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ABSTRACT 

Urban Building Energy Modeling aims at assessing the building energy performance at city scale with as little 

computational effort as possible. Thus, different methods have been developed in the last years to reduce the required 

calculation time by simplifying the modeling approach, selecting only representative buildings, or minimizing the 

building description. Starting from the latter ones, this work proposes a novel algorithm capable of abstracting a 

randomly shaped building into a representative shoebox. The presented shoebox generation algorithm is based on a 

preliminary sensitivity screening analysis on a set of reference parallelepiped-shaped thermal zones. This allowed the 

identification of the most significant geometry indicators influencing the building’s performance. Based on this, more 

complex geometries have been simplified to the shoebox with the same indicators and the accuracy of the algorithm 

has been evaluated comparing the simulated performance of simplified and original buildings. The approach includes 

the definition of equivalent shading surfaces, to account for self-shading elements in the original building geometry. 

The algorithm has shown good accuracy not only on the hourly thermal loads, but also the zones’ hourly temperature 

profiles, reducing to one third the energy simulation time with respect to the detailed building model. Although not as 

fast as other urban modelling approaches in the literature, it can retain accurate results at a finer time scale, i.e., on 

hourly basis, which is necessary in applications such as district heating and energy networks. 

1. INTRODUCTION 

Cities account for 60 to 80 % of the world’s energy consumption and generate as much as 70 % of human-induced 

greenhouse gas emissions (United Nations Habitat, 2019). The building sector, in particular, is responsible for a large 

share of the overall energy use, corresponding for instance to 40 % in the European Union (European Parliament and 

Council of the European Union, 2010). Consequently, decreasing buildings’ energy demand is essential to tackle the 

climate crisis. In the European Union, the current annual renovation rate of the building stock varies between 0.4 and 

1.2 %, depending on the Member State, and it is largely insufficient for a fast reduction of the global building energy 

demand. By means of the European Green Deal, the European Commission aims at least to double the current 

renovation rate to meet its long-term climate objectives (European Commission, 2019). To achieve these goals, 

however, it is necessary to adopt new approaches in order to estimate the building energy demand at large spatial 

scales, focusing on groups of buildings and districts. Among the available alternatives, the most known is the Urban 

Building Energy Modeling UBEM, which allows for a bottom-up city-scale energy modeling using dedicated Building 

Performance Simulation codes (Johari et al., 2020) specifically introduced to overcome the limitations of traditional 
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energy modeling at single building level. Indeed, the same workflow employed for characterizing the energy 

performance of a single building cannot be directly applied to large groups, since it would require too much 

information and would be too computationally demanding (Reinhart and Davila, 2015). Therefore, to guarantee time 

and efficiency, UBEM relies on domain and model simplifications (Abbasabadi and Ashayeri, 2019), such as (i) 

reduction of building definition complexity, (ii) introduction of simplification algorithms, and (iii) simulation of 

representative buildings out of the entire building stock. 

The first option pertains thermal model definition and simulation choice, which can considerably reduce the simulation 

time compared to detailed models. For instance, building energy balance can be solved as a steady state heat balance 

for each single thermal zone, including the surrounding context (Nouvel et al., 2013) or not (Dall'O et al., 2012). 

Furthermore, the number of thermal zones can be reduced as well, ranging from multi-zone (Mastrucci et al., 2014) 

to single-zone models (Caputo et al., 2013). 

The second possibility regards the introduction of less resource intensive procedures. Such approaches are very 

different from one another and include, for example, low order thermal network models (Lauster et al., 2014), 

abstracting and arbitrary building massing into a meaningful group of thermal shoebox models (Dogan and Reinhart, 

2013), and reorganizing the building geometries with functional clustering and radiation analysis scaling (İşeri and 
Dino, 2020). 

The third alternative goes beyond the usual archetype definition, often employed mainly for defining buildings’ non-

geometrical features. Representative buildings are found by means of a set of descriptive indicators to capture the 

energy-relevant features such as physical, operational and contextual characteristics. In this way, a more generic 

approach is developed for stock classification considering the dynamic nature of the urban context (Ghiassi et al., 

2017). 

