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ABSTRACT 

In this paper, a full 3D transient Computational Fluid Dynamics (CFD) model of a twin screw compressor with oil 
injection is described in detail. Volume of Fluid (VOF) two phase flow model is used for gas and liquid phases. The 
rotor meshes are generated by SCORGTM grid generator and read into the CFD solver at each time step. The simulation 
runs efficiently and results are obtained in about 12 hours on 24 CPU cores. The CFD prediction of air mass flow rate 
and indicated power has a good agreement with the experimental data measured at City University of London. The 
compression pocket is tracked using a customized postprocessing technique and the pressurevolume diagram within 
it is also obtained and analyzed. Simulations demonstrate that the approaches used in this paper are robust and fast, 
and can be readily applied to industrial compressor systems for rapid design iterations and improvements. 

1. INTRODUCTION 

A rotary twin screw compressor is commonly used in a wide variety of industrial applications due to its reliability, 
compact structure and wide range of operating pressures and flow rates. Comparing to the dry twin screw compressor, 
the added oil in oil flooded twin screw compressor offers several advantages. Most importantly, the oil can significantly 
reduce the gas temperature in the compression chamber as well as the rotor temperature to prevent seizure. Secondly, 
the oil can seal clearance gaps to improve volumetric efficiency. Thirdly, the oil lubricates rotors and bearings. It is 
also essential to optimize the oil injection to reduce the power loss associated with the oil for a better performance. 
However, it is extremely difficult to experimentally determine oil distribution. 

Recently, 3D CFD simulation gradually gains its popularity because CFD simulations can deliver deep insights into 
the performance of a twin screw compressor and provide detailed flow pattern of oil and gas. However, 3D CFD 
transient simulations faced several challenges. In earlier days, the major challenge was the complex deforming fluid 
domain in the screw compressor chamber, which required a robust CFD grid to deal with. This difficulty prevented 
the broad application of CFD simulations to twin screw compressors. A breakthrough was achieved by Kovacevic 
(Kovacevic, 2002, 2005) who applied the analytical rack generation method of Stosic (Stosic, 1998) to generate an 
algebraic, adaptive blockstructured grid. Screw Compressor Rotor Grid Generator (SCORG) was then developed to 
generate grids and preprocessing scripts for other CFD software to use. Rane (S. Rane, 2015) proposed a new approach 
to generate a conformal interface between the rotor domains to improve the accuracy of indicated power and flow rate. 
The rotor meshes generated by the conformal way are employed in this study. Another challenge is to solve two phase 
flow with complex moving parts and small leakage gaps. The high density ratio between liquid and gas, sophisticated 
interaction among the phases, and the interface tracking with complex shape makes the problem difficult to solve. In 
such case, gas phase has to be treated as compressible, heat transfer effects have to be included, and interface tracking 
has to be done inside moving, deforming volumes. The major issues for such multiphase CFD simulations are poor 
convergence, very long simulation time, and unsatisfactory mass/energy conservation. Ding (Ding & Jiang, 2017) 
performed a numerical simulation of an oil flooded twin screw compressor using CFD package SimericsMP+ to show 
the cooling and sealing effects of oil. The simulation demonstrated good convergence, fast calculation speed, and 
excellent conservation of mass and energy. In this paper, a screw compressor with oil injection model is investigated 
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and validated with test data. The CFD model will be described in detail. Simulation results of indicated power and gas 
flow rate will be compared with the experimental data. Oil distribution and temperature distribution will be visualized 
and analyzed. 

