Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-5-2021

A Constrained Optimal Hear-Through Filter Design Approach for Earphones

Yongjie Zhuang Purdue University, zhuang32@purdue.edu

Yangfan Liu *Purdue University*

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Zhuang, Yongjie and Liu, Yangfan, "A Constrained Optimal Hear-Through Filter Design Approach for Earphones" (2021). *Publications of the Ray W. Herrick Laboratories.* Paper 238. https://docs.lib.purdue.edu/herrick/238

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A constrained optimal hear-through filter design approach for earphones

Yongjie Zhuang, Yangfan Liu

Ray W. Herrick Laboratories, 177 S. Russell Street,

Purdue University, West Lafayette, IN 47907-2099

yangfan@purdue.edu

Introduction

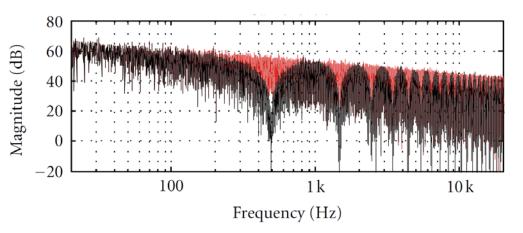
Hear-through function

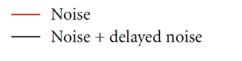
- Sound can be altered when transmits through an earphone.
- People will hear unnatural environment sound when wearing an earphone.
- Hear-through function reproduces the environment sound using earphone speakers.

Applications of hear-through function

- One popular function in many earphones.
- An important technique in achieving better augmented reality audio (ARA) performance.

Two Main Design Approach Categories


Direct inverse filter approach


- Flattening the attenuation curve caused by the earphone and/or the ear canal.
- Reproduced sound will combine with leakage environment sound to cause a **comb-filtering effect**.

Design using an active noise control structure

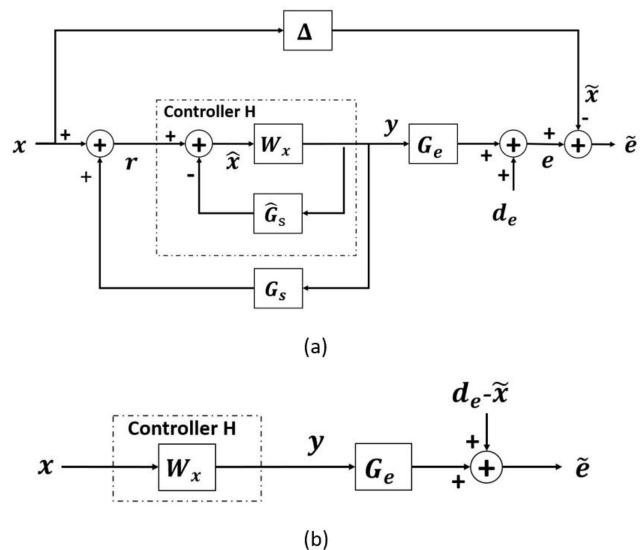
- The leakage sound from environment can be attenuated to reduce comb-filtering effect.
- Many ANC algorithms can be applied in a similar way

For both methods, since sound from speaker will propagate to reference microphone, thus, **robust stability** should be considered

[Rämö and Välimäki, 2012]

Proposed Method

□ Alleviate comb-filtering effect by using ANC structure


Constraints like robust stability can be considered

□ The desired delay of reproduced sound can be specified if a spatial sound impression is desired.

Designed hear-through filter can be directly implemented in an ANC system.