Despite all solutions listed above, the optimization of UBEM computational efficiency is still an open issue (Hong et 

al., 2019). In this work, taking advantage of previous studies showing the potential of shoeboxes in urban simulation 

(Dogan and Reinhart, 2017), a new simplification algorithm is proposed. The algorithm is meant to simplify each 

building in the urban model into an equivalent representative shoebox, taking into account buildings’ adjacencies and 
context obstructions. With respect to similar approaches in the literature, the outlined algorithm aims to improve the 

accuracy of energy demand prediction when dealing with complex building geometries, even at fine time scales such 

as hourly, while reducing the computational cost of the simulation. 

2. METHODOLOGY 

The workflow to develop a shoeboxing approach for UBEM consists of three parts: (a) identification and selection of 

geometry indicators for building simplification through sensitivity analysis, (b) shoeboxing algorithm development, 

and (c) extensive test of algorithm effectiveness. 

2.1 Geometry indicators identification and selection 
To simplify a randomly shaped building into a meaningful shoebox, the first step is to identify a set of geometry 

indicators properly describing a building. In this work, geometrical indices employed in the literature have been 

considered and selected through a multivariate sensitivity analysis performed on annual (1) heating needs, (2) cooling 

needs, (3) heating peak loads, and (4) cooling peak loads. 

2.1.1 Indicators identification: Geometrical indicators can describe either the building’s footprint or the entire massing. 

As regards the former one, the polygon shape indices used by SAGA-GIS have been considered (Conrad, 2020). 

Concerning the latter one, this study has adopted the same indices used by Kodors (2017) for geometric feature 

selection at the urban level and by Ghiassi and Mahdavi (2017) for multivariate cluster analysis in the development 

of a reductive bottom-up urban energy model. Finally, the shape factor has been also considered, given its influence 

on the final energy demand (Danielski et al., 2012). As a whole, 13 indicators have been used and tested. 

2.1.2 Indicators selection: To select the most relevant indices affecting the thermal demand, a sensitivity analysis has 

been performed on a parallelepiped-shaped thermal zone, with a fixed height and length and depth varied between 4 

and 12 m according to a parametric plan, as in previous studies (Pernigotto et al., 2014). A portion of each envelope 

surface has been modelled as adiabatic to simulate adjacencies to thermal zones at the same conditions. The adiabatic 

fraction of each surface has been changed independently and can vary between 0 and 1, i.e., each surface can be totally 

exposed to the external environment or completely adiabatic. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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Table 1: Spearman’s rank correlation coefficients color-coded in grey scale to highlight correlations’ strength (the 

darker the cell, the stronger the correlation). 

Geometry index 
Heati

Annual 

ng 

Peak 

Cooling 

Annual Peak 

Plan area 

Plan perimeter 

Edge ratio 

Elongation1 

Elongation2 

Eccentricity 

Form factor 

Compactness 

Volume 

Surface area 

Shape factor 

Non-adiabatic surface area 

Non-adiabatic area shape factor 

0.43 

0.43 

-0.43 

-0.10 

0.10 

-0.10 

0.10 

-0.10 

0.43 

0.43 

-0.43 

0.44 

0.00 

0.55 

0.55 

-0.54 

-0.13 

0.13 

-0.13 

0.13 

-0.13 

0.55 

0.55 

-0.54 

0.52 

-0.04 

0.18 

0.18 

-0.18 

-0.05 

0.05 

-0.05 

0.05 

-0.05 

0.18 

0.18 

-0.18 

0.13 

-0.07 

0.37 

0.37 

-0.37 

-0.09 

0.09 

-0.09 

0.09 

-0.09 

0.37 

0.37 

-0.37 

0.34 

-0.04 

Windows have been modelled as portions of the externally exposed vertical walls by a window-to-wall ratio ranging 

between 0 and 0.9. The geometrical definition of the model has been completed by adding vertical and horizontal 

overhangs whose depth can vary between 0 and 2.8 m. The opaque envelope has been characterized by an insulating 

and a massive layer, for which only the thickness has been considered as variable. The same wall composition, 
-2 K-1characterized by a thermal transmittance varying between 0.17 and 3.28 W m , has been applied to all opaque 

surfaces. Windows have been defined by means of the type of glass, filling gas and number of gaps, giving a total of 

