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ABSTRACT 

A Fault Detection and Diagnostics (FDD) tool is a type of energy management and information system that is 

designed to continuously identify the presence of faults and efficiency improvement opportunities through a 1-way 

interface to the building automation system and application of automated analytics. It is estimated that 5-30% energy 

saving can be achieved by employing FDD tools and implementing efficiency measures based on FDD findings. 

Although the potential of this technology is high, actual savings are only realized when an operator takes an action 

to fix the problem. There is a subset of faults that can be potentially addressed automatically by the system, without 

operator intervention. Automating this fault "correction" can significantly increase the savings generated by FDD 

tools and reduce the reliance on human intervention. 

This paper presents preliminary efforts towards delivering automated fault correction. It describes nine fault auto-

correction algorithms for heating ventilation and air conditioning (HVAC) systems that were developed to 

automatically correct faults or improve controls operation. It also presents preliminary testing results of one auto-

correction algorithm (improve air handling unit static pressure setpoint reset) in a commercial building, located in 

Berkeley, California, US. The auto-correction algorithms and implementation frameworks of this initial study 

provide a foundation for future auto-correction algorithm development and novel schemes for improving building 

operation performance and reliability. 

1. INTRODUCTION 

Fault detection and diagnostics (FDD) uses building operational data to identify the presence of faults or efficiency 

opportunities and isolate their root causes. Over the last three decades the development of FDD methods for building 

heating ventilation and air conditioning (HVAC) systems has been an area of active research. Well-cited review 

publications in the HVAC FDD area include two International Energy Agency Annex Reports (Hyvarinen et al., 

1996, Dexter et al., 2001) and literature reviews by Katipamula et al. (2005a, 2005b) and Kim et al. (2018). 

Commercially available FDD tools provide a means of monitoring-based commissioning, through which instances 

of operational inefficiency can be continuously identified, isolated, and surfaced for resolution by operations and 

maintenance staff. FDD tools represent one of the fastest growing markets in technologies for building analytics. 

There are over 30 FDD products available in the US and new software products continue to enter the market 

(Kramer et al., 2020). Today’s FDD technology has been documented to enable whole building savings of 9 percent 

on average, across users (Kramer et al., 2020). Although FDD tools are being used to enable cost-effective energy 

savings, there is a capability gap in current products. Today’s FDD technologies operate in an open loop manner. 
Faults are identified by the FDD tools, which may also provide a report of the duration and frequency of faults, cost 

and/or energy impacts, and relative priority levels. However, the identified faults must be corrected through manual 

human intervention. Building Automation System (BAS) and automated HVAC control optimization technologies 
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offer closed loop supervisory control, but do not provide full-fledged, robust, continuous FDD. In practice, the need 

for human intervention to fix faults once they are identified often results in delay or inaction, causing additional 

operations and maintenance costs or deteriorating comfort conditions. This capability gap is not only technical, but 

also represents market-relevant desired functionality on behalf of FDD users and vendors (Granderson et al., 2017). 

Therefore, this work seeks to develop automated fault correction approaches and integrate them with commercial 

FDD technology offerings, thereby closing the loop between passive diagnostics and active control. Automating the 

correction of these types of faults can increase the savings realized through the use of FDD tools, and reduce the 

extent to which savings are dependent upon human intervention. 

Minimal research and development has been performed on self-correcting or fault-tolerant controls for buildings and 

HVAC systems. Fernandez et al. (Fernandez et al., 2009a; Fernandez, et al., 2009b) and Brambley et al. (Brambley 

et al., 2011) developed passive and proactive fault auto-correction algorithms for an air-handler unit (AHU) and a 

variable-air-volume (VAV) box. The methods are proposed to correct faults occurring in temperature and humidity 

sensors, dampers, control hunting, and manual overrides. A subset of these algorithms (sensor bias and minimum 

outdoor air damper position) were implemented and tested in a laboratory experiment. Related to the concept of 

fault correction is a body of work in the building control literature that focuses on fault tolerant control. The purpose 

of a fault tolerant controller is to maintain proper operation of a system despite the presence of faults (Zhang and 

Jiang, 2008). Wang et al. (2002) developed a supervisory control scheme that adapts to the presence of a 

measurement error in outdoor air flow rate. Hao et al. (2005) employed principal component analysis to develop 

fault tolerant control and data recovery in the HVAC monitoring system. Bengea et al. (2015) developed a fault-

tolerant optimal control strategy for a HVAC system integrating FDD and model predictive control. While the 

literature focuses on the development of these advanced controllers, it is not yet readily implemented in today’s 
buildings control systems and also does not explore their integration with existing FDD technologies. 

