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ABSTRACT 

Model predictive control (MPC) for buildings is a promising approach to reduce the energy consumption of buildings 
while at the same time the thermal user comfort can be improved. The core of this control strategy consists of building 
models that can describe the thermal behavior of particular zones accurately. Grey-box models are frequently used 
modeling approaches for control-oriented models, however, these models often have limitations regarding their general 
applicability. Furthermore, the modeling and identification of models used in MPC still require significant effort and is 
one of the main obstacles for the actual practical implementation of building predictive control. This paper addresses 
these issues and presents a framework for the online state and parameter estimation of grey-box models. The results 
show that (1) this online simultaneous state and parameter estimation highly increases the multi-steps-ahead (up to 
48 h) prediction performance, (2) this approach enables the models to adapt to changing environmental conditions 
and (3) it is possible to use only one pre-defined initial model to describe the thermal behavior of several different 
zones. 

1. INTRODUCTION 

Against the background of the environmental impact of energy use, the depletion of primary energy resources and the 
associated economic consequences, considerable efforts are being made worldwide to realize environmentally-friendly 
and energy-efficient buildings. According to the European Commission, about 40 % of primary energy demand is 
related to the building sector (European Commission, 2019). Reducing the energy demand of buildings is therefore of 
major importance concerning the climate protection goals. Especially in modern buildings with already high energy 
efficiency standards and a high degree of automation, the control and interaction of the individual building’s systems 
with each other is of decisive importance for the energy efficiency and user comfort of the entire building. This is 
especially true for non-residential buildings such as large office buildings. The optimization of the building control 
strategy represents a cost-effective approach compared to other energy-saving measures. 

Model predictive control (MPC) of buildings is a promising approach to reduce the energy demand of buildings while 
improving thermal user comfort (Serale et al., 2018). With the increase in performance and capacity of modern com-
puters and the extensive use of measurement and monitoring systems in buildings, the implementation of advanced, 
complex control strategies has got more attention in recent years (Sofos et al., 2020). The core of this control strat-
egy consists of one or more simplified and dynamic building models that can describe the thermal behavior of par-
ticular zones accurately. Grey-box models based on resistor-capacitor (RC) networks are frequently used modeling 
approaches for control-oriented models, however, these models often have limitations regarding their general applica-
bility. Furthermore, the modeling and identification of models used in MPC still require significant effort and is one 
of the main obstacles for the actual practical implementation of building predictive control. This paper addresses these 
issues and presents a framework for the simultaneous online state and parameter estimation of grey-box models based 
on an unscented kalman filter (UKF). 

1.1 Related Works 
To the best of the authors’ knowledge, Radecki and Hencey (2012) were the first ones who proposed an unscented 
kalman filter for estimating states and parameters of a thermal RC model. In Radecki and Hencey (2013) they compared 
a UKF-based MPC to thermostat control. The UKF tended to estimate the model parameters to physically impossible 
values. In those cases, the thermostat control outperformed the MPC. In Radecki and Hencey (2017) they tested the 
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(a) Front view of the investigated building. (b) Standard single office. 

Figure 1: Front view of the office building (a) and schematic of a standard single office (b). 

UKF in a one-year-period. Reference measurement data was generated by a detailed white-box model. The root mean 
square error (RMSE) of a 24 h prediction was 1.48 ○C. Maasoumy et al. (2013) used an off-line parameter training to set 
the initial values for the UKF algorithm. In Martincevic et al. (2014) a method called “clipping” was proposed to prevent 
the UKF from estimating parameters to physically impossible values. For this purpose, they defined constraints for 
every parameter by upper and lower boundaries. Every time a parameter value passed the upper or the lower boundary 
during a filter algorithm step, the value was “clipped” back to the boundary. In Martincevic and Vasak (2019) three 
additional modifications to the UKF algorithm were added. First, the weighting factors were recalculated after every 
“clipping” to prevent the mean of the filter’s sigma points from shifting. Second, parameters like the solar irradiance 
factor were temporarily removed from the augmented state vector when their value did not influence the model output. 
Third, parameter values were normalized to the interval defined by the upper and lower boundaries to reduce numerical 
issues. The evaluation of the filter performance with real measurement data resulted in an RMSE of 0.3 ○C for a 24 h 
prediction. Massano et al. (2019) tested the UKF performance on a very simple RC model consisting of one resistor 
and one capacitor. Reference measurement data was generated by a white-box model. The RMSE of a 24 h prediction 
was 0.464 ○C. 