17 combinations with transmittance and solar heat gain coefficient ranging from 0.41 W m-2 K-1 and 0.49 to 5.75 W 

m-2 K-1 and 0.84, respectively. For the remaining heat balance contributions and boundary conditions time-constant 

values have been assigned. The ventilation rate has been expressed as air changes per hour ranging between 0 and 1. 

Internal gains varying from 0 to 8 W m-2 have been included. Finally, the HVAC system has been considered as always 

active. Moreover, constant heating and cooling setpoints have been varied between 18 and 22 °C and from 22 to 30 °C, 

respectively. 

As sampling technique, the Latin hypercube sampling has been used, and the number of variants has been 

progressively increased until convergence of the employed statistics has been reached. An overall number of 20000 

different thermal zone configurations have been simulated with EnergyPlus, assuming ideal heating and cooling 

systems in the climate of Denver, Colorado. The Spearman’s rank correlation coefficient ρ has been adopted. This 

statistic evaluates how well the relationship between two variables can be described by a monotonic function. It can 

be either positive or negative, i.e., -1 ≤ ρ ≤ 1. A value of |ρ| larger than 0.7 points out a strong correlation, a value 

between 0.3 and 0.7 a moderate correlation, while a value lower than 0.3 a weak or even null correlation. ρ for each 

of the four simulation outputs has been computed for every investigated indicator. The outcome of the sensitivity 

analysis is reported in Table 1. Since a shoebox can be defined by three dimensions, it has been decided to select three 

indicators, in order to solve a system of three equations with three unknowns. Indicators have been selected 

considering the correlation strength, as well as their linear correlations. Furthermore, more complex indicators have 

been preferred to the simplest ones (e.g., although characterized by similar ρ, the edge ratio has been selected instead 

of area and perimeter). As shown in Table 1 and Equation (1), the selected indices are edge ratio, shape factor and the 

first elongation definition: 
perimeter 

edge ratio = 
area 

minor length 
elongation = (1)major length 

surface area 
shape factor = 

volume {�
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2.2 Shoeboxing algorithm development 
Once the most meaningful indicators have been selected, it has been possible to proceed with the development of the 

simplification algorithm. The algorithm has been generated in the framework of Rhinoceros as CAD modeling 

platform, its plug-in Grasshopper, and EnergyPlus as Building Performance Simulation tool. In details, the workflow 

has been built in Grasshopper by means of customized components written in Python programming language. 

Geometrical modelling tasks have been implemented using RhinoCommon API (Robert McNell & Associates, 2020), 

while the conversion from massing model to thermal zones performed by using the Ladybug Tools core SDK 

(Ladybug Tools LLC, 2020). First, each building has been converted into a representative shoebox; then, the three 

selected indicators have been computed, based on its geometrical characteristics. The calculated indicators have been 

employed to estimate the representative shoebox’s dimensions (x, y and z, respectively for width, depth and height) 

by solving a system of non-linear equations, as reported in Equation (2). 

2 (x+y)�
edge ratio = 

x∙y 
x 

elongation = (2)
y 

2(x∙z)�+ 2(y∙z)�+ 2(x∙y)�
shape factor = 

{� x∙y∙z 

The resulting shoebox has been characterized by the same window-to-wall ratio as the starting building and the same 

floor height. Also, the thermophysical properties have been assigned accordingly and the building’s self-shading 

included. Specifically, the impact of the building’s self-shading has been taken into account through equivalent 

shading surfaces obstructing a portion of the windows. Those shading elements have been determined by means of a 

radiation analysis performed on both starting geometry and resulting shoebox according to the all-weather Perez sky 

model. For sake of simplicity, for the starting geometry the radiation analysis focused only on the windows’ areas, 

while the entire geometry has been accounted for in the shoebox. Since considering only windows surfaces has 

considerably reduced the area to analyse, a calculation grid of 0.2 m has been employed. The average annual entering 

radiation has been obtained for each cardinal direction and floor for both models, and the ratios between starting 

geometry and shoebox results computed. Then, an equivalent obstruction ratio has been calculated for each façade 

and floor: 

starting geometry entering radiation 
obstruction ratio = 1 -

shoebox entering radiation (3) 

