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ABSTRACT 

Numerical simulation models are paramount to design compressors that follow reliability and efficiency requirements. 

This paper presents a simulation model to predict the steady-state thermal profile of hermetic reciprocating 

compressors. A finite element method is used to compute the temperature distribution of the solid components and 

the fluid in the suction and discharge lines, whereas a lumped-parameter formulation is used to evaluate the internal 

environment temperature and the gas temperature at the end of the compression cycle. The heat transfer between the 

gas and the solid components is predicted using imposed convective heat transfer coefficients; some of which are 

estimated using heat transfer correlations, and others calibrated using experimental data and a genetic optimization 

algorithm. The numerical results were validated by comparisons with experimental data for different operating 

conditions and rotation speeds, showing that the model can be used to predict the compressor thermal profile in the 

entire application envelope. The low computational cost of the model enables its application to carry out sensitivity 

analysis and to assess thermal management alternatives to improve the compressor reliability or thermodynamic 

performance. 

1. INTRODUCTION 

Suction gas superheating can significantly reduce the thermodynamic performance of hermetic reciprocating 

compressors used in refrigeration systems, as it reduces the refrigerant gas density at the inlet of the compression 

chamber and therefore the mass flow rate supplied by the compressor. The three main heat sources of superheating in 

reciprocating compressors are: the electric motor, which generates heat due to electrical losses; the mechanism 

bearing, which generates heat due to mechanical friction; and the refrigerant gas at the discharge line of the 

compressor, which leaves the compression chamber at high pressure and temperature. In addition to the effect on gas 

superheating, high operating temperatures can affect the integrity and reliability of key components, such as the 

electric motor windings. Therefore, the prediction of the temperature distribution in hermetic reciprocating 

compressors and the assessment of thermal management solutions are important aspects of compressor design. 

The temperature profile of hermetic reciprocating compressors can be measured directly by thermocouple wires, for 

example. Measurements are very accurate, but they are costly and time consuming, which can make it impractical to 

assess thermal management alternatives to improve the compressor performance. Numerical simulation tools, 

therefore, can be applied as an alternative to experimental activities. As they are cheaper and less time consuming, 

and if they are accurate enough, they can be very useful to perform such analyses. 

Several numerical methodologies have been developed to predict the temperature distribution of reciprocating 

compressors. Sim et al. (2000) and Dutra and Deschamps (2015), for example, applied lumped-parameter formulations 

to predict the steady-state thermal profile of reciprocating compressors. In their methodology, the equations of 

conservation of mass and of energy are applied to several control volumes that represent the gas chambers in the 

compressor, which are linked through equivalent thermal conductances obtained from experimental calibration or 

correlations available in literature. These models can be applied for a low-cost estimation of the thermal behavior of 

reciprocating compressors, but are not accurate enough to capture the changes that may arise from subtle geometric 

changes. 
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More complex computational tools to predict the thermal behavior of hermetic reciprocating compressors have been 

presented by Chikurde et al. (2002) and Birari et al. (2006). In these distributed-parameter models based on the finite 

volume method, velocity, pressure and temperature profiles are predicted for both solid and fluid domains. The main 

difference between them is that the model by Chikurde et al. (2002) couples the fluid at the suction and discharge lines 

considering a polytropic process, whereas the model by Birari et al. (2006) solves the fluid flow in the compression 

chamber using a dynamic mesh. Oliveira et al. (2017) also applied a finite volume method to predict the temperature 

distribution and the fluid flow for a linear compressor, whose operation is based on a linear motor and a spring. Despite 

of their accuracy, distributed-parameter models present high computational cost and difficulty to model the lubricating 

oil flow inside the compressor, which directly impacts its thermal behavior. 

Hybrid simulation models such as those presented by Ribas (2007), Schreiner et al. (2009) and Sanvezzo Jr. and 

Deschamps (2012) combine lumped-parameter and distributed-parameter formulations, coupling them iteratively. In 

the hybrid approach, the thermal interactions between the different control volumes are predicted using equivalent 

thermal conductances, while the heat conduction through the solid components is calculated using a differential model. 