2. CFD SOLVER AND GOVERNING EQUATIONS 

2.1 Conservation Equations for Gas Liquid Mixture 
The CFD package SimericsMP+ is employed to perform the numerical simulations. In SimericsMP+, the conserva
tion of mass, momentum, and energy of a compressible fluid are solved using finite volume method. These conservation 
laws can be written in integral representation as 

∂ 
∫ ρdΩ + ∫ ρ(v − vσ ) ⋅ ndσ = 0 (1)

∂t Ω(t) σ 

∂ 
∫ ρvdΩ + ∫ ρ((v − vσ ) ⋅ n)vdσ = ∫ τ ⋅ ndσ − ∫ pndσ + ∫ fdΩ (2)

∂t Ω(t) σ σ σ Ω 

∂ 
∫ ρEdΩ + ∫ ρ((v − vσ) ⋅ n)Edσ = ∫ κ∇T⋅ndσ − ∫ pv ⋅ ndσ + ∫ (v ⋅ τ) ⋅ ndσ + ∫ f ⋅ vdΩ (3)

∂t Ω(t) σ σ σ σ Ω 

in which Ω(t) is the volume of the computational domain or control volume, σ is the surface of Ω(t), n is the surface 
normal of σ pointed outwards, ρ is the fluid density, p is the pressure, f is the body force, v is the fluid velocity and vσ is 
surface motion velocity. The shear stress tensor τ is a function of the fluid viscosity μ and the velocity gradient. 

The standard k − ε twoequation model (Launder & Spalding, 1974) is used to account for turbulence, 

∂ 
∫ ρκdΩ + ∫ ρ((v − vσ )⋅n)κdσ = ∫ (μ + 

μt )(∇κ⋅n)dσ + ∫ (Gt − ρε)dΩ (4)
∂t Ω(t) σ σ σκ Ω 

∂ ε ε2 

∫ ρεdΩ + ∫ ρ((v − vσ ) ⋅ n)εdσ = ∫ (μ + 
μt )(∇ε⋅n)dσ + ∫ (c1Gt − c2 ρ )dΩ (5)

∂t Ω(t) σ σ σε Ω κ κ 

Together with equation of state, where density is a function of temperature and pressure, to form a closed system: 

ρ = f(p, T) (6) 

2.2 VOF Model 
VOF models are widely used in simulation of two phase flow (Hirt & Nichols, 1981)]. VOF solves a set of scalar 
transport equations representing the volume fraction of each fluid component occupies in every computational cell. 
The transport equation of the volume fraction for each fluid component can be written as: 

∂ 
∫ ρiFidΩ + ∫ ρi(v − vσ) ⋅ nFidσ = 0 (7)

∂t Ω(t) σ 

where Fi is the volume fraction of the ith fluid component, and ρi is the local density of ith fluid component. The 
weighted mixture density of the fluid in equation (1) to (5) are then calculated as: 

ρ = ΣρiFi (8) 

Both implicit and explicit methods can be used to solve the equation. High Resolution Interface Capturing (HRIC) 
scheme can be used for the convective term in the transport equation. 
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3. CASE STUDY 

The test compressor used for this study is an oil flooded twin screw compressor with a 4/5 lobe arrangement and ‘N‘ 
profiles. The nominal interlobe, radial and axial leakage gaps are 60 μm. The main rotor diameter is 127.0 mm and the 
wrap angle is 306o . The tests with different rotor speeds and discharge pressures were carried out at City University 
of London (A. Rane S.R. Kovacevic & Stosic, 2016) and the results have been used in this paper for comparison with 
those from SimericsMP+. 

3.1 CFD Model 
Figure 1 and Figure 2 show the simulation fluid domain and the corresponding meshes in 3D view. The rotor part of the 
twin screw is meshed as a single domain using a grid generation software SCORG which creates a series of mesh files 
for the rotor at different rotation angles. The rotor mesh files are read into the solver via volume remesh approach. The 
suction port and discharge port of fluid volumes are meshed using SimericsMP+ binary tree unstructured mesher. The 
oil injection is through four injection holes that are connected to the rotor domain. All the fluid volumes are connected 
together using Mismatched Grid Interface (MGI). The total number of cells is about 0.795 million. Simulations under 
three operating conditions have been carried out, listed in Table 1. 