For every window in a given floor and façade of the simplified shoebox model, the corresponding ratio has been used 

to calculate the equivalent shading area out of the window’s area. The modelled shadings have the same height of the 

window, while their length has been computed to match the equivalent shading area calculated before. The equivalent 

shading surfaces have been placed 1 cm outside the window to fully obstruct all incident radiation. In this research, 

the starting building and the corresponding shoebox have been modelled as stand-alone since the focus has been put 

on the determination of equivalent shading surfaces to account for self-shading. Nevertheless, this approach can be 

generalized to account for the urban context by modelling also the building’s surroundings. Moreover, also adjacencies 

can be taken into account by means of adiabatic elements in the facades, whose ratios can be computed independently 

for each cardinal direction by analyzing the façades of the starting building and considering a ± 45° tolerance range. 

As a final step, detailed and simplified models have been automatically exported as idf files and edited by means of 

Python scripts with the aid of the library eppy (Philip, 2020), to interface EnergyPlus with Python language. 

2.3 Extensive test 
The driving purpose of the proposed algorithm is the improvement in building’s performance prediction when dealing 
with complex massing shapes. In the literature, various works studying the urban context relied on the creation from 

scratch of sample neighborhoods (Lyu et al., 2019), urban layouts (Xu et al., 2019) or building grid models (Natanian 

et al., 2019). However, in such configurations buildings are simple in shape, mainly with rectangular footprints. 

Furthermore, the same pattern is repeated to parametrically generate buildings’ arrangement. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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Table 2: Number of polyominoes depending on the number of cells 

Number of cells 1 2 3 4 5 6 7 8 9 10 

Number of polyominoes 1 1 2 5 12 35 108 369 1285 4655 

Polyominoes with holes 0 0 0 0 0 0 1 6 37 195 

Polyominoes without holes 1 1 2 5 12 35 197 363 1248 4460 

Differently, Javanroodi et al. (2018) employed a series of form generation rules based on a basic module to generate 

buildings’ forms based on urban density ranges. In this work a similar approach has been adopted, defining buildings’ 
shapes out of polyominoes (Golomb, 1994) in order to guarantee complex and various shapes. A polyomino is created 

out of square cells by joining one or more squares edge to edge; their number increases according to the number of 

cells following the integer sequence A000105 (Sloane, 2020), as reported in Table 2. To keep the size of the analysis 

manageable, the number of cells utilized to create polyominoes has been varied between two and six. Among them, 

rectangular in shape geometries have been discarded, resulting in 48 unused forms. Figure 1(a) reports all possible 55 

shapes, which have been used as base for the building geometries. As reported in Table 2, up to six cells no polyomino 

has holes. Therefore, courtyard buildings are not considered in this analysis unlike other studies (Javanroodi et al., 

2019). Nevertheless, the variety of shapes considered, even without courtyard, has been considered adequate to 

guarantee properly testing of the algorithm. To be consistent with the sensitivity analysis previously performed, 

polyominoes have been generated from a starting square cell with an edge of 4 m. To explore the space of solutions 

as much as possible, each resulting shape has been: (i) rotated according to the four cardinal points, (ii) scaled by a 

factor equal to one, two, three or four, and (iii) extruded by a number of floors equal to one, two, three or four, with 

each floor 3 m tall. Thus, from each polyomino, a total of 58 building shapes has been generated, as shown for instance 

in Figure 1(b). The total amount of generated buildings to be simulated has been 3072. 