The model described by Ribas (2007) applies global heat transfer coefficients obtained from experimental calibration 

and calculates temperatures for the fluid and solid domains using energy balances. This simulation provides the 

boundary conditions (temperatures and heat transfer coefficients) required by the distributed-parameter model. Once 

solved, the heat conduction model provides the heat fluxes through the solid components, which return to the lumped-

parameter formulation to adjust the thermal profile. In order to increase the flexibility of this kind of approach, 

Sanvezzo Jr. and Deschamps (2012) proposed the calculation of the global heat transfer coefficients using heat transfer 

correlations from the literature and considered the effect of the lubricant oil flow inside the compressor shell. In order 

to quantify this effect, Sanvezzo Jr. and Deschamps (2012) considered that 80% of the lubricant oil mass flow rate is 

directed to the shell surface, while the rest of it flows to the crankcase region. 

Comparing the studies available in literature concerned with numerical simulation models for the thermal management 

of hermetic reciprocating compressors, it can be noted that the lumped-parameter formulations are accurate to predict 

the thermal interactions between the refrigerant gas and solid components through the application of energy balances 

and thermal conductances, making them particularly useful when low computational costs are required at initial design 

steps. However, lumped models present relevant limitations as they are not capable of predicting the heat conduction 

and the temperature stratification at the solid components and gas chambers. On the other hand, distributed-parameter 

models can accurately simulate the fluid flow through the fluid chambers and the heat conduction through the solid 

components, but they present a high computational cost, reducing their applicability when a large design space must 

be considered to improve compressor efficiency. 

One of the advantages of a hybrid approach is that the thermal interactions between fluid and solid domains can be 

modelled without solving the fluid flow, so that a low simulation time is achieved when compared to distributed-

parameter models that solve the temperature, velocity and pressure fields for the fluid domains. Additionally, the heat 

conduction through the solid components, which is not solved in lumped-parameter formulations, can be efficiently 

predicted using a finite element method, since the mesh requirements are less strict compared to models based on a 

finite volume method. The hybrid models found in literature, however, do not simulate the temperature stratification 

at the refrigerant gas, applying lumped models for the gas. 

This paper presents a hybrid simulation model to predict the steady-state thermal profile of the solid components and 

the refrigerant gas of hermetic reciprocating compressors. The model couples distributed-parameter models to predict 

the temperature stratification on the solid components and the refrigerant gas with lumped-parameter formulations to 

calculate the internal environment temperature and the temperature rise in the compression cycle. Due to its low 

computational cost, the model can be applied to assess thermal management solutions and to perform sensitivity 

analysis, therefore aiding the design of hermetic reciprocating compressors. 

2. METHODOLOGY 

In the model presented in this paper, the compressor CAD model is used to describe the solid domain. The fluid 

domains are represented by tubes that are drawn across the chambers in the suction and discharge lines. The following 

hypotheses were made regarding the refrigerant gas flow: unidimensional, incompressible, inviscid and in steady-state 

regime. Therefore, for the two fluid domains (the suction and discharge lines), as the cross-section of the tubes is 
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constant, the velocity distribution is trivial and the numerical solution used to obtain the temperature distribution along 

the domain. For that, fixed mass flow rate and temperature-dependent specific heat coefficients must be assigned. 

The heat conduction in the solid components is modelled by the thermal energy equation and the Fourier’s Law, and 

is solved numerically by a finite element method. Considering a steady-state operation and homogeneous and isotropic 

materials, the heat conduction equation is 

𝑘∇2𝑇 + 𝑞̇ = 0, (1) 

where k is the thermal conductivity, ∇2 is the Laplace operator, T is the temperature, and 𝑞̇ is the volumetric heat 

generation. 

The thermal interactions between the refrigerant gas and the solid components is predicted by the application of a 

coupled solution of the heat transfer problem on the fluid-solid interfaces. Figure 1 shows a representation of the 

different methods that are coupled to predict the thermal interactions in the compressor. The pipes shown in black 

represent the fluid domain, which is discretized in elements that interact with the surface elements of the solid domain 

based on the proximity between them. As a result of the thermal interactions between the fluid and solid elements, the 

temperature along the fluid line vary, and this stratification affects the local heat transfer with the solid components. 

In order to calculate the heat transfer between the external surfaces of the solid components and the internal 

environment, and between the internal environment and the compressor shell, convective heat transfer coefficients 

and an internal environment temperature are defined. Since the internal environment temperature is not known at the 

beginning of the simulation, it is calculated iteratively based on a lumped formulation and a thermal circuit that 

represents the heat transfer between the internal components and the shell, as shown in Figure 2. 

Figure 1: Methods that are coupled to predict the thermal interactions in the compressor. 