Control System

(Non-adaptive control is considered in the current work)

- Minimize the power of \tilde{e}
- $\Delta = e^{-j2\pi f\delta}$ is the specified delay between desired sound and reference signal
- The robust stability considered is the closed loop $W_x \ \widehat{G}_s$
- Assume a perfect feedback path model \widehat{G}_s

Cost function: $\sum_{k=1}^{N_f} \mathbb{E}[\tilde{\boldsymbol{e}}(f_k)\tilde{\boldsymbol{e}}^*(f_k)]$

Total power of \tilde{e} cross all frequencies

Constraints:

Stability: Use Nyquist criterion:

 $\operatorname{Re}\{W_x(f_k)\widehat{G}_s(f_k)\} > -1$

Robustness: *M*-Δ structure and small gain theory:

 $\left| W_{x}(f_{k})\widehat{G}_{s}(f_{k}) \right| B(f_{k}) \leq 1$

Filter response: The magnitude of frequency response:

 $|W_{x}(f_{k})| \leq C(f_{k})$

Cost function:

 $\sum_{k=1}^{N_f} \mathbb{E}[\tilde{\boldsymbol{e}}(f_k)\tilde{\boldsymbol{e}}^*(f_k)]$

Constraints:

Stability:

Robustness: *M*- Δ structure and small gain theory:

 $\left| W_{x}(f_{k})\hat{G}_{s}(f_{k}) \right| B(f_{k}) \leq 1$

Filter response: The magnitude of frequency response:

 $|W_x(f_k)| \le C(f_k)$

Cost function:

 $\sum_{k=1}^{N_f} \mathbb{E}[\tilde{\boldsymbol{e}}(f_k)\tilde{\boldsymbol{e}}^*(f_k)]$

Constraints:

Stability: Use Nyquist criterion:

 $\operatorname{Re}\{W_x(f_k)\widehat{G}_s(f_k)\} > -1$

Robustness:

$|W_x(f_k)\hat{G}_s(f_k)|B(f_k) \le 1 \implies M-\Delta$ structure and small gain theory

Filter response: The magnitude of frequency response:

 $|W_{x}(f_{k})| \leq C(f_{k})$

Cost function:

 $\sum_{k=1}^{N_f} \mathbb{E}[\tilde{\boldsymbol{e}}(f_k)\tilde{\boldsymbol{e}}^*(f_k)]$

Constraints:

Stability: Use Nyquist criterion:

 $\operatorname{Re}\{W_x(f_k)\widehat{G}_s(f_k)\} > -1$

Robustness: *M*-Δ structure and small gain theory:

 $\left| W_{\chi}(f_k) \hat{G}_s(f_k) \right| B(f_k) \le 1$

Filter response:

 $|W_x(f_k)| \le C(f_k)$

H_2/H_∞ Formulation - Summary

Original Problem

Cost function: Total power of \tilde{e} :

 $\sum_{k=1}^{N_f} \mathbb{E}[\tilde{\boldsymbol{e}}(f_k)\tilde{\boldsymbol{e}}^*(f_k)],$

Constraints:

Stability: Use Nyquist criterion:

 $\operatorname{Re}\{W_x(f_k)\widehat{G}_s(f_k)\} > -1$

Robustness: M- Δ structure and small gain theory:

 $\left| W_{x}(f_{k})\widehat{G}_{s}(f_{k}) \right| B(f_{k}) \leq 1$

Filter response: The magnitude of frequency response:

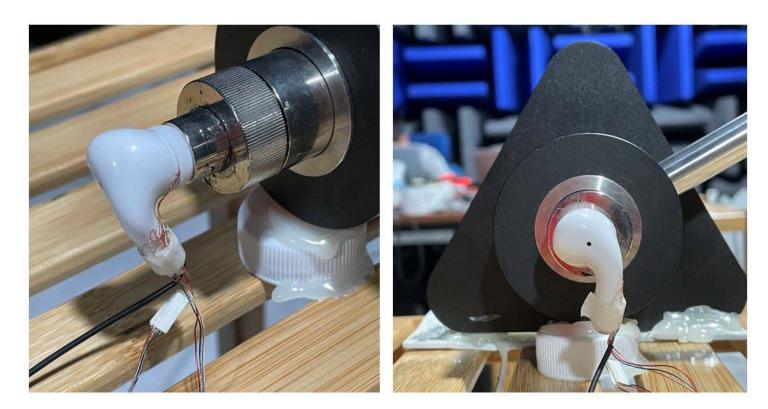
 $|W_x(f_k)| \le \mathcal{C}(f_k)$

Development and application of dual form conic formulation of multichannel active noise control filter design problem in frequency domain