Once all building shapes have been generated, each building has been converted into its representative shoebox 

according to the simplification algorithm. At this point, the same thermophysical and operational features have been 

assigned to every simulation file (Table 3). The envelope definition is the same for every external opaque surface, 

with an external insulating and an internal massive layer, i.e., polystyrene and concrete respectively. As for the 

envelope, one definition has been adopted for the windows as well. For sake of simplicity, the frame has been neglected 

and a triple glass window with air filling (3 mm clear glass panels, with the innermost panel with low-e treatment, and 

6 mm air gaps) has been considered. Finally, to test the effectiveness of the algorithm under different boundary 

conditions, the buildings have been simulated in three climates - Bolzano and Messina, Italy, and Denver, U.S., 

selected to include both a heating- (Bolzano) and a cooling-dominated (Messina) climate, as well as a climate 

characterized by large daily temperature variations (Denver). 

The investigated outcomes of this research have been both temperature and energy needs. The temperature output has 

been evaluated on hourly basis, considering just the hours for which the temperature is larger than 20 °C and lower 

than 26 °C, and calculating also the annual positive and negative maximum differences. To understand how well the 

simplification algorithm performs overall, the share of hours in which the hourly deviation lays within ± 0.5 °C has 

been calculated. The energy needs have been analyzed at annual and hourly scale. Annual absolute and relative 

differences between detailed and simplified models have been computed and the Root Mean Square Error RMSE 

calculated. Furthermore, the percentage of hours of the entire year in which the hourly difference between the models 

lays within specific intervals (i.e., ± 5 %, ± 10 %, ± 20 %) has been computed to assess hourly deviations. Such 

evaluations have been carried out at building and floor level, since every floor has been modelled as a thermal zone. 
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Figure 1: (a) Possible polyominoes obtained by combining up to 6 square cells and (b) all buildings’ combinations 

resulting from one polyomino’s footprint after rotation, scaling and extrusion 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 



 

   
 

         

  

 

  

 
 

 

 

  

 

    

 

  

  

  

     
 

     

 

        

     

    

      

          

   

       

         

 

 
 

  
            

           

               

  

 

  
                 

            

                 

            

             

       

 

 
 

             

            

          

C:round_l 

C:round_2 

C:round_3 

S First_3 

.2 
u... Second_3 

C:round_4 

First_4 

Second_4 

1hird_4 

0.5 0.6 

Bolzano -~ 
• .... --t] -~ 

♦ ♦ •• •---0 
♦♦ • •---0 -~ ... .... •11 I D 

♦ ♦ • II •---0 .. II ♦ ----a 
~ 

0.7 0.8 0.9 LO 
Share of hours w ithin O.S°C 

Denver Messina 

.. •••-•I □ .•. .., 
♦ ♦ ♦ ♦ - -----------cJJ ♦♦ ♦♦ ··~ ---------o . ···~ 

•• ..... -~ ♦ ♦ • • •• -•---0 
• ♦♦ ........ DJ ♦♦ ♦ • ♦ ..._, .. I~ --- ■ ...... ~ 

♦• ♦♦----~ ♦ .. t♦ ••··•---0 
.... •-----------CO ♦♦ • II ♦♦ --♦ ----a 

♦ ♦♦ • ♦♦ ♦ • ♦ ♦ t ♦ 11111 11 ,,_...., 
■ ........ ~ 

0.5 0.6 0.7 0.8 0.9 LO 0.5 0.6 0.7 0.8 0.9 LO 
Share of llours witll in 0.5°C Share of llours within 0.5°C 

310067, Page 6 

Table 3: Energy model settings 

OPAQUE ENVELOPE 

Layer 
Thickness 

[m] 

Thermal conductivity 
-1 K-1][W m 

Specific heat 

capacity [J kg-1 K-1] 

Density 
-3][kg m 

U-Value no film 
-2 K-1][W m 

Polystyrene 0.1 0.05 1470 40 
0.329 

Concrete 0.2 0.37 840 1190 

FENESTRATION 

Window-to-wall ratio -2 K-1]Glass U-Value [W m Glass SHGC Glass Visible Transmittance 