Figure 2: Thermal circuit between the internal components and the compressor shell. 

25th International Compressor Engineering Conference at Purdue, May 24-28, 2021 
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Considering a steady-state operation, the sum of the heat exchanged between the internal components and the internal 

environment must be transferred to the internal surface of the compressor shell before leaving the compressor to the 

external ambient. Therefore, the average temperatures at the surface of each solid component (𝑇𝑖,𝑖𝑒 ) can be related to 

the internal environment temperature (𝑇𝑖𝑒 ) and to the average temperature at the internal surface of the compressor 

shell (𝑇𝑐𝑠,𝑖𝑒 ) by performing an energy balance. After algebraic manipulation, an explicit equation for 𝑇𝑖𝑒 is written: 

∑ 𝐻𝑖,𝑖𝑒𝐴𝑖,𝑖𝑒𝑇𝑖,𝑖𝑒 + 𝐻𝑐𝑠,𝑖𝑒𝐴𝑐𝑠,𝑖𝑒𝑇𝑐𝑠,𝑖𝑒 
= 

∑ 𝐻𝑖,𝑖𝑒𝐴𝑖,𝑖𝑒 + 𝐻𝑐𝑠,𝑖𝑒𝐴𝑐𝑠,𝑖𝑒 
𝑇𝑖𝑒 (3) 

where the convective heat transfer coefficients between each internal component and the internal environment (𝐻𝑖,𝑖𝑒 ) 

and the convective heat transfer coefficient between the internal environment and the shell internal surface (𝐻𝑐𝑠,𝑖𝑒 ) are 

adjusted using experimental data. The surface areas of the components (𝐴𝑖,𝑖𝑒 ) and the shell internal surface area (𝐴𝑐𝑠,𝑖𝑒 ) 

are obtained from the CAD model. The surface-average temperatures 𝑇𝑖,𝑖𝑒 and 𝑇𝑐𝑠,𝑖𝑒 are obtained from the distributed-

parameter model. 

The heat transfer between the compressor external surface and the external ambient is computed using values of 

temperature and heat transfer coefficients. The external environment temperature must be prescribed, while an 

equivalent heat transfer coefficient (𝐻𝑒𝑞 ) that considers convection and radiation is calculated as 

−14𝐻𝑒𝑞 = 𝐻𝑒𝑒 + [𝜎𝜖(𝑇𝑐𝑠,𝑒𝑒 − 𝑇𝑒𝑒
4 )](𝑇𝑐𝑠,𝑒𝑒 − 𝑇𝑒𝑒) (4) 

where 𝜎 is the Stefan-Boltzmann constant, 𝜖 is the emissivity of the compressor external surfaces, 𝑇𝑐𝑠,𝑒𝑒 is the average 

temperature on the external surface of the shell and 𝑇𝑒𝑒 is the external ambient temperature. The convective heat 

transfer coefficient between the compressor shell and the external environment is calculated using the correlation 

proposed by Yovanovich (1987) for arbitrarily-shaped immersed bodies, in which the Nusselt number is given by 

𝑁𝑢𝐿 = 3.47 + 0.51𝑅𝑎𝐿
1/4 

(5) 

where 𝑅𝑎𝐿 is the Rayleigh number with the square root of the exposed surface area as characteristic length. For the 

internal flow in the discharge tube and in the inlet and outlet pipes, the heat transfer coefficients are calculated using 

the Dittus-Boelter correlation for turbulent flow. 

The two fluid lines that represent the refrigerant gas in the suction and discharge lines of the compressor require an 

inlet temperature as a boundary condition. The inlet temperature of the suction line must be prescribed as a boundary 

condition for the problem, whereas the inlet temperature of the discharge line is calculated based on the gas 

temperature at the end of the suction line. The refrigerant gas enthalpy at the end of the compression process, ℎ𝑑𝑐 , is 

calculated using the first law of thermodynamics 

1 
̇ℎ𝑑𝑐 = ℎ𝑠𝑐 + (𝑊̇ 

𝑡ℎ − 𝑄𝑐𝑐), (6)𝑚̇ 

where ℎ𝑠𝑐 is the refrigerant gas specific enthalpy at the inlet of the compression chamber, 𝑚̇ is the mass flow rate, and 

𝑊̇ 
𝑡ℎ is the thermodynamic power. For the results presented in this paper, the compression process is considered 

adiabatic, so that 𝑄̇𝑐𝑐 is set to zero. 