All of the described works neglected the influence of disturbances caused by occupants like the opening of windows 
or internal gains. The reference data were synthetically generated without disturbances using detail building models. 
In Alam et al. (2017) disturbances induced by occupants were considered. Alam et al. tested an extended kalman 
filter to estimate the model states and model parameters for a temporarily occupied living room. Monthly averaged 
temperature and solar irradiance measurements were used as weather forecast. Several disturbances were considered. 
The 95th percentile of the absolute prediction error was 1.73 ○C in case of a 4 h prediction. Here, the prediction horizon 
was much smaller while the error value had the same magnitude as in the other papers. Considering more different 
disturbances can lead to less accurate predictions. 

2. BUILDING DESCRIPTION 

The office building under investigation, shown in Fig. 1a, is located in Hamburg in Northern Germany. It was designed 
and built as part of the framework “Energy Optimized Building Construction” (EnOB) as part of the International 
Building Exhibition in 2013 and serves as the headquarter for the two Local Ministries for Environment and Energy 
/ Urban Development and Housing. Providing a net-floor space of 46 500 m2, the building houses 1250 office rooms 
for around 1500 workplaces. The building can be subdivided into seven low-rise buildings (referred to as building A 
to D and F to H) with five floors and one 13-story high-rise building (referred to as building E). It was planned and 
built as a sustainable low-energy building with a target primary energy demand lower than 70 kWh~m2a and a heating 
demand of around 15 kWh~m2a. 

2.1 Standard single office 
The majority of office spaces are realized as standard single offices with a rectangular layout. A schematic of a standard 
single office is shown in Fig. 1b. The basic geometric and construction properties of a single office are given in 
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Table 1: Basic geometric and construction properties of a single office. 

Description Unit Value 

Width m 2.5 
Clear height m 2.89 
Floor area m2 10 to 13 
Window area m2 2.63 
Area of exterior facade (without glazing) m2 4.6 
Heat transfer coefficient of window W~m2K 0.7 
Heat transfer coefficient of exterior facade (without glazing) W~m2K 0.9 

Tab. 1. Each office has a manually openable window and a weather-proofed ventilation flap. The building’s envelope 
is realized as a unitized curtain wall with distinctively colored ceramic panels mounted outside. In winter mode, the 
offices are mainly heated by thermo-active ceilings (TAC), realized as concrete-core activation with a maximum supply 
temperature of 32 °C. Mechanical ventilation with preheated air is used to provide the offices with fresh air. During 
summer mode, the building is passively cooled via the thermo-active ceilings which are fed with chilled water in the 
range of 18 °C to 20 °C. The building management system (BMS) automatically switches from heating to cooling 
operation mode based on the averaged outdoor air temperature (OAT) of the past 36 hours. The mechanical ventilation 
is in summer mode replaced by manual ventilation using the ventilation flaps or windows. 

2.2 Heating system 
The building’s heating system is mainly based on shallow geothermal energy in conjunction with two electrically 
driven heat pumps, each with a nominal thermal power output of 264 kW. For domestic hot water supply as well as for 
thermal peak load coverage, a district heating connection is installed. Each building part is separated into two different 
TAC heating circuits according to the orientation (south/north and south-west/north-east, respectively) resulting in 16 
different TAC control loops. The supply temperature set points are gained by a standard linear heating curve using the 
current outside temperature in combination with a simple heating schedule. 

2.3 Monitoring system 
To examine the energy demand targets and to consistently optimize the building operation with respect to user comfort 
and operating costs, a scientific monitoring system was implemented in July 2014. It comprises an extensive network 
of more than 1100 sensors consisting of various energy meters, flow meters, temperature sensors to measure and record 
the relevant parameters within the different subsystems with a sample rate of 1 minute. To additionally analyze and 
evaluate the user comfort, 32 reference office spaces were equipped with sensors for air temperature, relative humidity, 
presence and window handling. These reference offices are mainly office spaces of different orientation, floor plan 
and floor area and are distributed over the entire building. The measurement data collected with the monitoring system 
will be used in the presented framework. 