This paper presents a preliminary study of automated fault correction. It describes the development of fault auto-

correction algorithms that are designed to be integrated with commercial FDD tools. It also presents early testing 

results of one auto-correction algorithm (improve air handling unit static pressure setpoint reset). In the testing, the 

algorithm was implemented in a commercial FDD product and successfully changed the static pressure setpoint in 

two AHUs of a commercial building in Berkeley, California, US. 

2. FAULT AUTO-CORRECTION ALGORITHMS 

2.1 Fault Auto-correction Algorithms 
The primary objective of this study is to develop automated fault correction algorithms that can be integrated with 

existing commercial FDD and BAS products. Therefore, the developed auto-correction algorithms are decoupled 

from the FDD algorithms embedded in the existing FDD tools. This permits applicability and feasibility of the 

developed correction algorithms across a variety of FDD technologies that employ different FDD rules and 

algorithms. Further, it is assumed that the FDD tools are able to detect the faults of focus, as they represent some of 

the more commonly encountered faults in commercial buildings. 

Nine innovative fault auto-correction algorithms for HVAC system were developed to automatically correct the 

faults or improve the operation, including: (1) HVAC schedules are incorrectly programmed, (2) revert manual 

overrides, (3) AHU outdoor air or supply air temperature sensor bias, (4) control hunting, (5) rogue zone, (6) 

improve economizer high lockout temperature setpoint, (7) improve zone temperature setpoint setback, (8) improve 

AHU static pressure setpoint reset , and (9) improve AHU supply air temperature setpoint reset (Lin et al., 2020). 

Figure 1 shows a flow chart of the general auto-correction process. In this process, after the FDD algorithm 

generates a fault flag of a specific fault, the fault auto-correction algorithm is initiated to correct this fault with 

approval from the building operator. A correctable variable (referred to as Control_variable_being_overwritten), is 

the key element in the auto-correction process. The algorithm overwrites this variable 

(Control_variable_being_overwritten_current) via BACnet or other protocol to a new value 

(Control_variable_being_overwritten_new). The control_variable_being_overwritten_current is the one identified in 

the FDD algorithm to be associated with the problematic value (fault) or potential to improve (opportunity). The 

control_variable_being_overwritten_new is the same variable that has the correct value (fault) or optimized value 

(opportunity). All of the auto-correction algorithms developed in this work follow this structure, with different 

control variables overwritten in BAS, and different ways to determine the correct or improved value of the variable. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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For example, the correctable variable in algorithm “revert manual overrides” is the variable that indicates the 

equipment manual control status or equivalent flag: 1 – equipment is in manual control, 0 – equipment is in 

automatic control. 

Figure 1： Flow chart of the general auto-correction process 

2.2 Auto-correction of AHU Static Pressure Setpoint 
The auto-correction algorithm “Improve AHU static pressure setpoint reset” is presented here as an example. The 
other eight algorithms are described in detail in Lin et al. (2020). AHU static pressure reset is one of the top ten 

efficiency measures implemented by organizations through use of FDD technology (Kramer et al., 2020). The auto-

correction algorithm for this opportunity is closely related to ASHRAE High-Performance Sequences of Operation 

Guideline 36 (ASHRAE, 2018), but deployed via the FDD tool. The algorithm corrects the fault “continuously” as it 

adjusts control variables to optimize equipment operation (e.g., setpoints). It is relevant for AHUs with downstream 

VAV boxes without sophisticated reset strategies, such as no reset or simple resets based on the average or 

maximum of downstream VAV damper positions. 

The AHU static pressure setpoint is the correctable variable. The auto-correction algorithm uses the ASHRAE High-

Performance Sequences of Operation Guideline 36 (ASHRAE, 2018) “Trim and Respond” logic for the new static 

pressure setpoint. To optimize the operation of the AHU and minimize discomfort, the static pressure setpoint is 

continually reset using Trim and Respond logic between a minimum and maximum setpoint. When the supply air 

fan turns on, after a period of inactivity, the setpoint starts from an initial value. The reset logic is active while the 

supply air fan is proven on. When active, for every time step t, when the sum of pressure requests (R) from the 

downstream zones is less than or equal to a defined number of ignored requests (I), the setpoint is trimmed by a 

fixed trim amount. If R is more than I, the setpoint changes by a respond amount based on R, but no more than the 

maximum response per time interval. 