The refrigerant gas mass flow rate attributed to the fluid domain must be imposed as a boundary condition. 

Additionally, the electric power must be known in order to compute the heat generated due to electrical and mechanical 

losses and the thermodynamic power delivered to the refrigerant gas in the compression process. In order to define 

these values, the following three basic options are available: i) imposing the mass flow rate and the electric power 

based on the compressor datasheet or experimental data; ii) predicting the mass flow rate and the electric power using 

the semi-empirical model described by Li (2012); iii) imposing a volumetric flow rate and the electric power and 

predicting the mass flow rate based on the refrigerant gas density at the compression chamber inlet. For the second 

option, the semi-empirical model coefficients must be adjusted using the compressor datasheet or experimental data. 

25th International Compressor Engineering Conference at Purdue, May 24-28, 2021 
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̇For the third option, a reference volumetric flow rate (𝑉𝑟𝑒𝑓 ) can be obtained by simulating the model with reference 

input parameters and based on the following equation: 

̇𝑚̇ = 𝜌𝑠𝑐𝑉𝑟𝑒𝑓 (7) 

The numerical solution is obtained by solving the distributed-parameter model using a commercial finite element 

solver. The calculation of the internal environment temperature and the temperature of the refrigerant gas at the end 

of the compression process is based on lumped models implemented in programming scripts that are coupled internally 

to the finite element solver. The first step in the solution procedure consists on the definition of input parameters and 

initial estimates for the two variables that depend on the lumped formulations: the discharge temperature (𝑇𝑑𝑐 ) and 

the internal environment temperature (𝑇𝑖𝑒 ). Once 𝑚̇ is attributed for the fluid domain, 𝑇𝑑𝑐 is set as a boundary 

condition at the first node of the discharge line and 𝑇𝑖𝑒 is set as condition to calculate the heat transfer between the 

internal components and the internal environment. Then, the distributed-parameter model is solved, hence updating 

the suction temperature (𝑇𝑠𝑐 ), the average temperatures at the components surfaces (𝑇𝑖.𝑖𝑒 ) and the average temperature 

on the compressor shell’s internal surface (𝑇𝑐𝑠,𝑖𝑒 ). These updated variables are used to calculate new values for 𝑇𝑑𝑐 

and 𝑇𝑖𝑒 using the lumped-parameter formulations. Additionally, if the volumetric flow rate is defined, the mass flow 

rate is updated using the new gas density at the inlet of the compression chamber. A flowchart of the numerical 

procedure is shown in Figure 3. 

Figure 3: Flowchart of the solution procedure. 

3. RESULTS 

The experimental results presented hereafter were obtained for a low-capacity reciprocating compressor with a 

displacement of 9.04 cm³ operating with R600a in a hot-cycle calorimeter bench (Dutra and Deschamps, 2009). The 

numerical results were obtained using the compressor CAD model assuming constant electrical and mechanical 

efficiencies of 86% (except for the sensitivity analysis of the electrical efficiency) and 90%, respectively. Additionally, 

the compressor’s external surface emissivity was defined at 0.9. Values for the temperature of the gas at the 

compressor inlet and for the external environment temperature were defined based on the experimental tests. 

3.1. Model calibration and validation 
The model calibration is performed by simulating the compressor with prescribed electric power and mass flow rate 

taken from experiments and comparing the predicted temperature with measured data at 8 locations. Then, 7 heat 

transfer coefficients and a multiplication factor for external heat transfer coefficient are adjusted by using the 8 selected 

temperatures as targets of an optimization routine using a genetic algorithm. The operating condition used for the 

calibration consists of an evaporating temperature of -20°C and a condensing temperature of 45°C, with the 

compressor operating at 4000 rpm. The parameters that were calibrated in the numerical model, their respective 

constraints and final results are shown in Table 1. 

When applying the model for other conditions, the adjusted heat transfer coefficients in the suction and discharge 

chambers (𝐻𝑠𝑙  and 𝐻𝑑𝑙 ) are updated based on the functional dependence of the Nusselt number with the mass flow 

rate given by the Dittus-Boelter correlation, i.e.  