3. GREY-BOX MODEL DESCRIPTION 

Grey-box models are a trade-off between detailed physical white-box models (standard building simulation software 
like EnergyPlus or TRNSYS) and purely data-driven black-box models (e. g. neural networks, ARMAX). They have 
been widely discussed in literature and successfully applied for predictive control strategies. Grey-box models can be 
represented as networks consisting of thermal resistances R and capacities C. The physical values of those parameters 
are estimated using suitable identification methods with measured input and output data. Fig. 2 depicts the structure 
of the here used grey-box model. 

The purpose of this model is to describe the thermal behavior (indoor air temperature) of a reference office space 
adequately. The model consists of seven resistances and four capacities in total (R7C4 model). The four state variables 
TW (exterior wall temperature), TAir (indoor air temperature), TInt (temperature of internal masses) and TTAC (TAC 
temperature) correspond to the four capacities CW, CAir, CInt and CTAC. Based on available construction data, the 
initial values for the resistances and capacities are derived and given in Tab. 2. The values for the resistances RTAC1 

and RTAC2 are estimated using the EMPA model developed by (Koschenz & Lehman, 2000). 
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Figure 2: RC-network representation of the used grey-box model. 

Table 2: Description and initial values of grey-box model parameters. 

Parameter name Description Initial value 

RW1 Thermal resistance of envelope (exterior side) 0.05 (m2K)~W 
RW2 Thermal resistance of envelope (interior side) 1.11 (m2K)~W 
CW Thermal capacitance of envelope 8.5 ⋅ 103 J~(m2K) 
RG Thermal resistance of glazing 1.43 (m2K)~W 
RTAC1 Thermal resistance between TAC core and zone 0.183 (m2K)~W 
RTAC2 Thermal resistance between TAC core and supply temperature 0.122 (m2K)~W 
CTAC Thermal capacitance of TAC 7.5 ⋅ 105 J~(m2K) 
Q̇Int Internal heat gains 15 W~m2 

RInt Thermal resistance between room air and internal masses 0.18 (m2K)~W 
CInt Thermal capacitance of internal masses 1.82 ⋅ 105 J~(m2K) 
RMV Thermal resistance of mechanical ventilation 0.15 K~W 
fSol Effective window area for solar radiation 0.2 

The model has in total five inputs: TA (outdoor air temperature), TSup,TAC (supply temperature of the corresponding 
TAC’s heating circuit), TSup,MV (supply temperature of mechanical ventilation), IG,{N,S,W,E} (global solar radiation on 
the corresponding facade orientation) and OCC (binary occupancy signal measured by presence sensor). For the heat 
exchange between the building exterior and the environment, a simplified approach based on (VDI 6007, 2015) is 
implemented using the equivalent OAT TA,Eq defined as: 

αFTA,Eq = TA + IG,{N,S,W,E} ⋅ αA 
(1) 

The solar heat gains absorbed by the interior are determined according to: 

Q̇Sol = fSol ⋅ IG,{N,S,W,E} (2) 

where fSol is an empirical factor and can be interpreted as an effective window area in which the solar radiation enters. 
The internal heat gains by persons, lighting or equipment are calculated using the measured occupancy signal OCC 
multiplied by a constant factor Q̇ Int. As shown in Fig. 2, the different heat sources are split into a convective part 
which is acting on the air volume node and a radiative part which is acting on the interior temperature node. The 
corresponding parts are chosen as follows: internal gains 60 % radiative, 40 % convective; solar gains 90 % radiative, 
10 % convective; heat gains by TAC 80 % radiative, 20 % convective. 
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Figure 3: Schematic view of the CUKF operation mode. 

The grey-box model, shown in Fig. 2, is implemented in the equation-based, object-oriented modeling language Mod-
elica® (The Modelica Association, 2020). An interface to MATLAB® is developed which enables the manipulation of 
the parameters and initial states. The following kalman filter algorithm is therefore implemented in MATLAB®. 