3. PRELIMINARY TESTING 

This section illustrates the test results of one auto-correction algorithm: “improve AHU static pressure setpoint 
reset” (Section 2.2). The algorithm was deployed in a commercial FDD product and tested on two AHUs between 
March 4th and August 4th, 2020. The goal of this preliminary test was to determine whether the enhanced FDD 

solution is able to correct the fault without adverse operational effects. 

3.1 Description of the Testing Site and Equipment 
The test building is a commercial building operated by Lawrence Berkeley National Laboratory (LBNL) and utilized 

for offices and laboratories. Under normal conditions, the building is operated all week and its lab zones have 24/7 

ventilation. Offices are ventilated and conditioned from 4 am to 9 pm. The HVAC system is primarily composed of 

a water-cooled chilled water plant, a gas-powered heating hot water plant, multiple AHUs and Variable Air Volume 

(VAV) boxes. AHU01 and AHU02, that serve 90% of the building floor area, and their connected zones (n=83 and 

n=80) are used for the test of this algorithm. Starting from March 17th the occupancy of the buildings decreased 

significantly due to COVID-19, but the Labs kept running 24/7. Figure 2 shows the BAS graphics (i.e. native 

dashboard) for one of the two AHUs. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 



   

      

           

        

               

             

      

  

      

        

      

         

      

 

          

           

         

               

                   

  

Lo Press Alann 

3656, Page 4 

Figure 2: BAS graphics for AHU02 at the LBNL test site 

Both AHU01 and 02 are controlled by a “sequence of operation” implemented in the native control language and 

hosted on local controllers. Each AHU is controlled independently. The baseline Static Pressure Setpoint (SSP_SP) 

Reset used by AHU01 and AHU02 is coded in the AHU controllers and it is summarized below in English. The 

supply air fan speed of each AHU is regulated by a direct-acting proportional–integral–derivative loop to keep static 

pressure at its setpoint, determined by the following reset logic. 

Baseline Static Pressure Setpoint Reset Strategy 

● If the AHU is enabled (based on schedules, normally 24/7): 

o Calculate the max damper position (MAX_DPR) for all the zones served by an AHU. 

o Use a direct-acting proportional–integral (PI) control loop to reset the Supply Static Pressure 

Setpoint (SSP_SP) between a minimum and maximum setpoint 249 pa and 373 pa 

respectively) to keep the max damper position at 90%. The setpoint is reset continuously. 

3.2 Implementation of Auto-correction into the FDD Software 
The limitation of the baseline strategy is that using the maximum damper position to trigger the reset can easily be 

negatively impacted by rogue zones (i.e., a stuck damper would cause the SSP_SP to be at its max value the whole 

time). This opportunity can be addressed by implementation of the correction algorithm “Improve AHU static 

pressure setpoint reset” into the FDD software. The implementation process includes (1) Change settings in the FDD 

tool to enable the write capability to the BAS setpoints (2) Program the auto-correction routine in the analytics 

engine of FDD tool (3) Commission the algorithm, review the auto-correction algorithm outputs, and verify the 

point value to be auto-corrected. 

The FDD tool connected to the BAS is a commercial product managed by the sustainability department of the site. 

The tool allows for custom programming and bi-directional communication to the BAS via the BACnet network. In 

contrast to the BAS, the FDD tool coding language is a modern scripting language with the ability to use high-level 

functions that allow portability of the code between buildings and equipment. The auto-correction algorithm was 

coded using this platform and tested on the two AHUs. The architecture of the FDD tool and the BAS to support 

fault auto-correction is presented in Figure 3. The solid line shows the original infrastructure and the red dash line 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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shows the upgrade. Two auto-corrective commands are sent to the BAS BACnet network and then to the writable 

properties used to control the static pressure. One is the new static pressure setpoint SSP_SP calculated from the 

correction algorithm (Section 3.3), the other is a “heartbeat” message indicating the FDD tool’s status (online or 
offline). If the heartbeat is not received by the BAS every 15 minutes (adjustable), the BAS reverts back to the 

baseline pressure reset control program. On the BAS side, some programming changes are also required. A setpoint 

variable (highlighted in red and marked with 2 in Figure 4) was added to receive the new SSP_SP coming from the 

FDD tool and then overwrite the static pressure setpoint calculated by the baseline control logic. A watchdog input 

(1 in Figure 4) was also added to pair with the heartbeat command from the FDD tool. Finally, an enable input (3 in 

Figure 4) was added to provide the BAS operator with the ability to switch between the baseline setpoint and the 

FDD autocorrected setpoint. 