25th International Compressor Engineering Conference at Purdue, May 24-28, 2021 
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4 4 
𝑚̇ 5 𝑚̇ 5 

𝐻𝑠𝑙 = ( ) 𝐻𝑠𝑙,𝑐𝑎𝑙𝑖𝑏 ; 𝐻𝑑𝑙 = ( ) 𝐻𝑑𝑙,𝑐𝑎𝑙𝑖𝑏 (8) 
𝑚̇ 𝑚̇𝑐𝑎𝑙𝑖𝑏 𝑐𝑎𝑙𝑖𝑏 

The model validation was performed by analyzing numerical predictions for 9 operating conditions that consist in 

combinations of the evaporating temperatures of -30°C, -20°C and -10°C and condensing temperatures of 35°C, 45°C 

and 55°C. In Table 2, the 8 temperatures that were considered as targets for the calibration procedure are shown for 

the calibration condition and for two other extreme conditions (with a high mass flow rate, Validation 1; and with a 

low mass flow rate, Validation 2). The numerical results were obtained with the model using experimental results for 

the mass flow rate and electric power. The calibration is considered adequate, since all the predicted temperatures are 

within ±1ºC of the measured data for the calibration condition. For both validation conditions, the cylinder temperature 

presented the highest deviations in relation to experimental results, reaching a maximum absolute value of 4.2°C in 

Validation 2, but most of the predicted temperatures are within ±2ºC of the experimental data. 

Figure 4 shows a comparison between experimental and numerical results obtained with the numerical model by 

imposing measured values for the mass flow rate and the electric power for the 9 operating conditions, all for a 

rotational speed of 4000 rpm. As can be seen, the numerical results are in good agreement with the experimental data 

in magnitude and trend. The largest deviations in relation to experimental results are observed for the cylinder 

temperature (maximum deviation around 4°C), followed by the electric motor temperature. The smallest differences 

between experimental and numerical results are observed for the internal environment temperature (𝑇𝑖𝑒 ) and for the 

temperatures of the refrigerant gas at the outlet of the suction muffler and at the discharge chamber. 

̇ 

numerical results obtained with 𝑚̇ and 𝑊 predicted using the semi-empirical model described by Li (2012). By noting 

Figure 5 shows a comparison between numerical results obtained with imposed experimental values for 𝑚̇ and 𝑊 and 
̇ 

that the temperature predictions using both methods are similar, it is shown that the semi-empirical model can be used 

to predict the compressor thermal profile for conditions without measured mass flow rate and electric power. For these 

predictions, the model by Li (2012) has been implemented and calibrated with measurements of 𝑚̇ and 𝑊.̇ 

Figure 6 presents a comparison between experimental and numerical results obtained by imposing measured 𝑚̇ and 

𝑊̇ at a rotational speed of 2000 rpm. Larger deviations compared to experimental data were obtained for the 

evaporating temperature of -30°C, especially for the discharge temperature (maximum around 5°C) and the cylinder 

temperature (maximum around 7°C). An interesting fact is that these deviations get smaller when the evaporating 

temperature increases, showing that the model becomes more accurate when the mass flow rate gets closer to the 

calibration condition (the model was calibrated at 4000 rpm). Additionally, Figure 6 presents values of 𝑇𝑑𝑐 obtained 

with the model without correcting the heat transfer coefficients in the suction and discharge chambers (Eqs. (8) and 

(9)), showing that the correction improves the accuracy of the model. 

Table 1: Calibrated parameters and results of the calibration procedure. 
Parameter Bounds Result 

𝐻𝑒𝑒𝑓𝑎𝑐𝑡𝑜𝑟 (-) [1, 20] 7.4 
-2 K-1)𝐻𝑠𝑚,𝑖𝑒 (W m [50, 150] 115 
-2 K-1)𝐻𝑑𝑡,𝑖𝑒 (W m [50, 150] 40 
-2 K-1)𝐻𝑐𝑐,𝑖𝑒 (W m [50, 150] 140 
-2 K-1)𝐻𝑒𝑚,𝑖𝑒 (W m [50, 150] 65 

-2 K-1)𝐻𝑐𝑠,𝑖𝑒 (W m [50, 300] 250 
-2 K-1)𝐻𝑠𝑙,𝑐𝑎𝑙𝑖𝑏 (W m [100, 400] 250 
-2 K-1)𝐻𝑑𝑙,𝑐𝑎𝑙𝑖𝑏 (W m [100, 800] 720 

Table 2: Experimental and numerical results for the targets of the optimization procedure. 

Calibration (-20°C/45°C) Validation 1 (-10°C/35°C) Validation 2 (-30°C/55°C) 

Results Exp. Num. Dif. Exp. Num. Dif. Exp. Num. Dif. 