San Diego, CA NOISE-CON 2019 2019 August 26-28

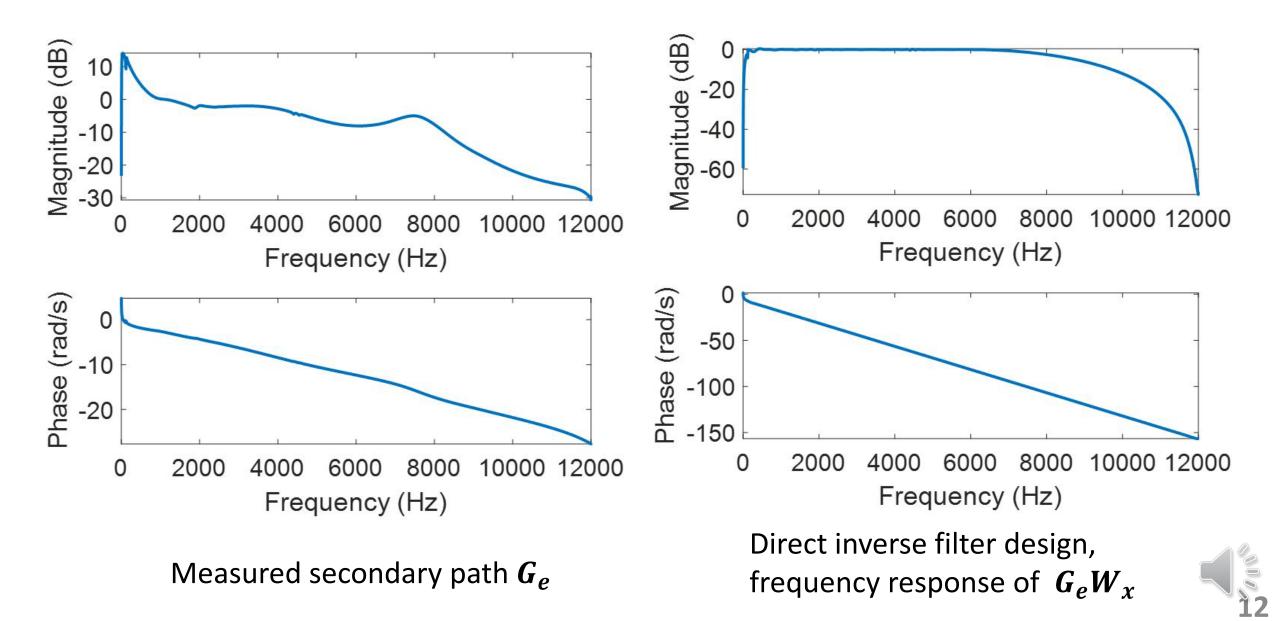
By using the method proposed in previous conferences,

This optimization problem can be solved efficiently.