40 % 1.772 0.578 0.698 

HEATING SYSTEM COOLING SYSTEM 

Setpoint Schedule Type Setpoint Schedule Type 

20 °C Always ON Ideal 26 °C Always ON Ideal 

VENTILATION INTERNAL GAINS 

Type Rate [ach] Schedule Type -1]Power [W m Schedule 

Infiltration 0.3 Always ON Other equipment 0.3 Always ON 

3. RESULTS AND DISCUSSION 

3.1 Overview 
Temperature and energy needs differences between the detailed and simplified models are presented by means of 

boxplots and histograms. Regardless the magnitude of the deviation occurring, the shoeboxing algorithm reduced the 

time required for the thermal simulation to one third for the simplified models with respect to the detailed ones for all 

the considered cases. 

3.2 Temperature 
Figure 2 reports the boxplots regarding the share of hours for which the temperature deviation in each floor lays within 

± 0.5 °C for the three climates. Bolzano and Messina show a similar behavior: for both climates the temperature 

deviations lay within ± 0.5 °C for more than 95 % of time for all simulated floors, excluding the outliers, and the 

temperature prediction for Bolzano is the most accurate overall. On the contrary, the outputs obtained for Denver are 

less accurate: indeed, excluding the outliers, temperature deviations stay within the ± 0.5 °C interval for only at least 

75 % of time, depending on the considered floor. 

Figure 2: Resulting boxplots of the share of hours within ± 0.5 °C temperature deviation for each floor. Outliers are 

plotted outside the boxes’ whiskers. The floors, color-coded in grey scale, are indicated with the floor name and the 

number of floors present in the building of which the floor is part of. 
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Figure 3: Resulting boxplots of the largest negative temperature difference 

The most shaded floors are characterized by the largest temperature deviations. This has been observed in all the 

considered climates and particularly in Denver. Moreover, the higher the number of floors, the lower the accuracy. 

Finally, the maximum positive and negative temperature deviations are often included within the ± 0.5 °C interval for 

the climates of Bolzano and Messina, while larger differences occur for the climate of Denver. Such behaviour is 

shown by Figure 3 in which the boxplot regarding the largest negative temperature differences are reported. The 

largest positive temperature differences, even though not reported, experience lower differences. 

3.3 Heating and cooling needs 
The energy need has been investigated on annual and hourly basis. Figure 4 and Figure 5 depict with boxplots the 

relative differences of heating and cooling needs, as well as the RMSEs. As for the temperatures, it is possible to see 

that the climate of Bolzano is the one with the best predictions: indeed, the heating need stays within ± 5 % for all 

buildings and the cooling need within ± 10 % for the most of them. The accuracy of this prediction is confirmed also 

by the RMSE values. The climate of Messina may seem the one with the worst predictions, in particular regarding the 

heating need. However, from Figure 6 it is clear that the large relative deviations are mainly due to the very low 

magnitude of the heating needs. As it can be noticed in Figure 6 and Figure 7, the results obtained in the climate of 

Denver are overall the least accurate. Nonetheless, Figure 4 shows that the model annual need predictions do not 

exceed ± 10 % and ± 20 % deviation, respectively for cooling and heating and for most of buildings. Figure 6 and 

Figure 7 also highlight how, for the considered climates, the heating demand is underestimated when not properly 

predicted. On the contrary, the cooling demand is generally overestimated by the simplified model. This behavior can 

be explained considering that the simplified shoeboxes are smaller than the starting geometry. Even if the obstruction 

is properly shading the windows and the solar heat flux entering in the zone is the same for both models, since the 

volume of air is lower in the simplified model, so is its capacitance – consequently, a slightly different impact of solar 

gains is obtained. Overall, it is possible to see that the deviations increase with the number of floors, as a consequence 

of larger deviations occurring at the lower floors as observed also in the analysis of temperature deviations. 