𝑇𝑚𝑜 (°𝐶) 
𝑇𝑑𝑐 (°𝐶) 
𝑇𝑒𝑚 (°𝐶) 
𝑇𝑐𝑤 (°𝐶) 
𝑇𝑠𝑚 (°𝐶) 
𝑇𝑖𝑒 (°𝐶) 
𝑇𝑑𝑙 (°𝐶) 
𝑇𝑐𝑠 (°𝐶) 

45.9 45.1 -0.8 

93.1 93.0 -0.1 

60.0 59.7 -0.3 

66.8 66.8 0.0 

50.9 51.2 0.3 

54.6 55.4 0.8 

66.3 65.4 -0.9 

52.9 52.5 -0.4 

35.3 34.9 -0.4 

75.7 77.0 1.3 

50.9 52.3 1.4 

55.6 57.9 2.3 

40.8 42.2 1.4 

47.0 47.6 0.6 

58.3 58.2 -0.1 

45.8 44.9 -0.9 

44.9 44.4 -0.5 

94.8 96.2 1.4 

57.2 54.1 -3.1 

65.9 61.7 -4.2 

50.5 48.0 -2.5 

50.7 50.6 -0.1 

58.6 58.1 -0.5 

49.1 47.8 -1.3 
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(a) Tevap = -30ºC (b) Tevap = -20ºC (c) Tevap = -10ºC 

Figure 4: Comparison between experimental data (exp) and numerical predictions (num) 

using experimental data for 𝑚̇ and 𝑊̇ for the compressor operating at 4000 rpm. 

(a) Tevap = -30ºC (b) Tevap = -20ºC (c) Tevap = -10ºC 

Figure 5: Comparison between numerical predictions using measured 𝑚̇ and 𝑊̇ (num-exp) with numerical 

predictions with 𝑚̇ and 𝑊̇ predicted with the model by Li (2012) (num-Li) for the compressor operating at 4000 

rpm. 

(a) Tevap = -30ºC (b) Tevap = -20ºC (c) Tevap = -10ºC 

Figure 6: Comparison between measured data and numerical predictions for the compressor operating 

at 2000 rpm. The effect of updating 𝐻𝑠𝑙 and 𝐻𝑑𝑙 according to the mass flow rate for the prediction of 𝑇𝑑𝑐 is 

highlighted by comparing “Tdc (num)” with “Tdc (num, no-corr)”. 

3.2. Temperature contours 
The refrigerant gas exchanges heat with the inlet pipe, the suction muffler, and the orifice in the valve plate before 

entering the compression chamber. As these components receive heat from the compressor internal environment and 

other components, superheating takes place at the suction line. Figure 7a presents the temperature distribution of the 

refrigerant gas at the suction line of the compressor for the calibration condition, showing an increase of approximately 

13°C due to a heat transfer of approximately 16 W to the gas in the suction line. As a result of the compression process, 

the refrigerant gas leaves the compression chamber at 116°C and loses approximately 71 W of heat to the valve plate, 

the discharge chamber, the discharge muffler, the discharge pipe, and the outlet pipe, leaving the compressor at 65.4°C. 
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The temperature distribution of the refrigerant gas until it reaches the discharge tube is shown in Figure 7b. A large 

part of the gas cooling occurs right after it leaves the compression chamber, when it flows through the valve plate and 

the discharge chamber. 

Figure 8a shows the internal thermal profile of the compressor for the calibration condition. The coldest regions are 

those in direct contact with the refrigerant gas at the suction line, whereas the hottest region comprises the discharge 

chamber. The maximum temperature observed for the electric motor (which is a critical component in terms of 

reliability) is approximately 60°C, which is considered acceptable. Figure 8b shows the thermal profile of the 

compressor shell for the calibration condition. This thermal profile is influenced by the contacts between the shell and 

the inlet and outlet pipes, which generate the regions with the extreme temperatures in blue and red. 

3.3. Sensitivity analysis 
A sensitivity analysis was performed to estimate the influence of the electric motor efficiency and the external ambient 

temperature on the thermodynamic performance and the reliability of the compressor. For this analysis, the model that 

considers a reference volumetric flow rate to predict the compressor mass flow rate was used, with the reference 

volumetric flow rate being computed by simulating the model for the calibration condition with an electrical efficiency 

of 86% and an external environment temperature of 33.2°C. 