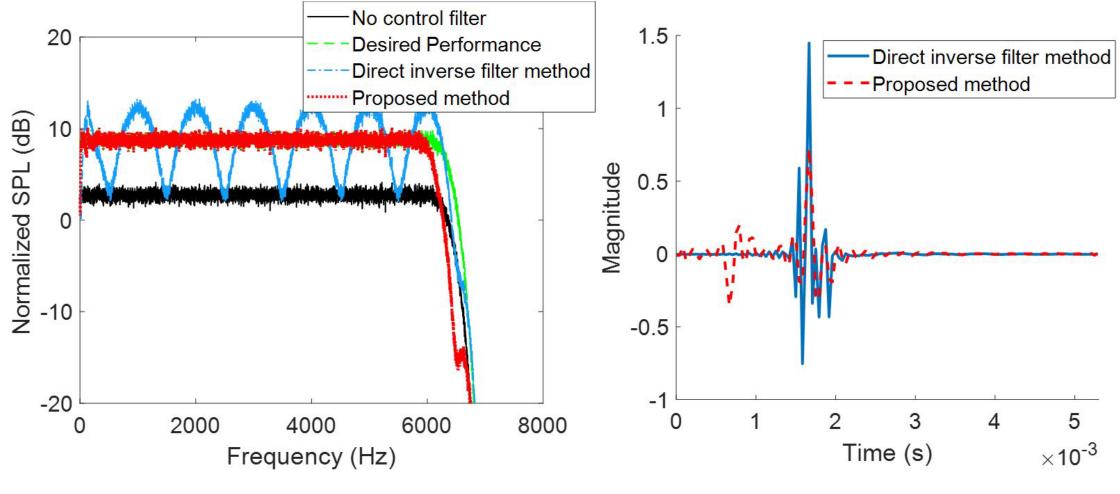

Study on the Cone Programming Reformulation of Active Noise Control Filter Design in the Frequency Domain

Experiments

Off-line Simulation based on experimentally measured secondary path G_e

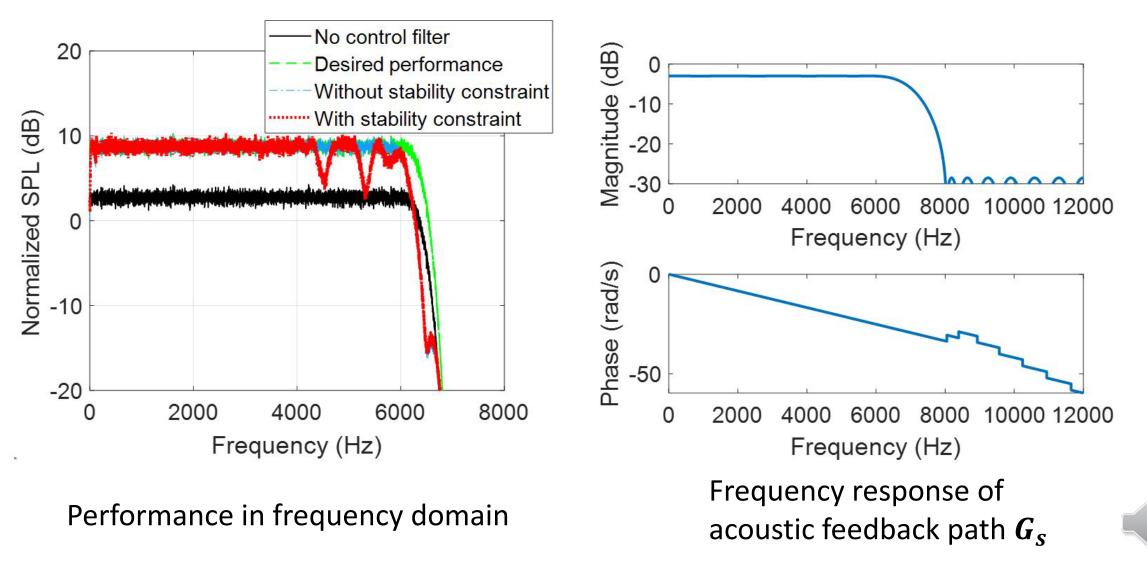

Experiment description:

- sampling rate: 24000 Hz
- FIR filter length: 128
- Hear-through band: 0 6000 Hz
- Desired delay: 2 ms