Figure 1: Fluid volume 

(a) (b) 

Figure 2: Ports and rotor meshes 

The axial end clearances can be included in the CFD model without causing divergence or sacrificing running speed. 
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Table 1: CFD model cases and operating conditions 

Case 

1 
2 
3 

Male Rotor 
Speed (rpm) 

3000 
3000 
6000 

Suction Suction Discharge Oil Injection 
Pressure (bar) Temperature (K) Pressure (bar) Pressure (bar) 

1.00 298.0 6.0 5.5 
1.00 298.0 8.0 7.5 
1.00 298.0 8.0 7.5 

Oil Injection 
Temperature (K) 

323.0 
323.0 
323.0 

However, they are not included for simplification purpose. The air and oil properties are summarized in Table 2. The 
air phase is defined as an ideal gas state with molar mass of 28.96 kg/kmol. 

Table 2: Gas and oil properties 

Gas Oil 

Density Air (using ideal gas law) 800 kg/m3 

Specific heat capacity 1004.4 J/kgK 1800 J/kgK 
Dynamic viscosity 1.831−5 Pa ⋅ s 0.0088 Pa ⋅ s 

Thermal conductivity 0.0261 W/mK 0.18 W/mK 

The discharge pressure is gradually increased to the designed pressure within 4 full male rotor rotations. Results 
becomes periodic within 15 revolutions for all simulations. Mass imbalance for air is below 3% and for oil phase is 
within 1.5%. The simulations are carried out at Dell PowerEdge computing nodes @ 2.2GHz. The simulation time is 
about 2.4 hours per revolution using 6 cores and is reduced to 0.84 hours per revolution on 24 cores. 

3.2 Comparison of the Air Flow and Indicated Power with Experimental Results 
Table 3 shows both predicted CFD results and experimental results of the air mass flow rate and the indicated power 
for three cases. It can be seen that for Case1 and Case2 at 3000 rpm the predicted air mass flow rates are below 3% of 
the experimental values. The air mass flow rate prediction in Case3 is 4% higher than the measured value. Comparing 
to the flow rate of Case2 at 3000 rpm, the flow rate of Case3 at 6000 rpm has increased by 87% which is slightly 
less than the ideal increasement factor of 1 due to the leakages and drop in suction air density. The indicated powers 
predicted by CFD simulations in Case1 and Case2 are 2% and 6% higher than the measured data respectively, while 
that in Case3 is above 7%. The indicated power in experiments is obtained by multiplying the measured shaft power 
with an estimated mechanical efficiency of 70%. This could underestimate the indicated power in experiments and is 
also the possible reason that CFD simulation predict higher powers than those in experiments. 

Table 3: Comparison of the flow and indicated power with experimental results 

Air Mass Flow Rate (kg/min) Indicated Power (kW) 
Case Experimental result CFD result Difference Experimental result CFD result Difference 

1 4.73 4.58 3% 16.31 16.65 2% 
2 4.67 4.52 3% 19.15 20.32 6% 
3 8.75 9.10 4% 39.22 42.07 7% 

3.3 PressureVolume Diagram 
A user defined script is employed in the software to track the compression pocket as well as to calculate its volume 
and averaged pressure. Figure 3 shows the pressure contour of the compression pocket at different male rotor angles 
for Case2. The color map ranges from 1.0 bar to 8.0 bar. It can be seen that the pressure in the pocket is low when 
it is initially formed near the suction port and then the pressure increases with the pocket volume being reduced. The 
compression pocket averaged pressure and volume diagram is also shown in Figure 4. It is observed that for three 
cases the pressure during the compression process before connecting to the discharge port aligns closely. After the 
compression pocket connects to the discharge port, it is noted that Case3 with 6000 rpm and 8.0 bar discharge pressure 
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has the highest maximum pressure pulsation value of 10.5 bar, while Case1 with 3000 rpm and 6.0 bar discharge 
pressure has the lowest pressure pulsation. 