Figure 9a shows the change in temperatures of interest as a function of the motor electrical efficiency. The temperature 

of the electric motor varies with the greatest slope, indicating that the electrical efficiency is an important parameter 

in terms of reliability related to temperature. The influence of the electrical efficiency on the mass flow rate is also 

shown as a deviation from the reference mass flow rate for an electric efficiency of 86%. The effect of the ambient 

temperature on selected temperatures of interest and on the mass flow rate is shown in Figure 9b. The model predicts 

a reduction of approximately 0.7% in mass flow rate when the external environment temperature rises from 33.2°C to 

38.2°C. 

(a) (b) 

Figure 7: Refrigerant gas temperature (a) throughout the suction line, and 

(b) at the beginning of the discharge line. 

(a) (b) 

Figure 8: Thermal profile of (a) the internal components and (b) the compressor shell. 
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In order to determine which is the main source of superheating and therefore reduction of volumetric efficiency, four 

simulations for the calibration condition were performed with different modifications in the compressor: i) with a 

perfectly insulated discharge line; ii) without mechanical losses; iii) without electrical losses; iv) with the valve plate’s 
thermal conductivity divided by 100. Table 3 presents the results of these simulations, showing that the main source 

of superheating in the suction line is the gas in the discharge line. Insulating the discharge line reduced the superheating 

by approximately 9°C, whereas the other modifications yielded smaller superheating reductions. 

(a) (b) 

Figure 9: Impact of the (a) electrical efficiency and the (b) ambient temperature on temperatures and mass flow rate. 

Table 3: Suction temperature and heat flow rates from/to the gas in the suction and discharge lines. 

Condition 𝚫𝑻𝒔𝒄 (°𝐂) 
Heat flow rate from the gas in 

discharge line (W) 

Heat flow rate to the gas in 

suction line (W) 

Baseline 0.0 70.7 15.6 

Insulated discharge line -9.1 0.0 5.0 

Without mechanical losses -1.2 72.3 14.2 

Without electrical losses -1.3 71.8 14.1 

Valve plate with lower thermal conductivity -0.9 69.4 14.5 

4. CONCLUSIONS 

A simulation model to compute the thermal profile of hermetic reciprocating compressors was presented. The model 

applies a finite element method to solve the tridimensional heat conduction in the solid components of the compressor 

and the fluid flow in its tubes and chambers. The solid is considered homogeneous, but interfaces between different 

materials are allowed, and the fluid flow is considered inviscid, incompressible and unidimensional. To compute the 

convective heat transfer between the fluid and the solid, convective heat transfer coefficients were adjusted with an 

optimization algorithm and experimental data taken in a hot-cycle test rig. Additionally, the temperature distribution 

given by the finite element method is coupled to a lumped-parameter formulation for the fluid temperature in the 

internal environment and at the compression chamber outlet. To assess the model accuracy, its predictions for both 

solid surfaces and fluid regions were compared to thermocouple measurements at 9 operating conditions and 2 

different rotational speeds, showing that the predictions are within 2°C for most of the measured data. Besides its 

accuracy, the distributed-parameter nature of the finite element method allows the visualization of the temperature 

profile inside the compressor, which can be used to understand the heat path in the compressor and improve its 

design. 
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NOMENCLATURE 

Symbols 

𝑄̇ Heat flux (W)
A Area (m²) -3)
𝜖 Emissivity 

𝑞̇ Volumetric heat generation (W m 

𝑅𝑎 Rayleigh number 
h Specific enthalpy (J kg-1) -3)
H Convective heat transfer coeff. (W m 

𝜌 Density (kg m -2 K-1) -2 K-4)
k Thermal conductivity (W m 

𝜎 Stefan-Boltzmann constant (W m -1 K-1) 
T Temperature (ºC) -1) 
𝑉 Volumetric flow rate (m³ s 

𝑚̇ Mass flow rate (kg s ̇ -1)
Nu Nusselt number 

𝑊̇ Power (W) 

Subscripts 

eq Equivalent 

calib Related to the calibration condition exp Experimental 

cc Crankcase ie Internal environment 

cs,ee External surface of the shell mo Suction muffler outlet 

cs,ie Internal surface of the shell motor Electric motor 

cw Cylinder wall num Numerical 

dc Discharge chamber ref Reference 

dl Discharge line sc Suction chamber 

dt Discharge tube sl Suction line 

ee External environment sm Suction muffler 

em Electric motor th Thermodynamic 
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