4. UNSCENTED KALMAN FILTER ALGORITHM 

In this study, a combined unscented kalman filter (CUKF) for state and parameter estimation is proposed consisting 
of two separate unscented kalman filters (UKF), an outer filter and an inner filter. For outer filtering, the grey-box 
model simulates the room temperature trajectory for the past 48 hours using the available input data. Simultaneously, 
the measured temperature trajectory of the given time interval is loaded from the record. Simulated and measured 
trajectories are smoothed by moving mean and moving median filters to reduce disturbance influences like window 
opening from the data. The outer UKF then estimates the states and parameters of the model by minimizing the RMSE 
between the smoothed signals. The estimated parameters are then transmitted to the inner filter which estimates the 
current state of the model. Fig. 3 shows a schematic view of the combined unscented kalman filter operation mode. 

A discrete-time non-linear state-space model consisting of the system function f (⋅) and the measurement function h (⋅) 
is considered. 

xk = f (xk−1, uk−1) + ω (3) 
yk = h (xk) + υ (4) 
ω ∼ N (0, Q) (5) 
υ ∼ N (0, R) (6) 

ω and υ are the process noise and the measurement noise with covariance Q and R, respectively. They are assumed to 
be zero mean, gaussian and uncorrelated. 

x is the state vector of the system with covariance matrix P. For the outer filter xouter is an augmented state vector 
containing the states (temperature levels) [ T1 . . . Tn]T, manipulated parameters [p1 . . . pm]T and the RMSE of the past 
48 hours eRMSE. For the inner filter xinner is a vector containing only the states [T1 . . . Tn]T . 

< = T1
⋮ 

< = Tn T1 

xouter = p1 , xinner = ⋮ 
⋮ @>TnA? 

@ 
pm 

>eRMSEA? 
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For initializing the state vector, the parameter values are either obtained by an off-line parameter training or by using 
the initial values from Tab. 2. The room air temperature TAir is set by the latest measured indoor air temperature value. 
The other states are initialized as follows: TW = 295.15 K, TInt = 295.15 K, TTAC = 296.15 K. eRMSE is set to zero and 
the initial state covariance matrix P+ 

0 is set to P+ = Q.0 

The general operation mode of the UKF is devided into two steps, prediction step and correction step. In the prediction 
step a defined number of states, so called sigma points, are generated: 

χ(0) + 
k−1 = x̂k−1 (7)

¼ T 

χ(i) + 
k−1 = x̂k−1 + ‰ (n + κ) P+ 

k−1 ’ , i = 1, . . . , n (8) 

¼ 
i
T 

χ(n+i) + 
k−1 = x̂k−1 − ‰ (n + κ) Pk 

+
−1 ’ , i = 1, . . . , n (9) 

i 

κ is a scaling factor that must fulfill the condition n + κ ≠ 0. The sigma points are then transformed through the system 
function f (⋅). This step is called the unscented transform (UT): 

χ(i) = f −χ( k− 
i) 
1, uk ‘ (10)k 

The RMSE value eRMSE, which is the last entry of the state vector in the outer filter, is defined as the root mean square 
error between simulated and measured room temperature trajectory: 

¿ 
N

(i) À 1ÁRMSE = N 
”2›T̂j − Tj,meas. , (11)∑e 

j=1 

where N is the number of simulated and measured temperature samples. The weighting factors 

κ
W(0) = (12)m n + κ 

W(0) = κ + ›1 + β − α2” (13)c n + κ 

W(i) = W(i) 1= i = 2, . . . , 2n (14)m c 2 (n + κ)
, 

are used to calculate mean and covariance of the transformed sigma points receiving the a priori estimation x̂k 
− and P− 

k . 
α and β are scaling factors. α is usually set to a small value between 0 and 1. β is usually set to 2 when a gaussian 
distribution is assumed (Julier, 2002). 