Figure 4: Boxplots for annual heating and cooling needs relative differences in function of buildings’ number of 
floors 
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Figure 5: Boxplots for annual heating and cooling RMSE in function of buildings’ number of floors 

Figure 6: Simplified and detailed model heating annual outcomes in function of buildings’ number of floors 

Figure 7: Simplified and detailed model cooling annual outcomes in function of buildings’ number of floors 

Figure 8: Share of buildings within a specific hourly heating range for a certain number of hours along the year 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 



 

   
 

         

 
             

 

                

             

            

             

               

               

           

              

              

                    

  

            

       

              

             

           

 

 
 

            

             

        

         

              

          

             

           

               

            

    

            

            

             

             

 

 

 
 

            

   
              

    

          

 

Bolzano Denver Messina 
0.9 ~---------------~ r---------------~ ~---------------~ 

0.8 

0 .7 

~ 0.6 

I 0.5 

'6 0.4 

~ 5i 0.3 

o., 

0.1 

Hourly load difference 

c::::J S%cooling 
c=i 10% cooling 

- 20% cooling 

0.6 0 .7 0.8 0.9 
Share of hours in specific interval 

LO 0.6 0 .7 0.8 0.9 LO 0.6 0.7 0.8 0.9 LO 
Share of hours in specific interval Share of hours in specific interval 

310067, Page 9 

Figure 9: Share of buildings within a specific hourly cooling range for a certain number of hours along the year 

Regarding the hourly energy needs, Figure 8 and Figure 9 report the share of buildings for which the relative hourly 

deviations lay within three deviation intervals (5 %, 10 % and 20 %) for a certain time of the year. 

As for the annual needs, the outputs of Bolzano are those with the best prediction for the heating: up to 70 % of 

buildings have more than 90 % of hours along the year with a maximum relative deviation between the detailed and 

simplified model of ± 20 %. Furthermore, all buildings are in this interval if the minimum percentage of hours 

considered is 70 %. Regarding the cooling needs, hourly accuracy is lower. The hourly results for the climates of 

Denver and Messina are aligned to the annual ones. Messina shows lower accuracy for the heating demand, but, as 

seen for the annual results, it is related to the very low magnitude of the needs. Instead, the cooling hourly prediction 

is the best among the three cases. Denver shows higher accuracy in cooling estimation with respect to heating. This is 

not only due to the capability of the algorithm but also to the lower magnitude of the heating needs with respect to the 

cooling ones. 

Although floor level results have not been reported, they show the same behavior of the building level outcomes and 

they underline how the prediction for the least shaded floors is the most precise. 

Finally, even though it seems that on the hourly basis the need prediction is less accurate, a closer look at the data 

reveals that larger deviations occur in hours characterized by lower energy needs. For what concerns the heating 

demand, peak loads and those periods of the year with higher demands are well predicted. 

4. CONCLUSIONS 

In this work, a novel simplification algorithm to ease UBEM computing resources has been presented. The algorithm 

aims at simplifying complex building shapes into representative shoeboxes, in order to reduce the required simulation 

time without compromising modeling accuracy and resolution. The automated simplification procedure creates the 

simplified model from a set of geometry indicators, includes equivalent shading surfaces to account for self-shading 

elements and defines a thermal zone for each of the building floors. To test the proposed approach, 3072 buildings 

have been generated and simplified into representative shoeboxes. Both detailed and simplified models have been 

simulated in three different climatic conditions, and hourly temperatures and heating and cooling needs analyzed. 

The algorithm has shown a good level of accuracy in estimating both hourly and annual needs, as well as temperature 

profiles for each floor, reducing the time required for the simulation to one third for the simplified models with respect 

to the detailed ones. However, larger discrepancies have been observed in climates characterized by quick temperature 

variations and large daily temperature differences. 

In order to further improve the proposed algorithm, a thorough analysis of outliers will be performed in future 

developments, with the aim to optimize the shoebox definition and to increase the prediction accuracy. Moreover, the 

shoeboxing procedure efficacy will be also tested by considering the context and adjacent buildings, paving the way 

to the implementation in a urban model made of building shoebox metamodels, allowing to increase considerably the 

computational efficiency. 
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