Figure 3: The FDD-BAS architecture to support auto-correction 

Figure 4: BAS logic that determines what algorithm is in control of the static setpoint. If the enable (3) and the 

watchdog (1) flag (that checks whether the FDD toolis online) are both TRUE the FDD tool setpoint is used, 

otherwise the BAS setpoint is used. 

3.3 Auto-Correction Code Developed for FDD Tool 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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The code adopts the algorithm in Section 2.2. The static pressure setpoint (SSP_SP) is continually reset using “Trim 
and Respond” logic between a minimum and maximum setpoint (SSP_SP_MIN = 249 pa and SSP_SP_MAX =373 

pa). When the supply air fan is turned on, the initial setpoint is set to SSP_SP0 = 249 pa and the reset logic is active 

immediately. When active, every time step t = 5 min, the following algorithm controls the SSP_SP. The advantages 

of this new algorithm are its simplicity, and the ability to operate efficiently regardless of rogue zones (i.e., these can 

be handled by increasing the number of ignored zones I) 

New SPP Reset Strategy 

Variables definition and instantiation: 

● Supply Static Pressure Actual: SSP 

● Supply Static Pressure Setpoint: SSP_SP 

● Min Supply Static Pressure: SSP_MIN = 249 pa 

● Max Supply Static Pressure: SSP_MAX = 373 pa 

● Initial Supply Static Pressure Setpoint: SSP_SP0 = 249 pa 

● VAV Damper Position: DMP 

● Requests: R 

● Ignores: I =1 

● Net Requests: R* 

Logic: 

● If the AHU is enabled (based on schedules, normally 24/7): 

o For each zone, every 5 min calculate the number of requests based on the VAV damper position 

(using hysteresis conditions): 

▪ (trigger condition) if DMP_i > 95% generate a request 

▪ (release condition) if DMP_i < 85% remove the request 

o Sum the requests R for all the zones 

o Subtract the fixed number of ignored requests I=1 

o Calculate the net number of requests R* = R - I 

o If R* <=0 

▪ SSP_SP is trimmed by a fixed amount (SSP_trim = 2.5 pa) until the SSP_SP reaches 

SSP_MIN 

o If R* >0 

▪ SSP_SP is increased (respond) by an amount proportional to R* (SSP_res = 5 x R* pa 

with a maximum response of 25 pa ) until the SSP_SP reaches SSP_MAX 

3.4 Testing Procedure 
The algorithm was tested on AHU 01 and AHU 02 between March 4th and August 4th 2020. The test procedure is 

the following: 

● Verify the ability to override all setpoints/parameters to be tested. 

● Document pre-implementation behavior. 

● Execute the auto-correction routine. 

● Observe and document the effect of the automated fault correction 

3.5 Testing Results 

3.5.1 Baseline reset strategy 

An example of the baseline behavior of the SSP_SP reset is displayed in the lower panel (b) of Figure 5. The 

setpoints profile is smooth because it is continuously reset by a PI loop. The power use of the two fans is depicted in 

the upper panel (a) of Figure 2. Given the high load due to occupancy and laboratory process load, the pressure 

setpoint reaches its max between 10-11 am and between 5-6 pm. The fan speed increases over the entire 4 AM - 9 

PM period to maintain the static pressure at setpoint with an increased demand from VAV dampers that are only 
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open during the day. Fan speed further increases during the day to meet the increased static pressure setpoint when 

the demand is even higher, e.g. for meeting the cooling load in some spaces. 

Figure 5. SSP setpoint of AHU01 with the baseline control strategy algorithm (Feb 13, 2020). a) Upper panel: 

power draw of the two fans controlled using the static pressure; b) Lower panel: SSP_SP using the baseline 

algorithm (black), actual SSP (light blue). 