2n
− W(i) χ(i) m k∑ (15)=x̂k 

i=0 

2n 

W(i) c −x̂− − ‘
T 

k − χ(i) k − χ(i) k ‘ −x̂ kP− 
k ∑ + Q (16)= 

i=0 

The transformed sigma points are then transformed again through the measurement function h (⋅): 

Y(i) = h −χ(i)‘ = Hχ(i) (17)k k k 

The output matrix H is defined differently for the inner and the outer UKF. The measurement matrix of the inner 
filter returns only the estimation of the current indoor air temperature, while the measurement matrix of the outer filter 
returns air temperature estimation and the RMSE of the estimated temperature trajectory. 

0 ⋯ 0 0Hinner = �1 0 ⋯ 0� , Houter = �
1 
0 0 ⋯ 0 1 
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The a priori measurement prediction is received by calculating mean and covariance after the second transforma-
tion: 

2n 

W(i)Y(i) m k (18)∑ŷk = 
i=0 

2n 

W(i) −ŷk −Y(i)‘ −ŷk −Y(i)‘
T 
+ Rc k k (19)∑Py,k = 

i=0 

In the correction step the a priori estimation is turned into an a posteriori estimation by calculating the cross-covariance 
matrix Pxy,k and the kalman gain Kk. For further details about the UKF algorithm see (Simon, 2006). 

2n 

W(i) k 
− − χ(i) yk −Y(i)‘

T
−x̂ ‘ −ˆc k kPxy,k =∑ (20) 

i=0 

Kk = PxyPy 
−1 (21) 

ˆk = ˆ (22)x+ xk 
− + Kk (zk − ̂yk) 

P+ = P− 
k − KkPyKT (23)k k 

The measurement vector zk only returns the current measured room temperature value in the case of inner filtering and 
an additional zero entry for the RMSE in the case of outer filtering: 

zk,inner = �Tk,meas.� , zk,outer = �
Tk,meas. 

0 

The zero entry is needed for the outer filter to minimize the RMSE in every filtering step. 

5. RESULTS AND DISCUSSION 

In this section, two different applications of the proposed filter algorithm are presented. First, the adaption of a “trained 
model” to changing environmental and operational conditions is investigated. The second use-case is the online simul-
taneous parameter and state estimation of an “initial model” without pre-trained parameters. The filter performance 
is evaluated using the RMSE between the predicted and measured room temperatures for a prediction horizon of 
48 hours. 

5.1 Adaption to changing system operation 
As described, the performance of the CUKF with a pre-trained model under changing system operations is investigated. 
The parameters of this trained model are estimated with input data from a heating period exclusively. The details of 
the off-line parameter identification are beyond the scope of this paper. More information can be found in Freund and 
Schmitz (2019). Furthermore, only the four most influential (defined by parameter sensitivity concerning the simulated 
room temperature) parameters are set to be manipulable by the filter. The OAT and TAC’s supply temperature of the 
investigated 30-day-period are shown in Fig. 4a. The system operation changes from a 14-day heating period to a 7-day 
cooling period and then back to heating operation. As described in Section 2.2, the TACs are also used for passive 
cooling of the building with a supply temperature of 18 ○C to 20 ○C. The outdoor air temperature in the considered 
period varies in a range of 0 ○C to 25 ○C. 

Fig. 4b depicts the measured room air temperature and the one-step-ahead prediction of the model with and without 
using the CUKF. It appears that the error between measurement and prediction without filter increases when the OAT 
rises and the system operation switches to cooling mode. This indicates that the initial parameters from the off-line 
identification step using training data from heating periods are not suitable for significantly changed environmental 
and operational conditions. Applying the proposed CUKF does improve temperature tracking considerably (Fig. 4b). 
As described, the filter algorithm updates the states and parameters recursively every 30 minutes using the current 
measured room temperature and the trajectory from the past 48 hours. Fig. 4c shows the distribution of the RMSE 
for the 48 hours prediction. Without using any filter, 50 % of the prediction errors are in a range of 0.4 ○C to 0.8 ○C 
with a median of 0.56 ○C. Using a UKF only for state estimation, the prediction RMSEs drop to a median of 0.4 ○C 
and the distribution is getting significantly narrower. By using the combined state and parameter UKF, the median 
RMSE can further be reduced to 0.32 ○C. In Fig. 4d, the evolution of states and parameters over time are depicted. 
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Figure 4: Online parameter and state estimation of a pre-trained model to changing external and operational conditions. 