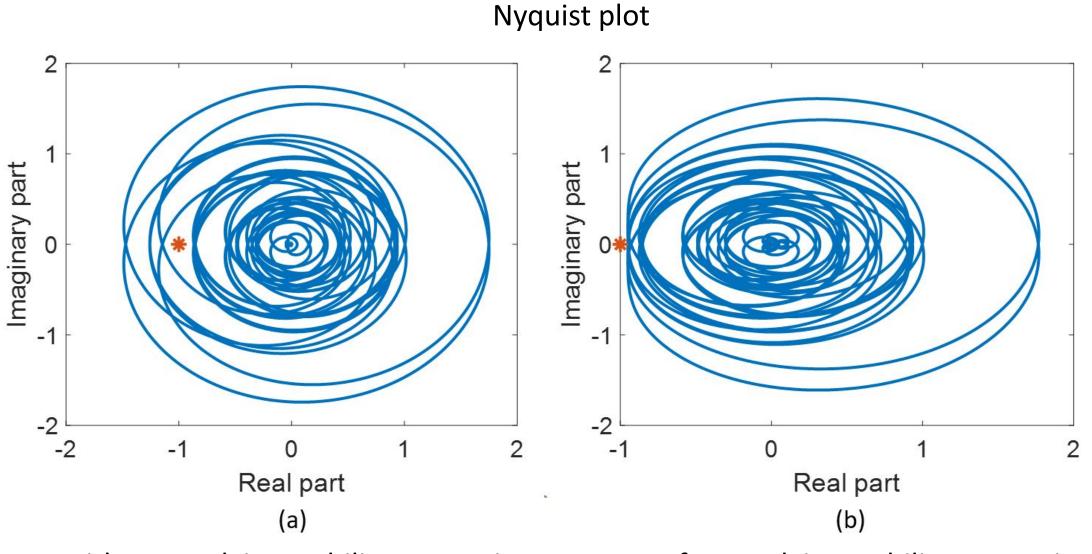

Results – comb-filtering effect

Results – comb-filtering effect

Assume environment sound is 6 dB lower and 1 ms lag after transmit through earphone


Performance in frequency domain

Impulse response of designed filter


Results – Stability constraints

Assume an acoustic feedback path also 3 dB attenuation and 1 ms lag

Results – Stability constraints

Without applying stability constraint

After applying stability constraint

- The proposed method can alleviate the comb-filtering effect by attenuating the leakage sound from environment.
- Robust stability constraint can be applied when using proposed method.
- Desired delay can be specified.
- The proposed method has the potential to be expanded to multi-channel situations which has a wider application besides earphone, e.g., the hear-through function in an automobile.

Thank you !

References

- [1] Vesa Valimaki, Andreas Franck, Jussi Ramo, Hannes Gamper, and Lauri Savioja. Assisted listening using a headset: Enhancing audio perception in real, augmented, and virtual environments. IEEE Signal Processing Magazine, 32(2):92–99, 2015.
- [2] Rishabh Gupta, Rishabh Ranjan, Jianjun He, and Gan Woon-Seng. On the use of closed-back headphones for active hear-through equalization in augmented reality applications. In Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality. Audio Engineering Society, 2018.
- [3] Rishabh Gupta, Rishabh Ranjan, Jianjun He, and Woon Seng Gan. Parametric hear through equalization for augmented reality audio. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1587–1591. IEEE, 2019.
- [4] Jussi Rämö and Vesa Välimäki. Digital augmented reality audio headset. Journal of Electrical and Computer Engineering, 2012, 2012.
- [5] Jussi Rämö and Vesa Välimäki. An allpass hear-through headset. In 2014 22nd European Signal Processing Conference (EUSIPCO), pages 1123–1127. IEEE, 2014.
- [6] Juho Liski. Adaptive hear-through headset. Master's thesis, School of Electrical Engineering, Aalto University, 2016.
- [7] Vinal Patel, Jordan Cheer, and Simone Fontana. Design and implementation of an active noise control headphone with directional hear-through capability. IEEE Transactions on Consumer Electronics, 66(1):32–40, 2019.
- [8] Yongjie Zhuang and Yangfan Liu. Study on the cone programming reformulation of active noise control filter design in the frequency domain. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, volume 260, pages 126–136. Institute of Noise Control Engineering, 2019.
- [9] Yongjie Zhuang and Yangfan Liu. Development and application of dual form conic formulation of multichannel active noise control filter design problem in frequency domain. In INTERNOISE and NOISE-CON Congress and Conference Proceedings, volume 261, pages 676–687. Institute of Noise Control Engineering, 2020.
- [10] S.J. Elliott. Signal Processing for Active Control, chapter 6, pages 271–327. Signal Processing and its Applications. Academic Press, London, 2001.