3.5.2 Test of the Auto-Correction Algorithm 

The auto-correction algorithm “Improve AHU static pressure setpoint reset” successfully changed the setpoint of 
AHU01 and AHU02. Figure 6 shows the successful implementation of the algorithm for one day in the testing 

period, and the SSP_SP changes followed the routine described in Section 3.3. The total number of requests for all 

the zones served by AHU01 is displayed in the upper panel of Figure 6. When the net number of requests R* goes 

above zero the “respond” logic is triggered, increasing the SSP_SP as illustrated in the lower panel of the figure. The 

first case of this behavior happens around 4am. The actual pressure, SSP follows the setpoints after some 

oscillations. In this case, the SSP_SP never reaches its max value, but it stops increasing when R* becomes zero 

again. At that point SSP_SP is constantly “trimmed” until it reaches its minimum SSP_SP_MIN more than an hour 
later. The same behavior repeats other three times during the same day, although the slope of the “respond” phase is 
lower, because R* is lower compared to the first case. 
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Figure 6: SSP setpoint of AHU01 after the execution of the auto-correction algorithm (Jul 14, 2020). a) Upper 

panel: number of requests generated by the zones (red). b) Lower panel: SSP_SP using the new algorithm (black) 

and SSP (light blue). 

3.6 Discussion 
Since both the baseline logic and the new logic use feedback loops, a quantitative comparison between the two is not 

possible without modeling the dynamic behavior of the system or collecting enough data to perform a system-level 

evaluation. However, Figure 7 shows an example of the improved performance of the automated correction routine, 

in case of a rogue zone. The rogue zone essentially breaks the feedback loop by keeping its damper 100% open 

regardless of the AHU static pressure. During June 28th 2020, a zone damper was consistently open at 100% (Figure 

7, bottom panel). This single zone drove the SSP_SP of the baseline strategy (in red in Figure 7, top panel) to its 

maximum for the whole day, while the new strategy performed consistently better. The baseline strategy was not in 

control at the time, but in this situation we know that the baseline strategy setpoint would indeed have stayed at the 

maximum value of 373 pa. 

The auto-correction algorithm has been running for five months without issues and no occupant complaints, 

although occupancy in the building was significantly reduced due to COVID-19. The building managers have been 

encouraged by the outcomes of this algorithm. Therefore, they decided to remain the algorithm active in regular 

operation, because it works better than the original sequence. 

Figure 7: Example of 1 rogue zone (lower panel) driving the original SSP_SP setpoint to remain at 373 pa for the 

entire day (upper panel, in red), while the new strategy generates lower SSP_SP. 
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The development and deployment of this algorithm stimulated an interesting discussion among the partners and 

advisors of the project about the role of the FDD and the BAS. Typically, commercial FDD tools are developed as a 

software layer on top of the existing BAS. There exists a natural separation of roles in this arrangement, in which the 

BAS actively controls the building and the FDD tool observes its operation and provides insights and 

recommendations to the building manager. However, some consider FDD tools as a good supplement of BAS that 

can take over some of its functionalities when it is necessary. In this preliminary testing, implementing the 

correction algorithm to address the static pressure setpoint opportunity directly in the BAS would be a difficult task. 

Zone controllers at this testing site cannot directly calculate “requests” necessary for the implementation of the 

algorithm because both the lab controllers and the office controllers can’t easily be modified to run customized 
logic. Alternatively, calculating requests and rogue zones for each zone in the AHU controller would be overly 

complex, since each AHU serves more than 80 zones. The existing AHU controllers would likely not have enough 

computing power to run such calculations. For these reasons we used the FDD tool to implement the algorithm and 

achieved success. 

4. CONCLUSION AND FUTURE WORK 

This paper presents preliminary efforts towards delivering automated fault correction. It describes nine fault auto-

correction algorithms for heating ventilation and air conditioning (HVAC) systems that were developed to 

automatically correct faults or improve controls operation. It also presents preliminary testing results of one auto-

correction algorithm (improve air handling unit static pressure setpoint reset). In the testing, the algorithm was 

implemented in a commercial FDD product and successfully changed the static pressure setpoint in two AHUs. The 

preliminary test confirmed the efficacy of the algorithm, as tested in a real commercial building. It provided a 

foundation of future auto-correction algorithm development and novel schemes for improving building operation 

performance and reliability. 

In the future, more field testing of the FDD integrated correction algorithms with different FDD tools will be 

performed in a cohort of commercial buildings. This will include evaluation of the technical efficacy and 

performance of each correction routine, evaluation of the operations and maintenance benefits for each site in 

cohort, and characterization of challenges and best practices. A second area of future work will entail design and 

execution of a techno-economic analysis to quantify the broader market opportunity to inform ongoing 

commercialization efforts. 
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