The values are normalized concerning their upper and lower bounds. As shown, all parameters evolve over time and 
do not converge to a steady-state value. However, the parameter RTAC2 (solid light blue curve) indicates a strong 
correlation to the environmental and operational conditions, as it is increasing distinctly during the cooling period. 
Overall, the proposed CUKF tunes the parameters and states in a reliable way such that the prediction errors can be 
reduced significantly and the grey-box model is able to adapt to strongly varying conditions. 

5.2 Adaption of an initial model 
In the second use-case, the adaption of an initial model without any prior off-line parameter identification step is 
investigated. The initial parameters of the model, given in Tab. 2, are derived from available construction data and 
relevant standards. A test period of 28 days during the heating season is chosen. As shown in Fig. 5a, the OAT is in a 
range of −3 ○C to 12 ○C and the TAC supply temperature reaches a maximum of 30 ○C. 

The comparison between the simulated and the measured room temperature, see Fig. 5b, reveals that the initial set of 
parameters already results in a good agreement. This is emphasized by a low median prediction RMSE of 0.36 ○C, see 
Fig. 5c. Applying a UKF for state estimation only does again improve the prediction performance and decreases the 
median RMSE to 0.26 ○C. However, by using the CUKF the prediction errors can further be reduced considerably to a 
median RMSE of 0.19 ○C while 50 % of the data are in a range of 0.12 ○C to 0.28 ○C. As before, the parameter values 
evolve constantly over time and do not converge to a steady-state value, see Fig. 5d. This behavior may result from 
the presence of significant unmeasured disturbances in the used input data. It is quite reasonable that there is not just 
one optimal set of parameters, but rather a variety of locally optimal parameter sets. Similar behavior can be observed 
in off-line parameter identification procedures, see Brastein et al. (2018). 

To further confirm the results found, the CUKF is applied to five additional reference offices rooms located in the same 
building sector using the identical initial parameter set and the same 28 days test period. The median values of the 
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Figure 5: Online parameter and state estimation of an untrained model. 

RMSE for the 48 hours prediction are given in Tab. 3. As can been seen, the online combined state and parameter 
estimation highly increases the prediction performance of all reference rooms and in all cases outperforms the pure 
state estimation. Therefore, it is possible to use only one pre-defined initial model to describe the thermal behavior 
of several different zones. Thus, the modeling effort to obtain control-oriented models for MPC applications can be 
reduced considerably. 

6. CONCLUSIONS 

Int his study, a framework for a combined state and parameter identification for grey-box models using an unscented 
kalman filter is presented. The proposed filter is tested in two different use cases: the adaption of a pre-trained model 
to strongly varying external and operational conditions and the online parameter estimation of an untrained model. 
The results show that the online simultaneous parameter and state estimation highly increases the 48 hours prediction 

Table 3: Median RMSE for a 48 hours prediction using no filter, a UKF state filter and the CUKF. 

Orientation Floor area RMSE no filter RMSE state estimation RMSE CUKF 

Reference room 1 
Reference room 2 
Reference room 3 
Reference room 4 
Reference room 5 

South-West 
South-West 
North-West 
South-East 
South-East 

10.22 m2 

11.17 m2 

10.25 m2 

12.61 m2 

26.11 m2 

0.62 ○C 
1.30 ○C 
0.40 ○C 
0.44 ○C 
0.38 ○C 

0.59 ○C 
0.82 ○C 
0.39 ○C 
0.34 ○C 
0.27 ○C 

0.41 ○C 
0.46 ○C 
0.22 ○C 
0.18 ○C 
0.24 ○C 
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performance. It further enables the models to reliably adapt to changing external conditions. Furthermore, applying the 
filter algorithm allows using only one pre-defined initial model to describe the thermal behavior of several different 
zones. In future work, the implementation of the proposed filter in a model predictive control framework which is 
currently practically investigated in the described building is planned. 
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