the above studies of the global and local flow fields, the sector geometry is used for computational efficiency. It 

is necessary to verify that the sector geometry and non-inertial reference frame are an accurate compared to the actual 

full moving geometry. Two coarse grid runs (with y+ values around 100, base grid sizes of 8 mm, and minimum grid 

sizes of 1 mm), one with a sector geometry and one with full moving geometry, are set up in exactly the same way 

and run side-by-side for the near-peak condition . The full moving geometry has a total cell count of 12M cells while 

the sector geometry has a total cell count of 0.5M cells. The pressure and velocity contours at the mid chord (z=-
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4.5cm) location are presented as Figure 7. From the comparison, it is evident that the axisymmetry of the flow field is 

sufficient to justify the choice of a sector geometry, and for these models and conditions, there is very little blade to 

blade variation in flow quantities. Although with all Cartesian grids, there may be slight numerical effects due to the 

sector geometry alignment angle with the orthogonal direction of the grid. Different grid alignments may cause slight 

resolution change near the wall, while the full moving geometry does not have such an issue. 

(a) Full Moving-Pressure (b) Full Moving-Velocity 

(c) Sector-Pressure (d) Sector-Velocity 

Figure 7: Comparison between full moving geometry and sector geometry run at near peak condition. 

Finally, if detailed vortex structures near the wall and the gap are of specific interest, further grid refinement is needed 

than the current y+ levels of 30, at which point the structured Cartesian grid may become less efficient as the body-

fitted boundary layer mesh for the curved surface of an axial compressor. The proposed numerical scheme allows a 

hybrid scheme: the user can create a boundary layer mesh for the blade before the simulation, and for the remaining 

majority of the domain, a Cartesian cut-cell will still be automatically created on-the-fly. The interface between the 

Cartesian cut-cell and the boundary layer mesh will be handled automatically by the proposed methodology during 

run time as shown in Figure 8. With the help of this hybrid meshing strategy, a fine resolution of 6E-6m and y+ values 

less than 2 (compared with the 0.625mm finest resolution for the Cartesian cut-cell baseline setup) can be achieved 

while still maintaining similar base Cartesian cut-cell resolution level and allowing the AMR to resolve the shock. 

The total cell count only increased from 1.6M cells to 3M cells, making the overall run time still within an acceptable 

level. It can be seen from the pressure contour in Figure 8 that more small scale flow details are captured with the help 

of the finer resolution.  

Figure 8: Hybrid mesh near blade and the pressure field. 

4. CONCLUSIONS 

This work presents a CFD modeling study of an axial compressor design (NASA Rotor 67) using an automated 

Cartesian cut-cell based finite-volume method with optional hybrid boundary-layer mesh. The employed method 

largely eliminates mesh-related user time and instability/numerical diffusion due to poor mesh quality. It offers the 

advantage of easily performed grid convergence studies and multi-condition study of the design. With the help of 
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adaptive mesh refinement, the computational efficiency is further enhanced without the need to know the flow field 

before the simulation for a grid strategy that performs efficiently across a variety of operating conditions. 

Global flow quantities are compared against the original test data for total pressure ratio and adiabatic efficiency as 

functions of mass flow rate, and demonstrated good agreement across the full operation range. This includes the 

predictions for choke mass flow rate, the peak efficiency location, and overall near stall performance. Grid 

convergence trends have been clearly observed with the chosen grid resolutions. For the local flow quantities, the 

radial distribution of total pressure, static pressure, total temperature and flow angle at the impeller exit are studied 

and validated against test data, with reasonable match in the average value, extreme value locations, and overall trends 

at both near-stall and near-peak conditions. These validations justify the choice of the grid resolution, the RSM RANS 

turbulence model, and the overall solution scheme. The mid-chord velocity, pressure, and temperature contours are 

shown to illustrate how the shock wave is generated and shifts from the pressure side to the suction side when the 

condition changes from near-choke to near-peak and to near-stall. Moreover, a comparison between the sector 

geometry and the full moving geometry result at the mid-chord proves the validity of using a sector geometry for the 

steady state study since the observed flow field is quite axisymmetric for the studied model and operation conditions. 

Finally, although the all Cartesian cut-cell grid strategy can theoretically handle any type of geometry, it is not as 

efficient in fully resolving the boundary layer of an axial compressor blade surface which is curved and not necessarily 

aligned with the grid line direction. A hybrid meshing strategy can be used to solve this problem, which requires the 

user provide the boundary-layer mesh before the simulation while the Cartesian cut-cell grid will be created on-the-

fly for remaining part of the domain. The two mesh interfaces will be automatically handled by the proposed method. 

With this hybrid meshing approach, a similar grid resolution for the location far from the boundary is maintained, 

while utilizing a boundary-layer mesh to fully and efficiently resolve the near wall effect and allowing AMR to 

efficiently resolve the shock wave. 
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