(a) (b) (c) (d) 

Figure 3: Compression pocket and pocket pressure contour for Case2 at different male rotor angles: (a) 45o (b) 135o 

(c) 225o (d) 315o 

Figure 4: Averaged pressure and volume diagram of compression pocket 

3.4 Oil Distribution 
Figure 5 shows oil concentration contours at four different male rotor angles for Case2. The color map ranges from 0% 
to 15% volume fraction of oil with magenta representing high concentration and blue representing low concentration. 
Oil has higher concentration close to the injection and then been carried away by the movement of pocket. It is also 
observed that oil is accumulated in the rotor tips and discharge port. Figure 6 plots instantaneous oil flow rate at the 
discharge port for one complete male rotor cycle after solution becomes periodic. The oil flow rate for Case1 with 
3000 rpm and 6.0 bar is lower than that of Case2 with same rotation speed but higher pressure 8.0 bar. Case3 with 
6000 rpm and 8.0 bar exhibits bigger oscillation with higher maximum value and lower minimum value comparing to 
other Cases. This oil distribution variation has a direct impact on the temperature distribution, which will be discussed 
in detail in the next section. 

3.5 Temperature Distribution 
Figure 7 shows temperature contour for Case2 at four different male rotor angles. The color map ranges from 290 K 
to 350 K with magenta representing high temperature and blue representing low temperature. The temperature inside 
each pocket is highly nonuniform due to the cooling effects of injected oil. By comparing the temperature contour 
in Figure 7 with the oil distribution contour in Figure 5, it can been seen that typically higher oil concentration areas 
have lower temperature and lower oil concentration areas have higher temperature. As shown in Figure 8, the averaged 
temperature of mixture (both oil and air) at the discharge is periodic. Case3 with 6000 rpm and 8.0 bar has the maximum 
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(a) (b) (c) (d) 

Figure 5: Oil distribution for Case2 at different male rotor angles: (a) 45o (b) 67.5o (c) 90o (d) 112.5o 

Figure 6: Oil mass flow at the discharge 
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peak temperature of 370 K around time steps at 0,40,80,120 and 160, which is resulted from the close to zero oil flow 
at the same time steps as shown in Figure 5. Other than these time steps, the temperature is lower since the oil flow 
is higher. Case 1 and Case2 exhibit the similar correlation between the oil distribution and temperature distribution, 
which has demonstrated the oil cooling effects. 

There are three parameters that significantly impact the temperature in the compression chamber and discharge; a) 
Discharge Pressure, b) Rotational speed and c) Oil injection. With increase in both discharge pressure and rotational 
speed, the gas temperature increases due to higher compression work and lower residence time available for injected oil 
heat transfer. With increase in oil injection mass the gas temperature decreases. Both these effects have been observed 
from Figure 6,7 and 8. 

(a) (b) (c) (d) 

Figure 7: Temperature distribution for Case2 at different male rotor angle: (a) 45o (b) 67.5o (c) 90o (d) 112.5o 

Figure 8: Averaged temperature at the discharge 

4. CONCLUSIONS 

This paper reports the CFD simulations for a twin screw compressor with oil injection using VOF multiphase model. 
The rotor mesh is generated by SCORGTM and read into the solver at each time step. Three simulations at different 
rotor speeds and discharge pressures are performed. The results of gas flow rate and indicated power are compared 
with the experimental measurements in City, University of London. 

• Gas mass flow rates in numerical simulations have a good agreement with the test values in three cases. 
• The indicated powers obtained by numerical simulation show a well match with the measured shaft power. 
• The averaged pressure in compression pocket is tracked and pressurevolume diagram is also plotted and com
pared for three cases. 
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• Oil distribution clearly exhibits the cooling effect on the temperature distribution. 
• The solver provides a very efficient tool for numerical simulation and to better understand and improve the 
design. 

NOMENCLATURE 

Ω control volume (m3) 
σ surface of control volume (m2) 
n surface normal () 
ρ fluid density (kg/m3) 
p pressure (Pa) 
f body force (N) 
v fluid velocity (m/s) 
vσ surface motion velocity (m/s) 
τ shear stress tensor () 
μ fluid viscosity (Pa ⋅ s) 
F volume fraction () 

Subscript 
i fluid component 
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